mirror of
https://github.com/status-im/research.git
synced 2025-01-13 16:44:11 +00:00
144 lines
5.5 KiB
Python
144 lines
5.5 KiB
Python
from merkle_tree import merkelize, mk_branch, verify_branch
|
|
from utils import get_power_cycle, get_pseudorandom_indices
|
|
from poly_utils import PrimeField
|
|
|
|
# Generate an FRI proof that the polynomial that has the specified
|
|
# values at successive powers of the specified root of unity has a
|
|
# degree lower than maxdeg_plus_1
|
|
#
|
|
# We use maxdeg+1 instead of maxdeg because it's more mathematically
|
|
# convenient in this case.
|
|
|
|
def prove_low_degree(values, root_of_unity, maxdeg_plus_1, modulus, exclude_multiples_of=0):
|
|
f = PrimeField(modulus)
|
|
print('Proving %d values are degree <= %d' % (len(values), maxdeg_plus_1))
|
|
|
|
# If the degree we are checking for is less than or equal to 32,
|
|
# use the polynomial directly as a proof
|
|
if maxdeg_plus_1 <= 16:
|
|
print('Produced FRI proof')
|
|
return [[x.to_bytes(32, 'big') for x in values]]
|
|
|
|
# Calculate the set of x coordinates
|
|
xs = get_power_cycle(root_of_unity, modulus)
|
|
assert len(values) == len(xs)
|
|
|
|
# Put the values into a Merkle tree. This is the root that the
|
|
# proof will be checked against
|
|
m = merkelize(values)
|
|
|
|
# Select a pseudo-random x coordinate
|
|
special_x = int.from_bytes(m[1], 'big') % modulus
|
|
|
|
# Calculate the "column" at that x coordinate
|
|
# (see https://vitalik.ca/general/2017/11/22/starks_part_2.html)
|
|
# We calculate the column by Lagrange-interpolating each row, and not
|
|
# directly from the polynomial, as this is more efficient
|
|
quarter_len = len(xs)//4
|
|
x_polys = f.multi_interp_4(
|
|
[[xs[i+quarter_len*j] for j in range(4)] for i in range(quarter_len)],
|
|
[[values[i+quarter_len*j] for j in range(4)] for i in range(quarter_len)]
|
|
)
|
|
column = [f.eval_quartic(p, special_x) for p in x_polys]
|
|
m2 = merkelize(column)
|
|
|
|
# Pseudo-randomly select y indices to sample
|
|
ys = get_pseudorandom_indices(m2[1], len(column), 40, exclude_multiples_of=exclude_multiples_of)
|
|
|
|
# Compute the Merkle branches for the values in the polynomial and the column
|
|
branches = []
|
|
for y in ys:
|
|
branches.append([mk_branch(m2, y)] +
|
|
[mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)])
|
|
|
|
# This component of the proof
|
|
o = [m2[1], branches]
|
|
|
|
# Recurse...
|
|
return [o] + prove_low_degree(column, f.exp(root_of_unity, 4),
|
|
maxdeg_plus_1 // 4, modulus, exclude_multiples_of=exclude_multiples_of)
|
|
|
|
# Verify an FRI proof
|
|
def verify_low_degree_proof(merkle_root, root_of_unity, proof, maxdeg_plus_1, modulus, exclude_multiples_of=0):
|
|
f = PrimeField(modulus)
|
|
|
|
# Calculate which root of unity we're working with
|
|
testval = root_of_unity
|
|
roudeg = 1
|
|
while testval != 1:
|
|
roudeg *= 2
|
|
testval = (testval * testval) % modulus
|
|
|
|
# Powers of the given root of unity 1, p, p**2, p**3 such that p**4 = 1
|
|
quartic_roots_of_unity = [1,
|
|
f.exp(root_of_unity, roudeg // 4),
|
|
f.exp(root_of_unity, roudeg // 2),
|
|
f.exp(root_of_unity, roudeg * 3 // 4)]
|
|
|
|
# Verify the recursive components of the proof
|
|
for prf in proof[:-1]:
|
|
root2, branches = prf
|
|
print('Verifying degree <= %d' % maxdeg_plus_1)
|
|
|
|
# Calculate the pseudo-random x coordinate
|
|
special_x = int.from_bytes(merkle_root, 'big') % modulus
|
|
|
|
# Calculate the pseudo-randomly sampled y indices
|
|
ys = get_pseudorandom_indices(root2, roudeg // 4, 40,
|
|
exclude_multiples_of=exclude_multiples_of)
|
|
|
|
# For each y coordinate, get the x coordinates on the row, the values on
|
|
# the row, and the value at that y from the column
|
|
xcoords = []
|
|
rows = []
|
|
columnvals = []
|
|
for i, y in enumerate(ys):
|
|
# The x coordinates from the polynomial
|
|
x1 = f.exp(root_of_unity, y)
|
|
xcoords.append([(quartic_roots_of_unity[j] * x1) % modulus for j in range(4)])
|
|
|
|
# The values from the original polynomial
|
|
row = [verify_branch(merkle_root, y + (roudeg // 4) * j, prf, output_as_int=True)
|
|
for j, prf in zip(range(4), branches[i][1:])]
|
|
rows.append(row)
|
|
|
|
columnvals.append(verify_branch(root2, y, branches[i][0], output_as_int=True))
|
|
|
|
# Verify for each selected y coordinate that the four points from the
|
|
# polynomial and the one point from the column that are on that y
|
|
# coordinate are on the same deg < 4 polynomial
|
|
polys = f.multi_interp_4(xcoords, rows)
|
|
|
|
for p, c in zip(polys, columnvals):
|
|
assert f.eval_quartic(p, special_x) == c
|
|
|
|
# Update constants to check the next proof
|
|
merkle_root = root2
|
|
root_of_unity = f.exp(root_of_unity, 4)
|
|
maxdeg_plus_1 //= 4
|
|
roudeg //= 4
|
|
|
|
# Verify the direct components of the proof
|
|
data = [int.from_bytes(x, 'big') for x in proof[-1]]
|
|
print('Verifying degree <= %d' % maxdeg_plus_1)
|
|
assert maxdeg_plus_1 <= 16
|
|
|
|
# Check the Merkle root matches up
|
|
mtree = merkelize(data)
|
|
assert mtree[1] == merkle_root
|
|
|
|
# Check the degree of the data
|
|
powers = get_power_cycle(root_of_unity, modulus)
|
|
if exclude_multiples_of:
|
|
pts = [x for x in range(len(data)) if x % exclude_multiples_of]
|
|
else:
|
|
pts = range(len(data))
|
|
|
|
poly = f.lagrange_interp([powers[x] for x in pts[:maxdeg_plus_1]],
|
|
[data[x] for x in pts[:maxdeg_plus_1]])
|
|
for x in pts[maxdeg_plus_1:]:
|
|
assert f.eval_poly_at(poly, powers[x]) == data[x]
|
|
|
|
print('FRI proof verified')
|
|
return True
|