research/zksnark/qap_creator.py

133 lines
3.8 KiB
Python

# Polynomials are stored as arrays, where the ith element in
# the array is the ith degree coefficient
# Multiply two polynomials
def multiply_polys(a, b):
o = [0] * (len(a) + len(b) - 1)
for i in range(len(a)):
for j in range(len(b)):
o[i + j] += a[i] * b[j]
return o
# Add two polynomials
def add_polys(a, b, subtract=False):
o = [0] * max(len(a), len(b))
for i in range(len(a)):
o[i] += a[i]
for i in range(len(b)):
o[i] += b[i] * (-1 if subtract else 1) # Reuse the function structure for subtraction
return o
def subtract_polys(a, b):
return add_polys(a, b, subtract=True)
# Divide a/b, return quotient and remainder
def div_polys(a, b):
o = [0] * (len(a) - len(b) + 1)
remainder = a
while len(remainder) >= len(b):
leading_fac = remainder[-1] / b[-1]
pos = len(remainder) - len(b)
o[pos] = leading_fac
remainder = subtract_polys(remainder, multiply_polys(b, [0] * pos + [leading_fac]))[:-1]
return o, remainder
# Evaluate a polynomial at a point
def eval_poly(poly, x):
return sum([poly[i] * x**i for i in range(len(poly))])
# Make a polynomial which is zero at {1, 2 ... total_pts}, except
# for `point_loc` where the value is `height`
def mk_singleton(point_loc, height, total_pts):
fac = 1
for i in range(1, total_pts + 1):
if i != point_loc:
fac *= point_loc - i
o = [height * 1.0 / fac]
for i in range(1, total_pts + 1):
if i != point_loc:
o = multiply_polys(o, [-i, 1])
return o
# Assumes vec[0] = p(1), vec[1] = p(2), etc, tries to find p,
# expresses result as [deg 0 coeff, deg 1 coeff...]
def lagrange_interp(vec):
o = []
for i in range(len(vec)):
o = add_polys(o, mk_singleton(i + 1, vec[i], len(vec)))
for i in range(len(vec)):
assert abs(eval_poly(o, i + 1) - vec[i] < 10**-10), \
(o, eval_poly(o, i + 1), i+1)
return o
def transpose(matrix):
return list(map(list, zip(*matrix)))
# A, B, C = matrices of m vectors of length n, where for each
# 0 <= i < m, we want to satisfy A[i] * B[i] - C[i] = 0
def r1cs_to_qap(A, B, C):
A, B, C = transpose(A), transpose(B), transpose(C)
new_A = [lagrange_interp(a) for a in A]
new_B = [lagrange_interp(b) for b in B]
new_C = [lagrange_interp(c) for c in C]
Z = [1]
for i in range(1, len(A[0]) + 1):
Z = multiply_polys(Z, [-i, 1])
return (new_A, new_B, new_C, Z)
def create_solution_polynomials(r, new_A, new_B, new_C):
Apoly = []
for rval, a in zip(r, new_A):
Apoly = add_polys(Apoly, multiply_polys([rval], a))
Bpoly = []
for rval, b in zip(r, new_B):
Bpoly = add_polys(Bpoly, multiply_polys([rval], b))
Cpoly = []
for rval, c in zip(r, new_C):
Cpoly = add_polys(Cpoly, multiply_polys([rval], c))
o = subtract_polys(multiply_polys(Apoly, Bpoly), Cpoly)
for i in range(1, len(new_A[0]) + 1):
assert abs(eval_poly(o, i)) < 10**-10, (eval_poly(o, i), i)
return Apoly, Bpoly, Cpoly, o
def create_divisor_polynomial(sol, Z):
quot, rem = div_polys(sol, Z)
for x in rem:
assert abs(x) < 10**-10
return quot
r = [1, 3, 35, 9, 27, 30]
A = [[0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[5, 0, 0, 0, 0, 1]]
B = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0]]
C = [[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0]]
Ap, Bp, Cp, Z = r1cs_to_qap(A, B, C)
print 'Ap'
for x in Ap: print x
print 'Bp'
for x in Bp: print x
print 'Cp'
for x in Cp: print x
print 'Z'
print Z
Apoly, Bpoly, Cpoly, sol = create_solution_polynomials(r, Ap, Bp, Cp)
print 'Apoly'
print Apoly
print 'Bpoly'
print Bpoly
print 'Cpoly'
print Cpoly
print 'Sol'
print sol
print 'Z cofactor'
print create_divisor_polynomial(sol, Z)