
Incentives in Casper the Friendly Finality Gadget

Vitalik Buterin
Ethereum Foundation

August 23, 2017

Abstract

We give an introduction to the incentives in the Casper the Friendly Finality Gadget pro-
tocol, and show how the protocol behaves under individual choice analysis, collective choice
analysis and griefing factor analysis. We define a “protocol utility function” that represents
the protocol’s view of how well it is being executed, and show the connection between the
incentive structure that we present and the utility function. We show that (i) the protocol
is a Nash equilibrium assuming any individual validator’s deposit makes up less than 1

3 of
the total, (ii) in a collective choice model, where all validators are controlled by one actor,
harming protocol utility hurts the cartel’s revenue, and there is an upper bound on the ratio
between the reduction in protocol utility from an attack and the cost to the attacker, and
(iii) the griefing factor can be bounded above by 1, though we will prefer an alternative
model that bounds the griefing factor at 2 in exchange for other benefits.

1. Introduction

[Probably do a little more filler here citing previous PoS literature.] Some of the prior Proof-of-Stake systems
are [1, 3, 6].

[define blocks, epochs] A epoch is defined as a period of 100 blocks. Epoch k begins at block k ∗100 and ends
at block k ∗ 100 + 99. A checkpoint for epoch k is a block with number k ∗ 100 − 1. In a perfect execution
there will be exactly one checkpoint per epoch. Due to to network latency or deliberate attacks there may
be multiple competing checkpoints.

2. The Casper Protocol

In the Casper protocol, there is a set of validators, and in each epoch validators have the ability to send two
kinds of messages:

Each validator has a deposit size; when a validator joins their deposit size is equal to the number of coins that
they deposited, and from there on each validator’s deposit size rises and falls with rewards and penalties.
For the rest of this paper, when we say “2/3 of validators”, we are referring to a deposit-weighted fraction;
that is, a set of validators whose sum deposit size equals to at least 2

3 of the total deposit size of the entire

set of validators. We also use “2/3 Prepares” and “2/3 Commits” as shorthand for “ 2
3 of deposit-weighted

validators sent Prepares/Commits”.

Every hash h has one of three possible states: fresh, justified, and finalized. Every hash starts as fresh. The
hash at the beginning of the current epoch converts from fresh to justified if, during the current epoch e, 2/3
Prepares are sent of the form

⟨prepare, e, h, e⋆,h⋆,S⟩ (1)

1

Notation Description

h the hash to justify
e the current epoch
h⋆ the most recent justified hash
e⋆ the epoch containing hash h⋆
S signature from the validator’s private key of the tuplet (h, e, h⋆, e⋆).

(a) prepare format

Notation Description

h the hash to finalize
e the current epoch
S signature from the validator’s private key

(b) commit format

Table 1: The schematic of the prepare and commit messages.

for some specific e⋆ and h⋆. A hash h can only be justified if and only if its h⋆ is already justified or finalized.

Additionally, a hash converts from justified to finalized, if 2/3 Commits

⟨commit, e, h,S⟩ , (2)

for the same e and h as in eq. 2. The h is the block hash of the block at the start of the epoch. A hash h
being justified entails that all fresh (non-finalized) ancestor blocks are also justified. A hash h being finalized
entails that all ancestor blocks are also finalized, regardless of whether they were previously fresh or justified.
An “ideal execution” of the protocol is one where, at the start of every epoch, every validator Prepares and
Commits the first blockhash of each epoch, specifying the same e⋆ and h⋆. We wish to incentivize this ideal
execution.

Possible deviations from this ideal execution that we want to minimize or avoid include:

• Violating any of the two Casper Commandments. [2] To violate either Commandment is to forfeit
one’s entire deposit.

I. A validator shalt not publish two nonidentical Prepares with the same e value.
This is equivalent to that each validator may Prepare to exactly one (h, e⋆, h⋆) triplet per
epoch.

IIa. A validator shalt not publish an Commit between a Prepare jump.
Equivalently, a validator will not publish

⟨prepare, ep,hp, e⋆,h⋆,S⟩ and ⟨commit, ec,hc,S⟩ ,

where the epochs satisfy e⋆ < ec < ep.

