
Incentives in Casper the Friendly Finality
Gadget

Vitalik Buterin
Ethereum Foundation

July 24, 2017

Abstract

We give an introduction to the incentives in the Casper the Friendly
Finality Gadget protocol, and show how the protocol behaves under
individual choice analysis, collective choice analysis and griefing fac-
tor analysis. We define a “protocol utility function” that represents
the protocol’s view of how well it is being executed, and show the
connection between the incentive structure that we present and the
utility function. We show that (i) the protocol is a Nash equilibrium
assuming any individual validator’s deposit makes up less than 1

3 of
the total, (ii) in a collective choice model, where all validators are
controlled by one actor, harming protocol utility hurts the cartel’s
revenue, and there is an upper bound on the ratio between the reduc-
tion in protocol utility from an attack and the cost to the attacker,
and (iii) the griefing factor can be bounded above by 1, though we
will prefer an alternative model that bounds the griefing factor at 2
in exchange for other benefits.

1 Introduction

In the Casper protocol, there is a set of validators, and in each epoch valida-
tors have the ability to send two kinds of messages:

[PREPARE, epoch, hash, epochsource, hashsource]

1



and
[COMMIT, epoch, hash]

Each validator has a deposit size; when a validator joins their deposit
size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls as the validator receives rewards
and penalties. For the rest of this paper, when we say “2

3
of validators”, we

are referring to a deposit-weighted fraction; that is, a set of validators whose
combined deposit size equals to at least 2

3
of the total deposit size of the

entire set of validators. We also use “2
3

commits” as shorthand for “commits
from 2

3
of validators”.

If, during an epoch e, for some specific checkpoint hash h, 2
3

prepares are
sent of the form

[PREPARE, e, h, epochsource, hashsource]

with some specific epochsource and some specific hashsource, then h is consid-
ered justified. If 2

3
commits are sent of the form

[COMMIT, e, h]

then h is considered finalized. The hash is the block hash of the block at the
start of the epoch, so a hash being finalized means that that block, and all of
its ancestors, are also finalized. An “ideal execution” of the protocol is one
where, during every epoch, every validator prepares and commits some block
hash at the start of that epoch, specifying the same epochsource and hashsource.
We want to try to create incentives to encourage this ideal execution.

Possible deviations from this ideal execution that we want to minimize
or avoid include:

• Any of the four slashing conditions get violated.

• During some epoch, we do not get 2
3

commits for the hash that received
2
3

prepares.

• During some epoch, we do not get 2
3

prepares for the same
(h, hashsource, epochsource) combination.

From within the view of the blockchain, we only see the blockchain’s own
history, including messages that were passed in. In a history that contains

2



some blockhash H, our strategy will be to reward validators who prepared
and committed H, and not reward prepares or commits for any hash H′ 6=
H. The blockchain state will also keep track of the most recent hash in
its own history that received 2

3
prepares, and only reward prepares whose

epochsource and hashsource point to this hash. These two techniques will help
to “coordinate” validators toward preparing and committing a single hash
with a single source, as required by the protocol.

2 Rewards and Penalties

We define the following constants and functions:

• BIR(D): determines the base interest rate paid to each validator, tak-
ing as an input the current total quantity of deposited ether.

• BP (D, e, LFE): determines the “base penalty constant” - a value ex-
pressed as a percentage rate that is used as the “scaling factor” for all
penalties; for example, if at the current time BP (...) = 0.001, then a
penalty of size 1.5 means a validator loses 0.15% of their deposit. Takes
as inputs the current total quantity of deposited ether D, the current
epoch e and the last finalized epoch LFE. Note that in a “perfect”
protocol execution, e− LFE always equals 1.

• NCP (“non-commit penalty”): the penalty for not committing, if there
was a justified hash which the validator could have committed

• NCCP (α) (“non-commit collective penalty”): if α of validators are not
seen to have committed during an epoch, and that epoch had a justified
hash so any validator could have committed, then all validators are
charged a penalty proportional to NCCP (α). Must be monotonically
increasing, and satisfy NCCP (0) = 0.

