research/sparse_merkle_tree/new_bintrie_hex.py

126 lines
4.0 KiB
Python

from ethereum.utils import sha3, encode_hex
class EphemDB():
def __init__(self, kv=None):
self.reads = 0
self.writes = 0
self.kv = kv or {}
def get(self, k):
self.reads += 1
return self.kv.get(k, None)
def put(self, k, v):
self.writes += 1
self.kv[k] = v
def delete(self, k):
del self.kv[k]
# Hashes of empty subtrees
zerohashes = [b'\x00' * 32]
for i in range(256):
zerohashes.insert(0, sha3(zerohashes[0] + zerohashes[0]))
# Create a new empty tree
def new_tree(db):
return zerohashes[0]
# Convert a binary key into an integer path value
def key_to_path(k):
return int.from_bytes(k, 'big')
tt256m1 = 2**256 - 1
# And convert back
def path_to_key(k):
return (k & tt256m1).to_bytes(32, 'big')
# Read a key from a given tree
def get(db, root, key):
v = root
path = key_to_path(key)
for i in range(0, 256, 4):
if v == zerohashes[i]:
return b'\x00' * 32
child = db.get(v)
if len(child) == 65:
if (path % 2**256) == key_to_path(child[1:33]):
return child[33:]
else:
return b'\x00' * 32
else:
index = (path >> 252) & 15
v = child[32*index: 32*index+32]
path <<= 4
return v
# Make a root hash of a (sub)tree with a single key/value pair
def make_single_key_hash(path, depth, value):
if depth == 256:
return value
elif (path >> 255) & 1:
return sha3(zerohashes[depth+1] + make_single_key_hash(path << 1, depth + 1, value))
else:
return sha3(make_single_key_hash(path << 1, depth + 1, value) + zerohashes[depth+1])
# Hash together 16 elements
def hash_16_els(vals):
assert len(vals) == 16
for _ in range(4):
vals = [sha3(vals[i] + vals[i+1]) for i in range(0, len(vals), 2)]
return vals[0]
# Make a root hash of a (sub)tree with two key/value pairs, and save intermediate nodes in the DB
def make_double_key_hash(db, path1, path2, depth, value1, value2):
if depth == 256:
raise Exception("Cannot fit two values into one slot!")
if ((path1 >> 252) & 15) == ((path2 >> 252) & 15):
children = [zerohashes[depth+4]] * 16
children[(path1 >> 252) & 15] = make_double_key_hash(db, path1 << 4, path2 << 4, depth + 4, value1, value2)
else:
Lkey = ((path1 >> 252) & 15)
L = make_single_key_hash(path1 << 4, depth + 4, value1)
Rkey = ((path2 >> 252) & 15)
R = make_single_key_hash(path2 << 4, depth + 4, value2)
db.put(L, b'\x01' + path_to_key(path1 << 4) + value1)
db.put(R, b'\x01' + path_to_key(path2 << 4) + value2)
children = [zerohashes[depth+4]] * 16
children[Lkey] = L
children[Rkey] = R
h = hash_16_els(children)
db.put(h, b''.join(children))
return h
# Update a tree with a given key/value pair
def update(db, root, key, value):
return _update(db, root, key_to_path(key), 0, value)
def _update(db, root, path, depth, value):
if depth == 256:
return value
# Update an empty subtree: make a single-key subtree
if root == zerohashes[depth]:
k = make_single_key_hash(path, depth, value)
db.put(k, b'\x01' + path_to_key(path) + value)
return k
child = db.get(root)
# Update a single-key subtree: make a double-key subtree
if len(child) == 65:
origpath, origvalue = key_to_path(child[1:33]), child[33:]
return make_double_key_hash(db, path, origpath, depth, value, origvalue)
# Update a multi-key subtree: recurse down
else:
assert len(child) == 512
index = (path >> 252) & 15
new_value = _update(db, child[index*32: index*32+32], path << 4, depth + 4, value)
new_children = [new_value if i == index else child[32*i:32*i+32] for i in range(16)]
h = hash_16_els(new_children)
db.put(h, b''.join(new_children))
return h
def multi_update(db, root, keys, values):
for k, v in zip(keys, values):
root = update(db, root, k, v)
return root