IIb. A validator shall only publish compatible Prepare/Commit pairings.
Equivalently, for a single hash h, a validator shall only publish

⟨prepare, ep,h, e⋆,h⋆,S⟩ and ⟨commit, ec,h,S⟩ ,

where the epochs satisfy e⋆ < ep ≤ ec.

• By the end of epoch e, the first blockhash of epoch e is not 100% justified or is not 100% finalized.

All Prepares with an h⋆ that is not justified is ignored. All Commits from unjustified hashes are ignored.

2

Each validator only see the blockchain’s own history, including messages that were passed in. [Are Com-
mits/Prepares stored on-chain?]

The blockchain state stores the latest justified epoch and hash, eLJ and hLJ, and only rewards Prepares
whose e⋆ = eLJ and h⋆ = hLJ. These two techniques will help to coordinate validators toward Preparing and
Committing a single epoch e and hash h.

Let TD be the current total amount of deposited coins, and e− eLF be the number of epochs since the last
finalized epoch.

3. Rewards and Penalties

We define the following nonnegative functions, all of which return a nonnegative scalar with no units.
Technically these values can exceed 1.0, but in practice they will be rarely exceed 0.01:

• BIR(TD): returns the base interest rate paid to a validator, taking as an input the current total
quantity of deposited coins.

• BP(TD, e− eLF): returns the “base penalty constant”—a value expressed as a percentage rate that
is used as the scaling factor for all penalties; for example, if at the current time BP(·, ·, ·) = 0.001,
then a penalty of 1.5 means a validator loses 0.15% of their deposit. Takes as inputs the current
total quantity of deposited coins TD, the current epoch e and the last finalized epoch eLF. Note
that in a perfect protocol execution, e− eLF = 1.

• NPCP(α) (“non-prepare collective penalty”): if α of validators (0 ≤ α ≤ 1) are not seen to have
Prepared during an epoch, then all validators are charged a penalty of NCCP(α). NPCP must be
monotonically increasing, and satisfy NPCP(0) = 0.

• NCCP(α) (“non-commit collective penalty”): if α of validators (0 ≤ α ≤ 1) are not seen to have
Committed during an epoch, and that epoch had a justified hash so any validator could have Com-
mitted, then all validators are charged a penalty proportional to NCCP(α). NCCP must be mono-
tonically increasing, and satisfy NCCP(0) = 0.

We also define the following nonnegative constants:

• NPP (“non-prepare penalty”): the penalty for not Preparing any block during the epoch. [correct?]

• NCP (“non-commit penalty”): the penalty for not Committing any block during the epoch, if there
was a justified hash which the validator could have Committed. [correct?]

Note that a validator publishing a Prepare/Commit doesn’t entail escaping a NPP/NCP; it could be the
case that either because of high network latency or a malicious majority censorship attack, the Prepares
and Commits are not included into the blockchain in time and so the incentivization mechanism does not
see them. Likewise, for NPCP and NCCP, the α input is the proportion of validators whose Prepares and
Commits are not visible, not the proportion of validators who tried to send a Prepare/Commit.

When we talk about Preparing and Committing the “correct value”, we are referring to the hash h and the
parent epoch e⋆ and parent hash h⋆.

We define the following reward and penalty schedule. This is the procedure for rewards and penalties, and
is the entirety of the incentivization structure. It runs at the end of every epoch:

1. All validators get a reward of BIR(TD) (e.g., if BIR(TD) = 0.0002 then a validator with 10, 000
coins deposited gets a per-epoch reward of 2 coins)

2. If the protocol does not see a Prepare from a given validator during the epoch, the validator is
penalized BP(TD, e− eLF) ∗NPP [how does the incentive mechanism know e?]

3. If the protocol does not see a Commit from a given validator during the epoch, and a block was
justified (so a Commit could have been seen), the validator is penalized BP(TD, e− eLF) ∗NCP.

3

4. If the protocol saw Prepares from proportion p validators during the epoch, then every validator is
penalized BP(TD, e− eLF) ∗NPCP(1− p).