• NPP (“non-prepare penalty”): the penalty for not preparing

• NPCP (α) (“non-prepare collective penalty”): if α of validators are not
seen to have prepared during an epoch, then all validators are charged a
penalty proportional to NCCP (α). Must be monotonically increasing,
and satisfy NPCP (0) = 0.

3



Note that preparing and committing does not guarantee that the validator
will not incur NPP and NCP ; it could be the case that either because of
very high network latency or a malicious majority censorship attack, the
prepares and commits are not included into the blockchain in time and so
the incentivization mechanism does not know about them. For NPCP and
NCCP similarly, the α input is the portion of validators whose prepares
and commits are included, not the portion of validators who tried to send
prepares and commits.

When we talk about preparing and committing the “correct value”, we
are referring to the hash and epochsource and hashsource recommended by the
protocol state, as described above.

We now define the following reward and penalty schedule, which runs
every epoch.

• Let D be the current total quantity of deposited ether, and e − LFE
be the number of epochs since the last finalized epoch.

• All validators get a reward of BIR(D) every epoch (eg. if BIR(D) =
0.0002 then a validator with 10000 coins deposited gets a per-epoch
reward of 2 coins)

• If the protocol does not see a prepare from a given validator during the
given epoch, they are penalized BP (D, e, LFE) ∗NPP

• If the protocol saw prepares from portion pp validators during the given
epoch, every validator is penalized BP (D, e, LFE) ∗NPCP (1− pp)

• If the protocol does not see a commit from a given validator during the
given epoch, and a prepare was justified so a commit could have been
seen, they are penalized BP (D,E,LFE) ∗NCP .

• If the protocol saw commits from portion pc validators during the given
epoch, and a prepare was justified so any validator could have commit-
ted, then every validator is penalized BP (D, e, LFE) ∗NCCP (1− pp)

This is the entirety of the incentivization structure, though without func-
tions and constants defined; we will define these later, for now saying only
that all constants are positive and all functions output non-negative values
for any input within their range. Additionally, NPCP (0) = NCCP (0) = 0
and NPCP and NCCP must both be nondecreasing.

4



3 Claims

We seek to prove the following:

• If each validator has less than 1
3

of total deposits, then preparing and
committing the value suggested by the proposal mechanism is a Nash
equilibrium.

• Even if all validators collude, the ratio between the harm incurred by
the protocol and the penalties paid by validators is bounded above by
some constant. Note that this requires a measure of “harm incurred by
the protocol”; we will discuss this in more detail later.

• The griefing factor, the ratio between penalties incurred by validators
who are victims of an attack and penalties incurred by the validators
that carried out the attack, can be bounded above by 2, even in the
case where the attacker holds a majority of the total deposits.

4 Individual choice analysis

The individual choice analysis is simple. Suppose that the proposal mecha-
nism selects a hash H to prepare for epoch e, and the Casper incentivization
mechanism specifies some epochsource and hashsource. Because, as per defini-
tion of the Nash equilibrium, we are assuming that all validators except for
one particular validator that we are analyzing is following the equilibrium
strategy, we know that ≥ 2

3
of validators prepared in the last epoch and so

epochsource = e− 1, and hashsource is the direct parent of H.
Hence, the PREPARE COMMIT CONSISTENCY slashing condition poses

no barrier to preparing (e,H, epochsource, hashsource). Since, in epoch e, we
are assuming that all other validators will prepare these values and then
commit H, we know H will be the hash in the main chain, and so a val-
idator will pay a penalty proportional to NPP (plus a further penalty from
their marginal contribution to the NPCP penalty) if they do not prepare
(e,H, epochsource, hashsource), and they can avoid this penalty if they do pre-
pare these values.

