research/bintrie.py
2017-02-21 07:27:32 -05:00

290 lines
7.9 KiB
Python

# All nodes are of the form [path1, child1, path2, child2]
# or <value>
from ethereum import utils
from ethereum.db import EphemDB, ListeningDB
import rlp, sys
import copy
hashfunc = utils.sha3
HASHLEN = 32
# 0100000101010111010000110100100101001001 -> ASCII
def decode_bin(x):
return ''.join([chr(int(x[i:i+8], 2)) for i in range(0, len(x), 8)])
# ASCII -> 0100000101010111010000110100100101001001
def encode_bin(x):
o = ''
for c in x:
c = ord(c)
p = ''
for i in range(8):
p = str(c % 2) + p
c /= 2
o += p
return o
# Encodes a binary list [0,1,0,1,1,0] of any length into bytes
def encode_bin_path(li):
if li == []:
return ''
b = ''.join([str(x) for x in li])
b2 = '0' * ((4 - len(b)) % 4) + b
prefix = ['00', '01', '10', '11'][len(b) % 4]
if len(b2) % 8 == 4:
return decode_bin('00' + prefix + b2)
else:
return decode_bin('100000' + prefix + b2)
# Decodes bytes into a binary list
def decode_bin_path(p):
if p == '':
return []
p = encode_bin(p)
if p[0] == '1':
p = p[4:]
assert p[0:2] == '00'
L = ['00', '01', '10', '11'].index(p[2:4])
p = p[4+((4 - L) % 4):]
return [(1 if x == '1' else 0) for x in p]
# Get a node from a database if needed
def dbget(node, db):
if len(node) == HASHLEN:
return rlp.decode(db.get(node))
return node
# Place a node into a database if needed
def dbput(node, db):
r = rlp.encode(node)
if len(r) == HASHLEN or len(r) > HASHLEN * 2:
h = hashfunc(r)
db.put(h, r)
return h
return node
# Get a value from a tree
def get(node, db, key):
node = dbget(node, db)
if key == []:
return node[0]
elif len(node) == 1 or len(node) == 0:
return ''
else:
sub = dbget(node[key[0]], db)
if len(sub) == 2:
subpath, subnode = sub
else:
subpath, subnode = '', sub[0]
subpath = decode_bin_path(subpath)
if key[1:len(subpath)+1] != subpath:
return ''
return get(subnode, db, key[len(subpath)+1:])
# Get length of shared prefix of inputs
def get_shared_length(l1, l2):
i = 0
while i < len(l1) and i < len(l2) and l1[i] == l2[i]:
i += 1
return i
# Replace ['', v] with [v] and compact nodes into hashes
# if needed
def contract_node(n, db):
if len(n[0]) == 2 and n[0][0] == '':
n[0] = [n[0][1]]
if len(n[1]) == 2 and n[1][0] == '':
n[1] = [n[1][1]]
if len(n[0]) != 32:
n[0] = dbput(n[0], db)
if len(n[1]) != 32:
n[1] = dbput(n[1], db)
return dbput(n, db)
# Update a trie
def update(node, db, key, val):
node = dbget(node, db)
# Unfortunately this particular design does not allow
# a node to have one child, so at the root for empty
# tries we need to add two dummy children
if node == '':
node = [dbput([encode_bin_path([]), ''], db),
dbput([encode_bin_path([1]), ''], db)]
if key == []:
node = [val]
elif len(node) == 1:
raise Exception("DB must be prefix-free")
else:
assert len(node) == 2, node
sub = dbget(node[key[0]], db)
if len(sub) == 2:
_subpath, subnode = sub
else:
_subpath, subnode = '', sub[0]
subpath = decode_bin_path(_subpath)
sl = get_shared_length(subpath, key[1:])
if sl == len(subpath):
node[key[0]] = [_subpath, update(subnode, db, key[sl+1:], val)]
else:
subpath_next = subpath[sl]
n = [0, 0]
n[subpath_next] = [encode_bin_path(subpath[sl+1:]), subnode]
n[(1 - subpath_next)] = [encode_bin_path(key[sl+2:]), [val]]
