
Automated Censorship Attack Rejection

Vitalik Buterin
Ethereum Foundation

August 15, 2017

Abstract

Most research into blockchains assumes that the majority of miners
or validators are honest, or at least are non-coordinating and either
honest or economically motivated, and tries to prove claims taking
these assumptions for granted. It is typically assumed that if 51% of
miners or validators actually are malicious and colluding, then nothing
can be done to prevent the blockchain from being destroyed.

This paper is part of a line of research that seeks to challenge this
assumption, showing that there are in fact ways that we can automati-
cally detect and quasi-automatically recover from 51% attacks, though
usually at the cost of “extra-protocol governance assumptions” - that
is, an assumption that the users of a protocol can, in extremis, man-
ually verify which of a set of competing chains launched what would
intuitively be viewed as an attack, and choose the honest chain. The
goal of this line of research is to minimize the need for extra-protocol
governance, including mathematically proving bounds on the num-
ber and scale of “governance events” that an attacker can trigger at a
given cost, and standardize its form, allowing it to be used for the spe-
cific purpose of detecting and rejecting majority-driven attacks while
maintaining strong and credible norms that would make sure it con-
tinues to be difficult to abuse social coordination to trick a community
into accepting chains that violate desired guarantees.

The main prior work in this direction is Casper [cite], which achieves
the guarantee that even in the case of a 51% finality reversion attack,
the attacker can still be heavily penalized. Here, we seek to go further
than finality reversion attacks and cover the other major category of
51% attack: censorship. We discuss the possibilities and limits of au-
tomated censorship rejection - that is, the use of “smart fork choice

1



rules” in blockchains that are aware of messages that have been broad-
casted and that need to be included in the blockchain, and reject any
chain that does not include these messages within some “grace pe-
riod”.

1 Introduction

One of the main classes of majority attack against blockchains is the cen-
sorship attack : a majority attacking coalition builds a chain that refuses to
accept transactions or messages that an ordinary validator, miner or client
would accept, either depriving their victims of revenues from the consensus
mechanism or depriving users of their right to get transactions included into
the blockchain.

Unlike invalid block attacks or finality reversion attacks, which can both
be detected by a purely passive client by means of a single non-interactive
proof, censorship attacks are inherently more difficult to detect. This is
because the definition of a censorship attack involves a listener (i) hearing
about a message, and (ii) not taking an action based on that message that
they should have taken, which inherently depends on events that have taken
place in the past, which a client that is only online in the present can have
no knowledge of.

Most blockchain projects make no effort to even try to deal with the
problem of majority coalition attacks such as censorship; an honest majority
is usually one of the assumptions in any formal security proofs and models.
Our goal is to see if we can go further.

One way to view what the strategies that we will explore is to see them
as introducing non-censorship itself as a first-class consensus rule - that is

2



to say, a block that does not include transactions that should have been
included is invalid in the same way that a block that includes transactions
that should not have been included (ie. invalid transactions) is invalid. As
we will later see, this kind of consensus rule is fundamentally different from
the other kinds of consensus rules that blockchain protocols tend to currently
use, and we will look at the consequences that this introduces.

2 Forgiving Rejection

For simplicity, let us assume that there exists a simple Nakamoto-style blockchain,
where consensus is determined by the longest chain rule.

Suppose further that there is only one type of transaction. This type of
transaction requires a very large amount of proof of work to create, for anti-
denial-of-service reasons, and we make the computational assumption that
there does not exist enough computing power in the world to create more
valid transactions than a single node can verify as part of the process of
verifying a single block (we are deliberately very generous with assumptions
at first to illustrate the basic principle).

Now, let us modify the Nakamoto fork choice rule with an additional
rule: if a node sees a transaction X for the first time at time T, then starting
from time T + 168 hours, it will reject all chains that do not include X. We
assume that transactions are always re-broadcasted, so that all honest clients
and miners see all transactions (this is a reasonable assumption because it is
already the case with blocks).

3



Notice that the primary guarantee of non-censorship is now met trivially.
If a node sees a transaction X, then the blockchain that it accepts must, by

4



definition, be a blockchain that includes X, at least after 168 hours. The
harder claim to evaluate has to do with agreement : that is to say, can we
guarantee that a blockchain with miners running these rules will not perma-
nently split?