We are assuming that there are 2
3

prepares for (e,H, epochsource, hashsource),
and so PREPARE REQ poses no barrier to committing H. Committing H
allows a validator to avoid NCP (as well as their marginal contribution to

5



NCCP ). Hence, there is an economic incentive to commit H. This shows
that, if the proposal mechanism succeeds at presenting to validators a single
primary choice, preparing and committing the value selected by the proposal
mechanism is a Nash equilibrium.

5 Collective choice model

To model the protocol in a collective-choice context, we will first define a
protocol utility function. The protocol utility function defines “how well the
protocol execution is doing”. The protocol utility function cannot be derived
mathematically; it can only be conceived and justified intuitively.

Our protocol utility function is:

U =
ec∑
e=0

−log2(e− LFE(e))−M ∗ F

Where:

• e is the current epoch, going from epoch 0 to ec, the current epoch

• LFE(e) is the last finalized epoch before e

• M is a very large constant

• F is 1 if a safety failure has taken place, otherwise 0

The second term in the function is easy to justify: safety failures are very
bad. The first term is trickier. To see how the first term works, consider the
case where every epoch such that e mod N , for some N , is zero is finalized
and other epochs are not. The average total over each N -epoch slice will be
roughly

∑N
i=1−log2(i) ≈ N ∗ (log2(N) − 1

ln(2)
). Hence, the utility per block

will be roughly −log2(N). This basically states that a blockchain with some
finality time N has utility roughly −log(N), or in other words increasing the
finality time of a blockchain by a constant factor causes a constant loss of
utility. The utility difference between 1 minute finality and 2 minute finality
is the same as the utility difference between 1 hour finality and 2 hour finality.

This can be justified in two ways. First, one can intuitively argue that
a user’s psychological estimation of the discomfort of waiting for finality
roughly matches this kind of logarithmic utility schedule. At the very least, it

6



should be clear that the difference between 3600 second finality and 3610 sec-
ond finality feels much more negligible than the difference between 1 second
finality and 11 second finality, and so the claim that the difference between
10 second finality and 20 second finality is similar to the difference between
1 hour finality and 2 hour finality should not seem farfetched. Second, one
can look at various blockchain use cases, and see that they are roughly log-
arithmically uniformly distributed along the range of finality times between
around 200 miliseconds (“Starcraft on the blockchain”) and one week (land
registries and the like).

Now, we need to show that, for any given total deposit size, loss to protocol utility
validator penalties

is bounded. There are two ways to reduce protocol utility: (i) cause a safety
failure, and (ii) have ≥ 1

3
of validators not prepare or not commit to prevent

finality. In the first case, validators lose a large amount of deposits for vi-
olating the slashing conditions. In the second case, in a chain that has not
been finalized for e− LFE epochs, the penalty to attackers is

min(NPP ∗ 1

3
+NPCP (

1

3
), NCP ∗ 1

3
+NCCP (

1

3
)) ∗BP (D, e, LFE)

To enforce a ratio between validator losses and loss to protocol utility, we
set:

BP (D, e, LFE) =
k

Dp
+ k2 ∗ floor(log2(e− LFE))

The first term serves to take profits for non-committers away; the second
term creates a penalty which is proportional to the loss in protocol utility.

6 Griefing factor analysis

Griefing factor analysis is important because it provides one way to quanitfy
the risk to honest validators. In general, if all validators are honest, and if
network latency stays below the length of an epoch, then validators face zero
risk beyond the usual risks of losing or accidentally divulging access to their
private keys. In the case where malicious validators exist, however, they can
interfere in the protocol in ways that cause harm to both themselves and
honest validators.

We can approximately define the ”griefing factor” as follows:
A strategy used by a coalition in a given mechanism exhibits a griefing

factor B if it can be shown that this strategy imposes a loss of B ∗x to those

7



outside the coalition at the cost of a loss of x to those inside the coalition.
If all strategies that cause deviations from some given baseline state exhibit
griefing factors less than or equal to some bound B, then we call B a griefing
factor bound.