n = contract_node(n, db)
node[key[0]] = dbput([encode_bin_path(subpath[:sl]), n], db)
return contract_node(node, db)
# Compression algorithm specialized for merkle proof databases
# The idea is similar to standard compression algorithms, where
# you replace an instance of a repeat with a pointer to the repeat,
# except that here you replace an instance of a hash of a value
# with the pointer of a value. This is useful since merkle branches
# usually include nodes which contain hashes of each other
magic = '\xff\x39'
def compress_db(db):
out = []
values = db.kv.values()
keys = [hashfunc(x) for x in values]
assert len(keys) < 65300
for v in values:
o = ''
pos = 0
while pos < len(v):
done = False
if v[pos:pos+2] == magic:
o += magic + magic
done = True
pos += 2
for i, k in enumerate(keys):
if v[pos:].startswith(k):
o += magic + chr(i // 256) + chr(i % 256)
done = True
pos += len(k)
break
if not done:
o += v[pos]
pos += 1
out.append(o)
return rlp.encode(out)
def decompress_db(ins):
ins = rlp.decode(ins)
vals = [None] * len(ins)
def decipher(i):
if vals[i] is None:
v = ins[i]
o = ''
pos = 0
while pos < len(v):
if v[pos:pos+2] == magic:
if v[pos+2:pos+4] == magic:
o += magic
else:
ind = ord(v[pos+2]) * 256 + ord(v[pos+3])
o += hashfunc(decipher(ind))
pos += 4
else:
o += v[pos]
pos += 1
vals[i] = o
return vals[i]
for i in range(len(ins)):
decipher(i)
o = EphemDB()
for v in vals:
o.put(hashfunc(v), v)
return o
# Convert a merkle branch directly into RLP (ie. remove
# the hashing indirection). As it turns out, this is a
# really compact way to represent a branch
def compress_branch(db, root):
o = dbget(copy.copy(root), db)
def evaluate_node(x):
for i in range(len(x)):
if len(x[i]) == HASHLEN and x[i] in db.kv:
x[i] = evaluate_node(dbget(x[i], db))
elif isinstance(x, list):
x[i] = evaluate_node(x[i])
return x
o2 = rlp.encode(evaluate_node(o))
return o2
def decompress_branch(branch):
branch = rlp.decode(branch)
db = EphemDB()
def evaluate_node(x):
if isinstance(x, list):
x = [evaluate_node(n) for n in x]
x = dbput(x, db)
return x
evaluate_node(branch)
return db
# Test with n nodes and k branch picks
def test(n, m=100):
assert m <= n
db = EphemDB()
x = ''
for i in range(n):
k = hashfunc(str(i))
v = hashfunc('v'+str(i))
x = update(x, db, [int(a) for a in encode_bin(rlp.encode(k))], v)
print(x)
print(sum([len(val) for key, val in db.db.items()]))
l1 = ListeningDB(db)
o = 0
p = 0
q = 0
ecks = x
for i in range(m):
x = copy.deepcopy(ecks)
k = hashfunc(str(i))
v = hashfunc('v'+str(i))
l2 = ListeningDB(l1)
v2 = get(x, l2, [int(a) for a in encode_bin(rlp.encode(k))])
assert v == v2
o += sum([len(val) for key, val in l2.kv.items()])
cdb = compress_db(l2)
p += len(cdb)
assert decompress_db(cdb).kv == l2.kv
cbr = compress_branch(l2, x)
q += len(cbr)
dbranch = decompress_branch(cbr)
assert v == get(x, dbranch, [int(a) for a in encode_bin(rlp.encode(k))])
# for k in l2.kv:
# assert k in dbranch.kv
o = {
'total_db_size': sum([len(val) for key, val in l1.kv.items()]),
'avg_proof_size': sum([len(val) for key, val in l1.kv.items()]),
'avg_compressed_proof_size': (p // min(n, m)),
'avg_branch_size': (q // min(n, m)),
'compressed_db_size': len(compress_db(l1))
}
return o