5. If the protocol saw Commits from proportion p validators during the epoch, and a block was justified
(so validators could have Commited), then every validator is penalized BP(TD, e−eLF)∗NCCP(1−
p).

6. The blockchain’s recorded eLF and hLF are updated to the latest values. [correct?]

4. Three Theorems

We seek to prove the following:

Theorem 1 ([First theorem]). If no validator has more than 1
3 of the total deposit, i.e., maxi(D) ≤ TD

3 ,
then Preparing the last blockhash of the previous epoch and then Committing that hash is a Nash equilibrium.
(Section 4.1)

Theorem 2 ([Second theorem]). Even if all validators collude, the ratio of the harm inflicted on the network
and the penalties paid by the colluding validators is upperbounded by some constant. (Section 4.2) Note that
this requires a measure of “harm inflicted”.

Theorem 3 ([Third theorem]). Even when the attackers hold a majority of the total deposit, the ratio of the
penalty incurred by the victims of an attack and penalty incurred by the attackers, or griefing factor, is at
most 2. (Section 4.3)

4.1. Individual Choice Analysis

The individual choice analysis is simple. Suppose that during epoch e the proposal mechanism Prepares a
hash h and the Casper incentivization mechanism specifies some e⋆ and h⋆. Because, as per definition of
the Nash equilibrium, we are assuming that all validators except for the validator that we are analyzing
are following the equilibrium strategy, we know that ≥ 2

3 of validators Prepared in the last epoch and so
e⋆ = e− 1, and h⋆ is the direct parent of h.

Hence, the PREPARE COMMIT CONSISTENCY slashing condition poses no barrier to Preparing
(e, h, e⋆,h⋆). Since, in epoch e, we are assuming that all other validators will Prepare these values and
then Commit h, we know h will be a hash in the main chain, and so a validator will pay a penalty if they
do not Prepare (e,h, e⋆,h⋆), and they can avoid the penalty if they do Prepare these values.

We are assuming there are 2
3 Prepares for (e, h, e⋆,h⋆), and so prepare req also poses no barrier to com-

mitting h. Committing h allows a validator to avoid NCP. Hence, there is an economic incentive to Commit
h. This shows that, if the proposal mechanism succeeds at presenting to validators a single primary choice,
Preparing and Committing the value selected by the proposal mechanism is a Nash equilibrium.

Action Payoff

Preparing 0
Not Preparing −NPP−NPCP(α)

(a) Preparing ⟨e,h, e⋆,h⋆⟩

Action Payoff

Commiting 0
Not Commiting −NCP−NCCP(α)

(b) Committing ⟨e,h⟩

Table 2: Payoffs for ideal individual behaviors.

4.2. Collective Choice Model

To model the protocol in a collective-choice context, we first define a protocol utility function. The protocol
utility function quantifies “how well the protocol execution is doing”. Although our specific protocol utility

4

function cannot be derived from first principles, we can intuitively justify it. We define our protocol utility
function as,

U ≡
e∑

k=0

− log2 [k − eLF]−MF . (3)

the above equation might be able to simplifiable

Where:

• e is the current epoch, starting from 0.

• eLF is the index of the last finalized epoch. [To be clear, does the eLF change with the term k, or is it
fixed?]

• M is a very large constant.

• F is an Indicator Function. It returns 1 if a safety failure has taken place, otherwise 0. A safety
failure is defined as the mechanism finalizing two conflicting blocks. This is discussed in Apppendix
A

The second term in the function is easy to justify: safety failures are very bad. The first term is trickier.
To see how the first term works, consider the case where every epoch such that e mod N , for some N ,
is zero is finalized and other epochs are not. The average total over each N -epoch slice will be roughly∑N

i=1 − log2(i) ≈ N ∗
[
log2(N)− 1

ln(2)

]
. Hence, the utility per block will be roughly − log2(N). This

basically states that a blockchain with some finality time N has utility roughly − log(N), or in other words
increasing the finality time of a blockchain by a constant factor causes a constant loss of utility. The utility
difference between 1 minute and 2 minute finality is the same as the utility difference between 1 hour and 2
hour finality.