Let us first suppose a synchrony assumption of one minute. Proof of work
assumes a synchrony assumption implicitly, as if excessive network latency
is permitted then it is quite easily possible for two chains to grow in parallel
forever [cite 1]; the main new assumption that we are introducing for the
moment is that it’s not just miners that need to have low latency but also
clients. If this synchrony assumption applies both between miner and miner
and between miner and client, then in the normal case no new risks are
introduced: all miners will hear about all broadcasted transactions within one
minute, miners include transactions immediately, and so analysis is identical
to the standard Nakamoto case.

Now let us consider the possibility of temporary 51% attacks. Suppose
that an extremely powerful miner broadcasts a block tree (that is, a chain
or a diverging set of chains), and after this the miner’s hashpower drops
back to well below 51%. For any given (block, transaction) pair, there is a
maximum difference of two minutes in each client’s perceived delay between
the transaction and the block, and so it is very possible that some transaction
was published (and seen by all clients) at time T, a chain not including that
transaction published at time T + 168 hours - 30 seconds, with some clients
perceiving the chain as having arrived before the 168 hour window and some
clients perceiving the chain as having arrived after this window.

5



Consider the set of blocks which are considered ”chain heads” by at least
some honest miners (though possibly not all for temporal reasons). During
every instant of time there is some probability that an honest miner will
discover and publish a block that extends the one of these chain heads that
is longer than all the others, and which includes every transaction that causes
other miners to reject the block. The new chain head in this situation will
be accepted by all clients and miners, and will be seen as taking precedence
over all the others, and so all miners and clients will converge on it.

We can now weaken the synchrony assumption: suppose that only miners
have a guaranteed synchrony of one minute; clients may log off for unbound-
edly long periods of time. Suppose that a client logs on after a very long time.
They will then receive transactions that other clients heard earlier. Hence,
they may accept chains that other clients reject (for example, if a trans-
action that was actually broadcasted 169 hours ago has not been included
in some chain, the newly-online client will still accept that chain because
they only saw the transaction much more recently), but they will under no
circumstance reject chains that clients that have been online all along will
accept.

If there is no 51% attack going on at present, then by definition there
is no longer chain than the chain that online clients and miners accept, and
we know that the newly online client will also accept it. Now, suppose that
there is an attack taking place. Then, it is already known from Nakamoto
consensus research that the chains that different clients accept may be dif-
ferent, because 51% attacks can cause persistent chain splits. The newly
online client may well accept a chain that other clients reject. However,
when the attack subsides, a chain that other clients accept will once again
be the longest one, and so the newly online client will also accept it.

The algorithm achieves these properties because it is forgiving - it accepts
any chain that was censoring transactions initially, as soon as that chain stops
censoring. However, the guarantee is very weak - it simply guarantees that
clients will be on a chain that accepts transactions they know about, without
any regard for how long they were censored in the meantime. It also assumes
that the set of transactions that must be included is very small. Next, we
will see to what extent we can expand and generalize these guarantees.

The arguments given in the previous section do not directly depend on
any deep properties of Nakamoto consensus. Any consensus algorithm that
has some notion of a fork-choice rule can be used in its place. This in-
cludes GHOST [cite 2], and even partially-synchronous “finality-bearing”

6



fork-choice rules such as the Casper fork choice rule.

3 Unforgiving Rejection

We can now try to strengthen the non-censorship requirement. The most
natural use-case for strong anti-censorship protection is interactive verifica-
tion - that is, mechanisms on blockchains where there exists some time period
during which anyone can submit evidence that some fact F is false, and if no
one submits this evidence during that period then it is assumed that F is in
fact true. Mechanisms of this type include payment or state channels [cite
3], the Lightning Network [cite 4], Truebit [cite 5] or Plasma [cite 6]. This
time period must have some definite length, and if a chain fails to include
evidence within this length then it should be rejected unforgivingly - that is,
rejected forever, even if some child block later added to the chain accepts the
transaction.

Preventing permanent disagreement in this model requires a hard syn-
chrony assumption. Suppose that network latency is bounded by dn. Suppose
that, between validators, the above algorithm runs with maximum permitted
delay dv, and rejection becomes unforgiving if a transaction is not included
in a chain within time dr. When a transaction is sent, it will reach all val-
idators within time dn. By max(dv, dn), honest validators will reject blocks
not including that transaction, and so clients will not see any honest-node-
supported chains not including the transaction after time dn + max(dv, dn).
If we can count on the system reaching consensus within some time df (eg.
six blocks in typical proof of work chains), then this implies that as long as
the consensus algorithm is functioning, there will not be problems as long
as dr > dn + max(dv, dn) + df . For many interactive games, it is perfectly
acceptable to set challenge periods several weeks long, and so we can see that
setting dr to some length longer than a week may be an attractive option.