A strategy that imposes a loss to outsiders either at no cost to a coalition,
or to the benefit of a coalition, is said to have a griefing factor of infinity.
Proof of work blockchains have a griefing factor bound of infinity because a
51% coalition can double its revenue by refusing to include blocks from other
participants and waiting for difficulty adjustment to reduce the difficulty.
With selfish mining, the griefing factor may be infinity for coalitions of size
as low as 23.21%.

Let us start off our griefing analysis by not taking into account validator
churn, so the validator set is always the same. Because the equations involved
are fractions of linear equations, we know that small rates of validator churn
will only lead to small changes in the results. In Casper, we can identify the
following deviating strategies:

1. A minority of validators do not prepare, or prepare incorrect values.

2. (Mirror image of 1) A censorship attack where a majority of validators
does not accept prepares from a minority of validators (or other iso-
morphic attacks such as waiting for the minority to prepare hash H1
and then preparing H2, making H2 the dominant chain and denying
the victims their rewards)

3. A minority of validators do not commit.

4. (Mirror image of 3) A censorship attack where a majority of validators
does not accept commits from a minority of validators

Notice that, from the point of view of griefing factor analysis, it is imma-
terial whether or not any hash in a given epoch was justified or finalized. The
Casper mechanism only pays attention to finalization in order to calculate
f(e, LFE), the penalty scaling factor. This value scales penalties evenly for
all participants, so it does not affect griefing factors.

Let us now analyze the attack types:

8



Attack Amount lost by attacker Amount lost by victims
Minority of size α < 1

2
non-prepares NPP ∗ α +NPCP (α) ∗ α NPCP (α) ∗ (1− α)

Majority censors α < 1
2

prepares NPCP (α) ∗ (1− α) NPP ∗ α +NPCP (α) ∗ α
Minority of size α < 1

2
non-commits NCP ∗ α +NCCP (α) ∗ α NCCP (α) ∗ (1− α)

Majority censors α < 1
2

commits NCCP (α) ∗ (1− α) NCP ∗ α +NCCP (α) ∗ α
In general, we see a perfect symmetry between the non-commit case and

the non-prepare case, so we can assume NCCP (α)
NCP

= NPCP (α)
NPP

. Also, from a
protocol utility standpoint, we can make the observation that seeing 1

3
≤

pc <
2
3

commits is better than seeing fewer commits, as it gives at least some
economic security against finality reversions, so we do want to reward this
scenario more than the scenario where we get 1

3
≤ pc <

2
3

prepares. Another
way to view the situation is to observe that 1

3
non-prepares causes everyone

to non-commit, so it should be treated with equal severity.
In the normal case, anything less than 1

3
commits provides no economic

security, so we can treat pc <
1
3

commits as equivalent to no commits; this
thus suggests NPP = 2 ∗NCP . We can also normalize NCP = 1.

Now, let us analyze the griefing factors, to try to determine an optimal
shape for NCCP . The griefing factor for non-committing is:

(1− α) ∗NCCP (α)

α ∗ (1 +NCCP (α))

The griefing factor for censoring is the inverse of this. If we want the
griefing factor for non-committing to equal one, then we could compute:

α ∗ (1 +NCCP (α)) = (1− α) ∗NCCP (α)

1 +NCCP (α)

NCCP (α)
=

1− α
α

1

NCCP (α)
=

1− α
α
− 1

NCCP (α) =
α

1− 2(α

Note that for α = 1
2
, this would set the NCCP to infinity. Hence, with

this design a griefing factor of 1 is infeasible. We can achieve that effect in a
different way - by makingNCP itself a function of α; in this case, NCCP = 1
and NCP = max(0, 1− 2 ∗ α) would achieve the desired effect. But making

9



NCP dependent on α is more technically complex to implement, and one can
also argue that situations where many validators do not commit are exactly
the worst situations to reduce the NCP penalty, so we can instead do a
first-order approximation: NCCP (α) = α∗ (1+2∗α). At α ≈ 0 the griefing
factor it still equal to 1, and if α = 1

