mirror of
https://github.com/status-im/research.git
synced 2025-01-13 16:44:11 +00:00
172 lines
7.6 KiB
Python
172 lines
7.6 KiB
Python
# Evaluates a polynomial, expressed as an array where element i is the
|
|
# ith degree term, at coordinate x, in the prime field with the given
|
|
# modulus
|
|
def eval_poly_at(poly, x, modulus):
|
|
o = 0
|
|
for p, v in enumerate(poly):
|
|
o += v * pow(x, p, modulus)
|
|
return o % modulus
|
|
|
|
# Evaluates a polynomial for every coordinate in the given prime field
|
|
def eval_across_field(poly, modulus):
|
|
return [eval_poly_at(poly, i, modulus) for i in range(modulus)]
|
|
|
|
# Interprets the given polynomial as a 2D polynomial (poly mod x^subdeg - y)
|
|
# and evaluates it at the given (x, y) coordinate
|
|
# eg. poly = [1, 2, 3, 4], subdeg = 2, the 2D polynomial becomes
|
|
# 4xy + 3y + 2x + 1
|
|
def eval_2d_poly_at(poly, x, y, subdeg, modulus):
|
|
o = 0
|
|
for p, v in enumerate(poly):
|
|
o += v * pow(x, p % subdeg, modulus) * pow(y, p // subdeg, modulus)
|
|
return o % modulus
|
|
|
|
# Interprets the given polynomial as a 2D polynomial, and evaluates it
|
|
# across the entire field x field square
|
|
def eval_across_square(poly, max_x, max_y, subdeg, modulus):
|
|
o = []
|
|
for y in range(max_y):
|
|
p = []
|
|
for x in range(max_x):
|
|
p.append(eval_2d_poly_at(poly, x, y, subdeg, modulus))
|
|
o.append(p)
|
|
return o
|
|
|
|
# Recovers the polynomial that has the given y coordinates at the given
|
|
# x coordinates
|
|
def lagrange_interp(xs, ys, modulus):
|
|
# Generate master numerator polynomial
|
|
root = [1]
|
|
for i in range(len(xs)):
|
|
root.insert(0, 0)
|
|
for j in range(len(root)-1):
|
|
root[j] = (root[j] - root[j+1] * xs[i]) % modulus
|
|
# Generate per-value numerator polynomials by dividing the master
|
|
# polynomial back by each x coordinate
|
|
nums = []
|
|
for i in range(len(xs)):
|
|
output = []
|
|
last = 1
|
|
for j in range(2,len(root)+1):
|
|
output.insert(0, last)
|
|
if j != len(root):
|
|
last = root[-j] + last * xs[i]
|
|
last = last % modulus
|
|
nums.append(output)
|
|
# Generate denominators by evaluating numerator polys at their x
|
|
denoms = []
|
|
for i in range(len(xs)):
|
|
denom = 0
|
|
xcpower = 1
|
|
for j in range(len(nums[i])):
|
|
denom += xcpower * nums[i][j]
|
|
xcpower *= xs[i]
|
|
denoms.append(denom % modulus)
|
|
# Derive output
|
|
b = [0] * len(xs)
|
|
for i in range(len(xs)):
|
|
yslice = ys[i] * pow(denoms[i], modulus - 2, modulus)
|
|
for j in range(len(b)):
|
|
b[j] += nums[i][j] * yslice
|
|
return [x % modulus for x in b]
|
|
|
|
# Is the number a perfect square?
|
|
def is_perf_square(n): return n ** 0.5 == int(n** 0.5)