This can be justified in two ways. First, one can intuitively argue that a user’s psychological discomfort of
waiting for finality roughly matches a logarithmic schedule. At the very least, the difference between 3600
sec and 3610 sec finality feels much more negligible than the difference between 1 sec and 11 sec finality, and
so the claim that the difference between 10 sec and 20 sec finality is similar to the difference between 1 hour
finality and 2 hour finality seems reasonable.1

Now, we need to show that, for any given total deposit size, loss to protocol utility
validator penalties is bounded. There are two

ways to reduce protocol utility: (i) cause a safety failure, or (ii) prevent finality by having > 1
3 of deposit-

weighted validators not Prepare or Commit to the same hash. Causing a safety failure requires violating one
of the Casper Commandments (Section 2) and thus ensures immense loss in deposits. In the second case, in
a chain that has not been finalized for e− eLF epochs, the penalty to attackers is at least,

min

[
NPP

(
1

3

)
+NPCP

(
1

3

)
,NCP

(
1

3

)
+NCCP

(
1

3

)]
∗BP(TD, e− eLF)(

1

3

)
min [NPP+NPCP,NCP+NCCP] ∗BP(TD, e− eLF)

(4)

To enforce a ratio between validator losses and loss to protocol utility, we set,

BP(TD, e− eLF) ≡
k1
TDp + k2 ∗ ⌊log2(e− eLF)⌋ . (5)

1One can look at various blockchain use cases, and see that they are roughly logarithmically uniformly distributed
along the range of finality times between around 200 miliseconds (“Starcraft on the blockchain”) and one week (land
registries and the like). [add a citation for this or delete.]

5

what is p in the in the above equation?

The first term serves to take profits for non-committers away; the second term creates a penalty which is
proportional to the loss in protocol utility.

This connection between validator losses and loss to protocol utility has several consequences. First, it
establishes that harming the protocolexecution is always a net loss, with the net loss increasing with the
harm inflicted. Second, it establishes that the protocol approximates the properties of a game [4]. Potential
games have the property that Nash equilibria of the game correspond to local maxima of the potential
function (in this case, protocol utility), and so correctly following the protocol is a Nash equilibrium even in
cases where attackers control > 1

3 of the total deposit.

Here, the protocol utility function is not a perfect potential function, as it does not always take into account
changes in the quantity of Prepares and Commits whereas validator rewards do, but it does come close.
[Could someone do better than our eq. 3?]

4.3. Griefing Factor Analysis

Griefing factor analysis quanitfies the risk to honest validators. In general, if all validators are honest, and
if network latency stays below half [half, right?] the time of an epoch, then they face zero penalties. In the
case where malicious validators exist, however, they can create penalties for themselves as well as honest
validators.

We define the degree that malicious validators can create penalties for honest validators relative to their own
penalties as the “griefing factor” of a game. We define this as,

GF (G, C) ≡ max
S∈strategies(T\C)

loss(C)

min[0, loss(Players \ C)]
. (6)

I need to work on this equation more. I don’t like it yet.

Definition 1. A strategy used by a coalition in a given mechanism has a griefing factor B if it can be shown
that this strategy imposes a loss of B ∗ x to those outside the coalition at the cost of a loss of x to those
inside the coalition. If all strategies that cause deviations from some given baseline state have griefing factors
less than or equal to some bound B, then we call B a griefing factor bound. [I plan to write this in terms of
classical game theory.]

A strategy that imposes a loss to outsiders either at no cost to a coalition, or to the benefit of a coalition,
is said to have a griefing factor of infinity. Proof of work blockchains have a griefing factor bound of infinity
because a 51% coalition can double its revenue by refusing to include blocks from other participants and
waiting for difficulty adjustment to reduce the difficulty. With selfish mining, the griefing factor may be
infinity for coalitions of size as low as 23.21%. [5]

Then to define the griefing factor over the entire game, we sum the area under the curve in Figure 2 leading
to,

GF (G) ≡
∫ 1

0

GF(G, α) dα . (7)

Let us start off our griefing analysis by not taking into account validator churn, so the validator set is always
the same. In Casper, we can identify the following deviating strategies:

1. A minority of validators do not Prepare, or Prepare incorrect values.

2. (Mirror image of 1) A censorship attack where a majority of validators does not accept Prepares from
a minority of validators (or other isomorphic attacks such as waiting for the minority to Prepare hash
H1 and then preparing H2, making H2 the dominant chain and denying the victims their rewards).

