2018-07-18 20:43:34 -04:00

62 lines
1.6 KiB
Python

# Implements the "iterated 2-of-3 majority" low-influence function
# from https://arxiv.org/pdf/1406.5694.pdf and outputs the probability
# that any specific user will be able to influence the result
import random
def mkbits(depth):
return random.randrange(2**(3**depth))
def winner(val, depth):
if depth == 0:
return val & 1
subwinners = [
winner(val, depth-1),
winner(val >> (3**(depth-1)), depth-1),
winner(val >> (3**(depth-1) * 2), depth-1)
]
return 1 if sum(subwinners) >= 2 else 0
def is_marginal(val, depth):
if depth == 0:
return True
s1, s2, s3 = val, val >> (3**(depth-1)), val >> (3**(depth-1) * 2)
w1, w2, w3 = (
winner(s1, depth-1),
winner(s2, depth-1),
winner(s3, depth-1)
)
if w1 == w2 and w2 == w3:
return False
dominants = (s2, s3) if (w1 != w2 and w1 != w3) else \
(s1, s3) if (w2 != w1 and w2 != w3) else \
(s1, s2) if (w3 != w1 and w3 != w2) else \
False
return is_marginal(dominants[0], depth-1) or \
is_marginal(dominants[1], depth-1)
def is_marginal2(val, depth):
w = winner(val, depth)
for x in range(3**depth):
val2 = val ^ (1 << x)
w2 = winner(val2, depth)
if w2 != w:
return True
return False
def influence(val, depth):
tot = 0
w = winner(val, depth)
for i in range(3**depth):
val2 = val ^ (1 << i)
w2 = winner(val2, depth)
if w != w2:
tot += 1
return tot / (3**depth)
bitz = [mkbits(3) for i in range(1000)]
print(sum([influence(b, 3) for b in bitz]) / 1000)