But what happens if there is a 51% attack? By adding this unforgiving
rejection feature, we lose the ability to cleanly reject chains after successful
51% attacks; instead, if a 51% attack can persist long enough, it can create a
permanent chain split - or at least, a chain split that lasts until it is resolved
via manual intervention.

7



This is a genuine disadvantage for the security of proof of work chains that
adopt this feature, albeit a surmountable one. Without unforgiving rejection,
a 51% attack on a proof of work chain would need to be permanent in order
to cause a permanent chain split. With unforgiving rejection, the a 51%
attack that lasts one week is enough. However, the difference between the
economic capacity needed to maintain a 51% attack for two weeks and the
capacity needed to maintain one forever is not that large.

In proof of stake, the disadvantage is even smaller, as a 51% attack trig-
gered even once may by itself be enough to create a permanent chain split,
so by adopting unforgiving rejection we appear to lose nothing, and we gain
the very substantial benefit that even a 51% attack cannot cause clients to
accept chains that are censoring.

4 Incentives in the Uncoordinated Majority

Model

There are two ways to analyze the incentives of automated censorship rejec-
tion. The first is to look at automated rejection between miners only, and
explore its game-theoretic properties in a model where all actors have minor-

8



ity hashpower. The second is to assume that the attacker has a great majority
of all valdators (and we will assume that they are proof of stake validators,
with some specific incentive rules), and try to prove that any harmful attack
on the network will, in expectation, cost the attacker a substantial amount
of money.

Pure forgiving rejection can be viewed as a Nakamoto blockchain where
some blocks are, from the point of view of some miners, explicitly prevented
from being the head, but a block on top of such a block can always be created
which allows that chain to be the head again.

The question to ask is: is the rule of not mining on top of censoring chains,
even if those chains are longer, incentive-compatible? The answer by itself
appears to be no: mining a non-censoring block on top of the longest chain is
a dominant strategy over mining a block on top of the non-censoring chain.
But then, the miners who create the censoring chain still get rewarded, and
so there is no incentive to create a non-censoring block instead of a censoring
block. Hence the entire scheme unravels.

But what if the scoring rule instead penalizes censoring blocks - we have a
rule that censoring blocks receive a score contribution of ε, instead of a score
contribution equal to the block’s difficulty? Then, suppose that there is zero
latency, so there is perfect shared knowledge on which blocks are censoring.
In this case, this new rule is a deterministic monotonic fork choice rule as

9



defined by Kroll et al [cite], and so it is a Nash equilibrium.
Suppose now that there is latency, and so sometimes miners will disagree

over which blocks have the highest score. Mining is like a Keynesian beauty
contest: one wins not by mining on what they think is the main chain, but
rather what they think others will think is the main chain (where those others
in turn are trying to guess what everyone else thinks is the main chain). With
a fully deterministic scoring rule, the two perfectly align; with a subjective
scoring rule they may not.

However, if we preserve the property that the block that a miner thinks is
the head is much more likely than any other block to be the block that other
miners think is the head, then the game-theoretic argument remains effective.
If each miner does not know their place in the distribution of network latency,
then this property does hold; if all that each miner knows is that there are
two groups of miners, A and B, with different views of what is the head,
then they will a priori believe that they are more likely to be in the larger
group. However, if miners can see their network latencies and patterns of
what blocks other miners create, then there will inevitably be strategies that
are superior to the default one. So the incentive alignment is not perfect.

5 Incentives in the Majority Attacker Model

Now we can look at a malicious majority attacker. Our goal is roughly this:
there must be a maximum ratio between the amount of harm that (in expec-
tation) an attacker does to the protocol and the amount of money that (in
expectation) the attacker loses. To be able to talk about “harm” mathemat-
ically, we must define a “protocol utility function”. Because chains that are
censoring a transaction for more than two weeks cannot be valid by defini-
tion, and finality reversion attacks are currently out of scope, our protocol
utility function need only consider one type of “harm” to the network: the
chain split. Specifically, we can say U = −∑

cs(1 − win(cs)): utility is the
(negative, because we are measuring harm) sum, over all chain splits, of the
portion of clients that were not on the winning fork, and thus had to manually
switch chains.