2
of validators go offline the griefing

factor is only
(1− 1

2
)∗1

1
2
∗(1+1)

= 1
2
, implying that for a α = 1

2
censorship attack the

griefing factor is 2.
However, we arguably want to have lower griefing factors for smaller at-

tackers in exchange for higher griefing factors for larger attackers. We can
achieve this by dividing NCCP (α) by two

7 Pools

In a traditional (ie. not sharded or otherwise scalable) blockchain, there
is a limit to the number of validators that can be supported, because each
validator imposes a substantial amount of overhead on the system. If we
accept a maximum overhead of two consensus messages per second, and an
epoch time of 1400 seconds, then this means that the system can handle 1400
validators (not 2800 because we need to count prepares and commits). Given
that the number of individual users interested in staking will likely exceed
1400, this necessarily means that most users will participate through some
kind of “stake pool”.

Two other reasons to participate in stake pools are (i) to mitigate key
theft risk (i.e. an attacker hacking into their online machine and stealing
the key), and (ii) to mitigate liveness risk, the possibility that the validator
node will go offline, perhaps because the operator does not have the time to
manage a high-uptime setup.

There are several possible kinds of stake pools:

• Fully centrally managed: users B1...Bn send coins to pool opera-
tor A. A makes a few deposit transactions containing their combined
balances, fully controls the prepare and commit process, and occasion-
ally withdraws one of their deposits to accommodate users wishing to
withdraw their balances. Requires complete trust.

• Centrally managed but trust-reduced: users B1...Bn send coins
to a pool contract. The contract sends a few deposit transactions con-
taining their combined balances, assigning pool operator A control over

10



the prepare and commit process, and the task of keeping track of with-
drawal requests. A occasionally withdraws one of their deposits to ac-
commodate users wishing to withdraw their balances; the withdrawals
go directly into the contract, which ensures each user’s right to with-
draw a proportional share. Users need to trust the operator not to get
their coins lose, but the operator cannot steal the coins.

• 2-of-3: a user makes a deposit transaction and specifies as validation
code a 2-of-3 multisig, consisting of (i) the user’s online key, (ii) the pool
operator’s online key, and (iii) the user’s offline backup key. The need
for two keys to sign off on a prepare, commit or withdraw minimizes
key theft risk, and a liveness failure on the pool side can be handled by
the user sending their backup key to another pool.

• Multisig managed: users B1...Bn send coins to a pool contract that
works in the exact same way as a centrally managed pool, except that
a multisig of several semi-trusted parties needs to approve each prepare
and commit message.

• Collective: users B1...Bn send coins to a pool contract that that works
in the exact same way as a centrally managed poolg , except that a
threshold signature of at least portion p of the users themselves (say,
p = 0.6) needs to approve each prepare and commit messagge.

We expect pools of different types to emerge to accomodate smaller users.
In the long term, techniques such as blockchain sharding will make it possible
to increase the number of users that can participate as validators directly,
and techniques that allow validators to temporarily “log out” of the validator
set when they are offline can mitigate liveness risk.

8 Conclusions

The above analysis shows Casper’s basic properties in the context of an
individual-choice model, a collective-choice model where the validator set is
modeled as a single player, and a model where one coalition is trying to
cause other validators to lose money possibly at some cost to itself. Non-
economic honest-majority models are out of scope, as is the proof that causing
a safety failure requires a large number of slashed validators, as those topics

11



are covered elsewhere. More complex economic attacks involving extortion,
blackmail and validator discouragement are not covered here, although the
griefing factor analysis made here does serve as a foundation for the analyses
of these topics.

Optimal selfish mining strategies in Bitcoin; Ayelet Sapirshtein, Yonatan
Sompolinsky, and Aviv Zohar: https://arxiv.org/pdf/1507.06183.pdf

12


