research/uncle_regressions/time_regression.py
2016-10-30 20:51:54 -04:00

30 lines
1.1 KiB
Python

import sys
data = [[float(y) for y in x.strip().split(', ')] for x in open('gethtime.csv').readlines()]
data2 = [[float(y) for y in x.strip().split(', ')] for x in open('old_gethtime.csv').readlines()]
for i in range(0, 2283416, 200000):
print 'Checking 200k blocks from %d' % i
dataset = []
dataset2 = []
for (d, ds, name) in [(data, dataset, 'old'), (data2, dataset2, 'new')]:
for j in range(i, min(i + 200000, 2283400), 100):
gas = 0
txs = 0
uncles = 0
time = 0
for num, _txs, _gas, _uncles, _time in d[j:j+100]:
gas += _gas
txs += _txs
uncles += _uncles
time += _time
ds.append([gas, txs, uncles, time])
mean_x = sum([x[0] for x in ds]) * 1.0 / len(ds)
mean_y = sum([x[-1] for x in ds]) * 1.0 / len(ds)
covar = sum([(x[0] - mean_x) * (x[-1] - mean_y) for x in ds])
var = sum([(x[0] - mean_x) ** 2 for x in ds])
print name+':'
print 'm = ', covar / var, '(microseconds per gas)'
print 'b = ', mean_y - mean_x * (covar / var), '(per 100 blocks)'