We will then also use a simple proof of stake incentivization scheme: in a
chain split, all validators are allowed to only support one fork (or else they
get slashed), and on each fork, the validators who supported any other fork
lose x% of their deposits (we’ll say 50% for now). Let us now suppose that

10



an attacker has 99% of all deposits. They decide not to include a transaction
until some time close to its latest allowed inclusion time. There are several
possibilities, which we can describe by viewing the statistical distribution of
the time delta that clients see between the transaction being published and
the transaction being included:

In the first case, the transaction is delayed, and the attacker suffers no
losses, but the delay is within tolerance and so no protocol guarantees are
violated. In the second case, all clients reject the attacker’s chain, instead
going to a minority chain. The attacker loses money on the minority chain,
and technically there is no harm to protocol utility. In the third case, half
of the clients follow the minority chain and half do not. In this case, we can

11



make the assumption that because the chain where the attacker loses money
(instead of non-attacking validators) is more valuable, this chain will win.
Utility is −1

2
, and the attacker loses half of their money on the chain that

the community accepts.
But there is also a fourth case:

Here, there is also a chain split, but only a very small portion of clients
get split off from the majority chain. It is now much less plausible that
this minority chain will win, and so we assume as a worst case scenario that
the majority chain will always win in these cases. Utility is −0.01, and the
attacker loses no money. This is a costless attack, which is what we want to
avoid.

6 Timelock Timers

Let us now try a different approach. Suppose that instead of a hard timeout
of one week, we have a different mechanism, based on timelock cryptography.
A timelock function is a function f(x) = y such that it takes some amount of
sequential work to compute f which cannot be sped up with parallelization,
but where a result (x, y) can be verified quickly. One example of a timelock
function is Sloth [cite], roughly defined as follows:

def sloth(h, n):

for i in range(n):

h = pow(h, (p+1)/4, p)

h += (1 if i % 2 else -1)

Where p is some prime. A result can be verified by running the same
code, but with the two lines in the loop flipped, and the power replaced by

12



a modular squaring; this is O(log(p)) times faster than the original compu-
tation. If a solution submitted is required to provide n intermediate values,
the result can be verified using n threads in parallel, speeding verification up
further.

We then have the following rule. When a transaction is included into a
block with hash h, all clients start calculating sloth(h, n) where n is such
that a result can be computed in one week. Once this value is computed,
we retroactively determine the maximum transaction inclusion window, as
168− dist coeff ∗ log2( 2256

sloth(h,n)
) hours.

The intent is simple: make any attack that stands a chance of isolating
a few users also have some chance of splitting the userbase in half. Now, we
can describe the model as follows. Suppose that the distribution of clients’
perceived time delta between transmission and inclusion has tails that are
exponential or sub-exponential; that is, there exists some fixed d such that
if portion 1

2n+1
of the distribution is less than some time t, then half of the

distribution is less than t+ n ∗ d. Note that this is a non-trivial assumption;
for example, the normal distribution does not satisfy this property, as the
formula ≈ e−x2

is super-exponential. In the case that such a distribution
exists, we will not be able to guarantee safety properties for the outliers.
However, note that any “strong synchrony assumption” as used in Byzantine
fault tolerance literature implies a bounded distribution, which is inherently
sub-exponential.

Let us set dist coeff = d. This now implies that any strategy which has
probability p2−n−1 of “forking off” at least portion 2−n−1 of clients also has a
probability of at least p2−n−1 ∗ 2−n of placing the distribution n ∗ d closer to
the cutoff than expected, and thus forking off half of nodes. Thus, an attack
which on average causes a utility loss k, on average causes a monetary loss
to the attacker proportional to k.

7 Proof of Work Timers

The above approach inherently relied on a form of randomness, and a form
of randomness that the attacker could not control. Another strategy is to
use a different form of unpredictable randomness: proof of work. Here, we
could have a rule that if, time 168− dist coeff ∗n hours after a transaction,
a client sees a proof of work solution that passes difficulty threshold 2n, then
any blocks that come after that point are invalid unless they build on top of

13



chains that include the transaction.
The problem is that a dishonest miner could publish a transaction at time

t0, then at time t0 +168−dist coeff ∗50−δ publish a proof of work solution
that passes the difficulty threshold 250. A few seconds later they publish a
block which includes the transaction. δ can be set in such a way that most
nodes will perceive δ < 0, and so the proof of work solution is not sufficient,
but a few nodes will perceive δ > 0, and thus perceive the solution as being
sufficient, and hence the transaction as arriving too late.

