research/mimc_stark/mimc_stark.py
2018-07-11 15:01:28 -04:00

204 lines
9.2 KiB
Python

from merkle_tree import merkelize, mk_branch, verify_branch, blake
from compression import compress_fri, decompress_fri, compress_branches, decompress_branches, bin_length
from poly_utils import PrimeField
import time
from fft import fft
from fri import prove_low_degree, verify_low_degree_proof
from utils import get_power_cycle, get_pseudorandom_indices, is_a_power_of_2
modulus = 2**256 - 2**32 * 351 + 1
f = PrimeField(modulus)
nonresidue = 7
spot_check_security_factor = 80
extension_factor = 8
# Compute a MIMC permutation for some number of steps
def mimc(inp, steps, round_constants):
start_time = time.time()
for i in range(steps-1):
inp = (inp**3 + round_constants[i % len(round_constants)]) % modulus
print("MIMC computed in %.4f sec" % (time.time() - start_time))
return inp
# Generate a STARK for a MIMC calculation
def mk_mimc_proof(inp, steps, round_constants):
start_time = time.time()
# Some constraints to make our job easier
assert steps <= 2**32 // extension_factor
assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants))
assert len(round_constants) < steps
precision = steps * extension_factor
# Root of unity such that x^precision=1
root_of_unity = f.exp(7, (modulus-1)//precision)
# Root of unity such that x^skips=1
skips = precision // steps
subroot = f.exp(root_of_unity, skips)
# Powers of the root of unity, our computational trace will be
# along the sequence of sub-roots
xs = get_power_cycle(root_of_unity, modulus)
last_step_position = xs[(steps-1)*extension_factor]
# Generate the computational trace
values = [inp]
for i in range(steps-1):
values.append((values[-1]**3 + round_constants[i % len(round_constants)]) % modulus)
output = values[-1]
print('Done generating computational trace')
# Interpolate the computational trace into a polynomial
values_polynomial = fft(values, modulus, subroot, inv=True)
p_evaluations = fft(values_polynomial, modulus, root_of_unity)
print('Converted computational steps into a polynomial and low-degree extended it')
skips2 = steps // len(round_constants)
constants_mini_polynomial = fft(round_constants, modulus, f.exp(subroot, skips2), inv=True)
constants_polynomial = [0 if i % skips2 else constants_mini_polynomial[i//skips2] for i in range(steps)]
constants_mini_extension = fft(constants_mini_polynomial, modulus, f.exp(root_of_unity, skips2))
print('Converted round constants into a polynomial and low-degree extended it')
# Create the composed polynomial such that
# C(P(x), P(rx), K(x)) = P(rx) - P(x)**3 - K(x)
c_of_p_evaluations = [(p_evaluations[(i+extension_factor)%precision] -
f.exp(p_evaluations[i], 3) -
constants_mini_extension[i % len(constants_mini_extension)])
% modulus for i in range(precision)]
print('Computed C(P, K) polynomial')
# Compute D(x) = C(P(x), P(rx), K(x)) / Z(x)
# Z(x) = (x^steps - 1) / (x - x_atlast_step)
z_num_evaluations = [xs[(i * steps) % precision] - 1 for i in range(precision)]
z_num_inv = f.multi_inv(z_num_evaluations)
z_den_evaluations = [xs[i] - last_step_position for i in range(precision)]
d_evaluations = [cp * zd * zni % modulus for cp, zd, zni in zip(c_of_p_evaluations, z_den_evaluations, z_num_inv)]
print('Computed D polynomial')
# Compute interpolant of ((1, input), (x_atlast_step, output))
interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output])
i_evaluations = [f.eval_poly_at(interpolant, x) for x in xs]
quotient = f.mul_polys([-1, 1], [-last_step_position, 1])
inv_q_evaluations = f.multi_inv([f.eval_poly_at(quotient, x) for x in xs])
b_evaluations = [((p - i) * invq) % modulus for p, i, invq in zip(p_evaluations, i_evaluations, inv_q_evaluations)]
print('Computed B polynomial')
# Compute their Merkle roots
p_mtree = merkelize(p_evaluations)
d_mtree = merkelize(d_evaluations)
b_mtree = merkelize(b_evaluations)
print('Computed hash root')
# Based on the hashes of P, D and B, we select a random linear combination
# of P * x^steps, P, B * x^steps, B and D, and prove the low-degreeness of that,
# instead of proving the low-degreeness of P, B and D separately
k1 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x01'), 'big')