3. A minority of validators do not commit.

6

COMING SOON!

Figure 1: Plotting the griefing factor as a function of the proportion of players coordinating to grief.

Attack
Amount lost by

malicious validators
Amount lost by
honest validators

Minority of size α < 1
2 non-Prepares NPP ∗ α+NPCP(α) ∗ α NPCP(α) ∗ (1− α)

Majority censors α < 1
2 Prepares NPCP(α) ∗ (1− α) NPP ∗ α+NPCP(α) ∗ α

Minority of size α < 1
2 non-Commits NCP ∗ α+NCCP(α) ∗ α NCCP(α) ∗ (1− α)

Majority censors α < 1
2 Commits NCCP(α) ∗ (1− α) NCP ∗ α+NCCP(α) ∗ α

Table 3: Attacks on the protocols and their costs to malicious validators and honest validators.

4. (Mirror image of 3) A censorship attack where a majority of validators does not accept commits
from a minority of validators.

Notice that, from the point of view of griefing factor analysis, it is immaterial whether or not any hash in a
given epoch was justified or finalized. The Casper mechanism only pays attention to finalization in order to
calculate BP(D, e− eLF), the penalty scaling factor. This value scales penalties evenly for all participants,
so it does not affect griefing factors.

Let us now analyze the attack types:

4.4. Shape of the Penalities

There is a symmetry between the non-Prepare case and the non-Commit case, so we assume NCCP(α)
NCP =

NPCP(α)
NPP . Also, from a protocol utility standpoint (2a), increasing Commits are always useful as long as

p > 1
3 , as it gives at least some economic security against finality reversions. However, Prepares < 2

3 is
exceedingly harmful as is it prevents any Commits.

In the normal case, anything less than 1
3 Commits provides no economic security, so we can treat pc < 1

3
Commits as equivalent to no Commits; this thus suggests NPP = 2∗NCP. We can also normalize NCP = 1.

Now, let us analyze the griefing factors, to try to determine an optimal shape for NCCP. The griefing factor
for non-Committing is,

7

“G
oo

dn
es

s”

p

0 11/3 2/3

Perfect
execution

Prepares

Commits

(a) Utility with function of p

COMING SOON!

(b) NCCP and NPCP as a function of α

Figure 2: Plotting the griefing factor as a function of the proportion of players coordinating to grief.

GF =
(1− α) ∗NCCP(α)

α ∗ (1 +NCCP(α))
. (8)

The griefing factor for censoring is the inverse of this. If we want the griefing factor for non-Committing to
equal one, then we could compute:

α ∗ (1 +NCCP(α)) = (1− α) ∗NCCP(α) (9)

1 +NCCP(α)

NCCP(α)
=

1− α

α
(10)

1

NCCP(α)
=

1− α

α
− 1 (11)

NCCP(α) =
α

1− 2α
(12)

Note that for α = 1
2 , this would set the NCCP to infinity. Hence, with this design a griefing factor of 1 is

infeasible. We can achieve that effect in a different way - by making NCP itself a function of α; in this case,
NCCP = 1 and NCP = max[0, 1− 2α] would achieve the desired effect. If we want to keep the formula for
NCP constant, and the formula for NCCP reasonably simple and bounded, then one alternative is to set
NCCP(α) = α

1−α ; this keeps griefing factors bounded between 1
2 and 2.

5. Pools

In a traditional (i.e., not sharded or otherwise scalable) blockchain, there is a limit to the number of validators
that can be supported, because each validator imposes a substantial amount of overhead on the system. If
we accept a maximum overhead of two consensus messages per second, and an epoch time of 1400 seconds,
then this means that the system can handle 1400 validators (not 2800 because we need to count prepares
and commits). Given that the number of individual users interested in staking will likely exceed 1400, this
necessarily means that most users will participate through some kind of “stake pool”.