|
|
|
|
# Makes a low-degree proximity proof for the given polynomial
|
|
# by simply converting it into a 2D polynomial, with degree
|
|
# equal to the sqrt of the original degree - 1 and evaluating
|
|
# it at all (x, y) coordinates. The "diagonal"
|
|
# Q[i][i ** int(deg_lt ** 0.5)] for all i in the field is
|
|
# equivalent to the original data.
|
|
def mk_quadratic_proof(data, deg_lt, modulus):
|
|
# Derive the polynomial from the data
|
|
poly = lagrange_interp(range(len(data)), data, modulus)
|
|
# Check that the polynomial actually is low-degree
|
|
for i in range(deg_lt, len(poly)):
|
|
assert poly[i] == 0
|
|
# Max degree must be a perfect square
|
|
assert is_perf_square(deg_lt)
|
|
# Evaluate it across the entire square
|
|
sq = eval_across_square(poly, modulus, modulus, int(deg_lt ** 0.5), modulus)
|
|
return sq
|
|
|
|
# Checks the correctness of the above proof
|
|
def check_quadratic_proof(data, sq, deg_lt, checks, modulus):
|
|
import random
|
|
subdeg = int(deg_lt ** 0.5)
|
|
for _ in range(checks):
|
|
# Select a row and the corresponding column (column = row ** subdeg % modulus)
|
|
check_col = random.randrange(len(sq))
|
|
check_row = pow(check_col, subdeg, modulus)
|
|
# Pick `subdeg` random cells in the same row
|
|
row_cells = [(col, sq[check_row][col]) for col in sorted(range(modulus), key=lambda x: random.random())[:subdeg]]
|
|
# Derive the polynomial (should be degree subdeg - 1)
|
|
row_poly = lagrange_interp([x[0] for x in row_cells], [x[1] for x in row_cells], modulus)
|
|
# Pick `subdeg` random cells in the same column
|
|
col_cells = [(row, sq[row][check_col]) for row in sorted(range(modulus), key=lambda x: random.random())[:subdeg]]
|
|
# Derive the polynomial (should be degree subdeg - 1)
|
|
col_poly = lagrange_interp([x[0] for x in col_cells], [x[1] for x in col_cells], modulus)
|
|
print('row %d eval' % check_row, eval_poly_at(row_poly, check_col, modulus))
|
|
print('col %d eval' % check_col, eval_poly_at(col_poly, check_row, modulus))
|
|
print('diag_in_sq', sq[check_row][check_col])
|
|
print('in data', data[check_col])
|
|
# Evaluate the polynomials along the "diagonal" (x, x ** subdeg), and check that the evaluated
|
|
# polynomials, the values in the square along the diagonal, and the original data all match
|
|
assert eval_poly_at(row_poly, check_col, modulus) == eval_poly_at(col_poly, check_row, modulus) == \
|
|
sq[check_row][check_col] == data[check_col]
|
|
return True
|
|
|
|
# Make a single-column low-degree proof
|
|
def mk_column_proof(data, deg_lt, modulus):
|
|
import random
|
|
# Derive the polynomial from the data
|
|
poly = lagrange_interp(range(len(data)), data, modulus)
|
|
# Check that the polynomial actually is low-degree
|
|
for i in range(deg_lt, len(poly)):
|
|
assert poly[i] == 0
|
|
# Max degree must be a perfect square
|
|
assert is_perf_square(deg_lt)
|
|
# Max degree of the 2D polynomial (as in, the actual degree must be *less* than this)
|
|
subdeg = int(deg_lt ** 0.5)
|
|
# The order of the multiplicative group in the field (ie. p-1) must be a multiple
|
|
# of the subdeg, so that there are only (modulus - 1) // subdeg values of x ** subdeg
|
|
assert (modulus - 1) % subdeg == 0
|
|
# All possible values of x ** subdeg
|
|
admissible_rows = [x for x in range(modulus) if pow(x, (modulus - 1) // subdeg, modulus) == 1]
|
|
assert len(admissible_rows) == modulus // subdeg
|
|
# Select a random x coordinate
|
|
xcor = random.randrange(modulus)
|
|
# Return a column consisting of the evaluations of the 2D polynomial at all admissible y
|
|
# coordinates
|
|
return (xcor, [eval_2d_poly_at(poly, xcor, row, subdeg, modulus) for row in admissible_rows])
|
|
|
|
# Check the above generated proof
|
|
def check_column_proof(data, proof, deg_lt, checks, modulus):
|
|
import random
|
|
subdeg = int(deg_lt ** 0.5)
|
|
check_col, column = proof
|
|
# All possible values of x ** subdeg
|
|
admissible_rows = [x for x in range(modulus) if pow(x, (modulus - 1) // subdeg, modulus) == 1]
|
|
for i in range(checks):
|
|
# Choose a random row to check
|
|
check_row = random.choice(admissible_rows)
|
|
print('Checking row %d' % check_row)
|
|
# Get the x coordinates that satisfy x ** subdeg % modulus == check_row.
|
|
# There are `subdeg` of these.
|
|
xs = [x for x in range(modulus) if pow(x, subdeg, modulus) == check_row]
|
|
print('Taking columns from data:', [(x, data[x]) for x in xs])
|
|
assert len(xs) == subdeg
|
|
# Interpolate a degree subdeg-1 polynomial from the above
|
|
row_poly = lagrange_interp(xs, [data[x] for x in xs], modulus)
|
|
print('Eval', eval_poly_at(row_poly, check_col, modulus))
|
|
print('Actual', column[admissible_rows.index(check_row)])
|
|
# Evaluate the polynomial at the x coordinate of the column. Check that
|
|
# the value is the same as the value provided
|
|
assert eval_poly_at(row_poly, check_col, modulus) == column[admissible_rows.index(check_row)]
|
|
# Check that the column itself is low degree
|
|
column_poly = lagrange_interp(admissible_rows, column, modulus)
|
|
for i in range(subdeg+1, len(column_poly)):
|
|
assert column_poly[i] == 0
|
|
return True
|