k2 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x02'), 'big')
k3 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x03'), 'big')
k4 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x04'), 'big')
# Compute the linear combination. We don't even both calculating it in
# coefficient form; we just compute the evaluations
root_of_unity_to_the_steps = f.exp(root_of_unity, steps)
powers = [1]
for i in range(1, precision):
powers.append(powers[-1] * root_of_unity_to_the_steps % modulus)
l_evaluations = [(d_evaluations[i] +
p_evaluations[i] * k1 + p_evaluations[i] * k2 * powers[i] +
b_evaluations[i] * k3 + b_evaluations[i] * powers[i] * k4) % modulus
for i in range(precision)]
l_mtree = merkelize(l_evaluations)
print('Computed random linear combination')
# Do some spot checks of the Merkle tree at pseudo-random coordinates, excluding
# multiples of `extension_factor`
branches = []
samples = spot_check_security_factor
positions = get_pseudorandom_indices(l_mtree[1], precision, samples,
exclude_multiples_of=extension_factor)
for pos in positions:
branches.append(mk_branch(p_mtree, pos))
branches.append(mk_branch(p_mtree, (pos + skips) % precision))
branches.append(mk_branch(d_mtree, pos))
branches.append(mk_branch(b_mtree, pos))
branches.append(mk_branch(l_mtree, pos))
print('Computed %d spot checks' % samples)
# Return the Merkle roots of P and D, the spot check Merkle proofs,
# and low-degree proofs of P and D
o = [p_mtree[1],
d_mtree[1],
b_mtree[1],
l_mtree[1],
branches,
prove_low_degree(l_evaluations, root_of_unity, steps * 2, modulus, exclude_multiples_of=extension_factor)]
print("STARK computed in %.4f sec" % (time.time() - start_time))
return o
# Verifies a STARK
def verify_mimc_proof(inp, steps, round_constants, output, proof):
p_root, d_root, b_root, l_root, branches, fri_proof = proof
start_time = time.time()
assert steps <= 2**32 // extension_factor
assert is_a_power_of_2(steps) and is_a_power_of_2(len(round_constants))
assert len(round_constants) < steps
precision = steps * extension_factor
# Get (steps)th root of unity
root_of_unity = f.exp(7, (modulus-1)//precision)
skips = precision // steps
# Gets the polynomial representing the round constants
skips2 = steps // len(round_constants)
constants_mini_polynomial = fft(round_constants, modulus, f.exp(root_of_unity, extension_factor * skips2), inv=True)
# Verifies the low-degree proofs
assert verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2, modulus, exclude_multiples_of=extension_factor)
# Performs the spot checks
k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big')
k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big')
k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big')
k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big')
samples = spot_check_security_factor
positions = get_pseudorandom_indices(l_root, precision, samples,
exclude_multiples_of=extension_factor)
last_step_position = f.exp(root_of_unity, (steps - 1) * skips)
for i, pos in enumerate(positions):
x = f.exp(root_of_unity, pos)
x_to_the_steps = f.exp(x, steps)
p_of_x = verify_branch(p_root, pos, branches[i*5])
p_of_rx = verify_branch(p_root, (pos+skips)%precision, branches[i*5 + 1])
d_of_x = verify_branch(d_root, pos, branches[i*5 + 2])
b_of_x = verify_branch(b_root, pos, branches[i*5 + 3])
l_of_x = verify_branch(l_root, pos, branches[i*5 + 4])
zvalue = f.div(f.exp(x, steps) - 1,
x - last_step_position)
k_of_x = f.eval_poly_at(constants_mini_polynomial, f.exp(x, skips2))
# Check transition constraints C(P(x)) = Z(x) * D(x)
assert (p_of_rx - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0
interpolant = f.lagrange_interp_2([1, last_step_position], [inp, output])
quotient = f.mul_polys([-1, 1], [-last_step_position, 1])
# Check boundary constraints B(x) * Q(x) + I(x) = P(x)
assert (p_of_x - b_of_x * f.eval_poly_at(quotient, x) -
f.eval_poly_at(interpolant, x)) % modulus == 0
# Check correctness of the linear combination
assert (l_of_x - d_of_x -
k1 * p_of_x - k2 * p_of_x * x_to_the_steps -
k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0
print('Verified %d consistency checks' % spot_check_security_factor)
print('Verified STARK in %.4f sec' % (time.time() - start_time))
return True