2018-07-18 20:43:34 -04:00

47 lines
1.2 KiB
Python

# Implements a modified version of the TRIBES low-influence function
# mentioned in https://arxiv.org/pdf/1406.5694.pdf and outputs the
# probability that any specific user will be able to influence the result
import random, math
def mkbits(n):
return random.randrange(2**n)
def tribes_log(n):
w = 1
while w * 2**w * 693 < n * 1000:
w += 1
return w
def tribes(val, n):
split = tribes_log(n)
o = []
full_subset = (1 << split) - 1
for i in range(n):
vall = val ^ ((2*i+3)**n % 2**n)
t = 0
for _ in range(n // split):
if vall & full_subset == full_subset:
t = 1
break
vall >>= split
o.append(t)
if len(o) % 2 == 0 and o[-2] == 0 and o[-1] == 1:
return 0
if len(o) % 2 == 0 and o[-2] == 1 and o[-1] == 0:
return 1
return o[-1]
def influence(val, n):
tot = 0
w = tribes(val, n)
for i in range(n):
val2 = val ^ (1 << i)
w2 = tribes(val2, n)
if w != w2:
tot += 1
return tot / n
print(sum([influence(mkbits(50), 50) for i in range(1000)]) / 1000)
# print(sum([tribes(mkbits(50), 50) for i in range(1000)]) / 1000)