Suppose that an attacker has portion h of hashpower. Once a transaction
is published and not immediately included, there is a race to create a proof of
work solution that triggers the timeout. Fraction h of the time, the attacker
succeeds first, and can accomplish the above attack cost-free. Fraction 1− h
of the time, someone else succeeds first, and they can simply publish the
solution. If the attacker has perfect control over the network, then they can
still isolate a small portion of the nodes, but if they do not, then there will
likely be a large split. Hence, if the attacker is not in control of most clients’
network latency, then the cost of triggering disruption by not including a
transaction is a cost of 1− h.

Incentive compatiblity in the absence of a 51% attacker is easy to show:
because there are no 51% attackers, all transactions will almost certainly
be included well ahead of schedule, and so unforgiving rejection introduces
no new obstacles. In the presence of a 51% attacker, no strategy is reliably

14



incentive-compatible, because in general for any strategy the attacker can
always adopt a counter-strategy that penalizes validators which are detected
to be engaging in that strategy. We assume that clients have a substantial
preference for chains containing validators which do not have a track record
of censoring them, and note that if the main chain is censoring then there
is an incentive to build on the longest chain which is not censoring, and so
an optimal honest validator strategy may in fact be something similar to
forgiving rejection with a near-zero grace period.

8 Censorship and Transaction Fees

How do we extend this to the case where very large quantities of transactions
get sent, and we want to ensure that fee-paying transactions get included?
The challenge here is that users in the network may now send very large
quantities of transactions, and there may not be enough block space to in-
clude all of them before the grace period expires; at least some users must
be excluded. But what we *can* do is detect and prevent situations where
higher-fee-paying transactions are excluded but lower-fee-paying transactions
are allowed in.

Let us proceed as follows. The blockchain state contains a set of op-
portunities. A transaction consumes exactly one opportunity, and creates
zero or more new opportunities. An opportunity could be a UTXO, an
(account, nonce) pair or one of many other schemes. We assume that the set
of opportunities consumed by a transaction is statically determinable and
unchanging, and the set of opportunities created by a transaction may be
dynamic (i.e. dependent on the blockchain state at the time of transaction
inclusion). Opportunities cannot be consumed more than once. A transac-
tion also is seen as paying some fee level, defined as total fee paid divided by
blockchain space consumed, and fee, fee level and blockchain space are all
statically determinable. Note that this is more restrictive than Ethereum,
where blockchain space consumed and hence total fee are dynamic, and is
more restrictive than Bitcoin, where transactions may consume multiple in-
put UTXOs. The blockchain also contains some notion of a minimum fee
level, and constantly adjusts this fee level so that on average, blocks are
half full. Fees equal to the fee level are destroyed; the surplus is given to
validators.

A client keeps track of the set of all opportunities in all states that were

15



received in the last several weeks (we assume that a block cannot build on top
of a parent block that was seen a very long time ago; this can be accomplished
with the same censorship rejection machinery that we use for transactions).
For each opportunity, it keeps a map opportunity× timeslot→ transaction,
where a timeslot is a period of one hour during which a transaction could
have been received, and the transaction stored is the transaction paying the
highest fee that consumes that opportunity. When a node sees a block, it
scans through all opportunities for all timeslots which are sufficiently far back
that any transaction from that timeslot, and looks for any transaction that
pays a fee higher than the minimum fee in the block that has not yet been
processed. If such a transaction exists, then the block is rejected.

The map opportunity× timeslot→ transaction can be pruned and com-
pressed. One can add a time requiring each transaction to have a maximum
inclusion time, and if it is (legally) not included before then, then it can be
ignored. This allows pruning old timeslots. Second, a transaction received
in one timeslot can also replace transactions in later timeslots that pay lower
fees; hence, representation can often be much more compact. In a worst case
scenario a transaction sender can send a chain of transactions that pay pro-
gressively higher fees at progressively later times to try to consume a given
opportunity, but this would only be possible during an active censorship
attack.

• Casper is currently a work in progress. See https://medium.com/@VitalikButerin/minimal-
slashing-conditions-20f0b500fc6c, https://github.com/ethereum/research/tree/master/casper4/papers
and https://github.com/ethereum/casper for recent work.

• Christopher Natoli and Vincent Gramoli, “The Balance Attack”: https://arxiv.org/pdf/1612.09426.pdf

• Aviv Zohar and Yonatan Sompolinsky, “Fast Money Grows on Trees,
not Chains”: https://eprint.iacr.org/2013/881.pdf

• Jeff Coleman, “State Channels: An Explanation”: http://www.jeffcoleman.ca/state-
channels/

• http://www.econinfosec.org/archive/weis2013/papers/KrollDaveyFeltenWEIS2013.pdf

• https://eprint.iacr.org/2015/366.pdf

16