There are several possible kinds of stake pools:

8

• Fully centrally managed: users B1 . . . Bn send coins to pool operator A. A makes a few deposit
transactions containing their combined balances, fully controls the Prepare and Commit process,
and occasionally withdraws one of their deposits to accommodate users wishing to withdraw their
balances. Requires complete trust.

• Centrally managed but trust-reduced: users B1 . . . Bn send coins to a pool contract. The
contract sends a few deposit transactions containing their combined balances, assigning pool operator
A control over the Prepare and Commit process, and the task of keeping track of withdrawal requests.
A occasionally withdraws one of their deposits to accommodate users wishing to withdraw their
balances; the withdrawals go directly into the contract, which ensures each user’s right to withdraw
a proportional share. Users need to trust the operator not to get their deposits penalized, but the
operator cannot steal the coins. The trust requirement can be reduced further if the pool operator
themselves contributes a large portion of the coins, as this will disincentivize them from staking
maliciously.

• 2-of-3: a user makes a deposit transaction and specifies as validation code a 2-of-3 multisig, consist-
ing of (i) the user’s online key, (ii) the pool operator’s online key, and (iii) the user’s offline backup
key. The need for two keys to sign off on a prepare, Commit or withdraw minimizes key theft risk,
and a liveness failure on the pool side can be handled by the user using their backup key.

• Multisig managed: users B1 . . . Bn send coins to a pool contract that works in the exact same way
as a centrally managed pool, except that a multisig of several semi-trusted parties needs to approve
each Prepare and Commit message.

• Collective: users B1 . . . Bn send coins to a pool contract that that works in the exact same way
as a centrally managed poolg , except that a threshold signature of at least portion p of the users
themselves (say, p = 0.6) needs to approve each Prepare and Commit messagge.

We expect pools of different types to emerge to accomodate smaller users. In the long term, techniques such
as blockchain sharding will make it possible to increase the number of users that can validate directly, and
extensions to allow validators to temporarily “drop out” from the validator set when they are offline can
mitigate liveness risk.

6. Conclusions

The above analysis gives a parametrized scheme for incentivizing in Casper, and shows that it is a Nash
equilibrium in an uncoordinated-choice model with a wide variety of settings. We then attempt to derive one
possible set of specific values for the various parameters by starting from desired objectives, and choosing
values that best meet the desired objectives. This analysis does not include non-economic attacks, as those
are covered by other materials, and does not cover more advanced economic attacks, including extortion and
discouragement attacks. We hope to see more research in these areas, as well as in the abstract theory of
what considerations should be taken into account when designing reward and penalty schedules.

Future Work. We would like to see a better protocol utility function eq. 3. [fill me in]

Acknowledgements. We thank Virgil Griffith for review.

References

[1] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies without proof of work. In International
Conference on Financial Cryptography and Data Security, pages 142–157. Springer, 2016.

[2] V. Buterin. Minimal slashing conditions, 03 2017.

[3] S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper,
August, 19, 2012.

[4] D. Monderer and L. S. Shapley. Potential games. Games and economic behavior, 14(1):124–143, 1996.

9

[5] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 515–532. Springer, 2016.

[6] P. Vasin. Blackcoins proof-of-stake protocol v2, 2014.

10

Appendix

A. Safety Failure

Put the full description/definition of conflicting blocks here.

B. Unused Text

[This is where text goes that for which a home hasn’t been found yet. If no home is found, it will be deleted.]

Two other reasons to participate in stake pools are (i) to mitigate key theft risk (i.e. an attacker hacking
into their online machine and stealing the key), and (ii) to mitigate liveness risk, the possibility that the
validator node will go offline, perhaps because the operator does not have the time to manage a high-uptime
setup.

[Do we want to require that the Prepare be done in the first 1/2 of the epoch? I’m mildly concerned there may
not always be enough time to Commit.]

[Remember: The only block you’re allowed to Prepare is the last block of each epoch.]

[Remember: Even if the Finalization goes through, the collective penalties are still applied.]

Questions

• It’s unclear to me why we need e⋆ in the Prepare.

11

