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Abstract

We give an introduction to the incentives in the Casper the Friendly
Finality Gadget protocol, and show how the protocol behaves under
individual choice analysis, collective choice analysis and griefing factor
analysis. We define a “protocol utility function” that represents the
protocol’s view of how well it is being executed, and connect the incen-
tive structure to the utility function. We show that (i) the protocol is
a Nash equilibrium assuming any individual validator’s deposit makes
up less than 1

3 of the total, (ii) in a collective choice model, where all
validators are controlled by one actor, harming protocol utility hurts
the cartel’s revenue, and there is an upper bound on the ratio between
the reduction in protocol utility from an attack and the cost to the at-
tacker, and (iii) the griefing factor can be bounded above by 1, though
we will prefer an alternative model that bounds the griefing factor at
2 in exchange for other benefits.

1 Introduction

In the Casper protocol, there is a set of validators, and in each epoch valida-
tors have the ability to send two kinds of messages:

[PREPARE, epoch, hash, epochsource, hashsource]

and
[COMMIT, epoch, hash]
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Each validator has a deposit size; when a validator joins their deposit
size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls as the validator receives rewards
and penalties. For the rest of this paper, when we say “2

3
of validators”, we

are referring to a deposit-weighted fraction; that is, a set of validators whose
combined deposit size equals to at least 2

3
of the total deposit size of the

entire set of validators. We also use “2
3

commits” as shorthand for “commits
from 2

3
of validators”.

If, during an epoch e, for some specific checkpoint hash h, 2
3

prepares are
sent of the form

[PREPARE, e, h, epochsource, hashsource]

with some specific epochsource and some specific hashsource, then h is consid-
ered justified. If 2

3
commits are sent of the form

[COMMIT, e, h]

then h is considered finalized. The hash is the block hash of the block at the
start of the epoch, so a hash being finalized means that that block, and all of
its ancestors, are also finalized. An “ideal execution” of the protocol is one
where, during every epoch, every validator prepares and commits some block
hash at the start of that epoch, specifying the same epochsource and hashsource.
We want to try to create incentives to encourage this ideal execution.

Possible deviations from this ideal execution that we want to minimize
or avoid include:

• Any of the four slashing conditions get violated.

• During some epoch, we do not get 2
3

commits for the hash that received
2
3

prepares.

• During some epoch, we do not get 2
3

prepares for the same
(h, hashsource, epochsource) combination.

From within the view of the blockchain, we only see the blockchain’s own
history, including messages that were passed in. In a history that contains
some blockhash H, our strategy will be to reward validators who prepared
and committed H, and not reward prepares or commits for any hash H′ 6=
H. The blockchain state will also keep track of the most recent hash in
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its own history that received 2
3

prepares, and only reward prepares whose
epochsource and hashsource point to this hash. These two techniques will help
to “coordinate” validators toward preparing and committing a single hash
with a single source, as required by the protocol.

2 Rewards and Penalties

We define the following constants and functions:

• p: determines how the rewards and penalties paid or deducted from
each validator decrease as the total deposit size increases

• k: a constant determining the base reward and penalty size

• NCP (“non-commit penalty”): the penalty for not committing, if there
was a justified hash which the validator could have committed

• NCCP (α) (“non-commit collective penalty”): if α of validators are not
seen to have committed during an epoch, and that epoch had a justified
hash so any validator could have committed, then all validators are
charged a penalty proportional to NCCP (α). Must be monotonically
increasing, and satisfy NCCP (0) = 0.

• NPP (“non-prepare penalty”): the penalty for not preparing

• NPCP (α) (“non-prepare collective penalty”): if α of validators are not
seen to have prepared during an epoch, then all validators are charged a
penalty proportional to NCCP (α). Must be monotonically increasing,
and satisfy NPCP (0) = 0.

• f(e, LFE): a factor applied to all rewards and penalties that depends
on the current epoch e and the last finalized epoch LFE. Note that in
a “perfect” protocol execution, e− LFE always equals 1.

Note that preparing and committing does not guarantee that the validator
will not incur NPP and NCP ; it could be the case that either because of
very high network latency or a malicious majority censorship attack, the
prepares and commits are not included into the blockchain in time and so
the incentivization mechanism does not know about them. For NPCP and
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NCCP similarly, the α input is the portion of validators whose prepares
and commits are included, not the portion of validators who tried to send
prepares and commits.

When we talk about preparing and committing the “correct value”, we
are referring to the hash and epochsource and hashsource recommended by the
protocol state, as described above.

We now define the following reward and penalty schedule, where a val-
idator with deposit size Vd gets a reward or penalty equal to Vd times the
values given below:

• Let BIR = k
Dp (the “base interest rate”)

• All validators get a reward of BIR

• If a validator did not prepare the correct value, they are penalized
BIR ∗ f ∗NPP

• If pp validators prepared the correct value, every validator is penalized
BIR ∗ f ∗NPCP (1− pp)

• If a validator did not commit the correct value, and the protocol sees
that the correct value was justified so they could have committed, they
are penalized BIR ∗ f ∗NCP

• If pc validators committed the correct value, and the protocol sees that
the correct value was justified so they could have committed, every
validator is penalized BIR ∗ f ∗NCCP (1− pc)

This is the entirety of the incentivization structure.

3 Claims

We seek to prove the following:

• If each validator has less than 1
3

of total deposits, then preparing and
committing the value suggested by the proposal mechanism is a Nash
equilibrium.
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• Even if all validators collude, the ratio between the harm incurred by
the protocol and the penalties paid by validators is bounded above by
some constant. Note that this requires a measure of “harm incurred by
the protocol”; we will discuss this in more detail later.

• The griefing factor, the ratio between penalties incurred by validators
who are victims of an attack and penalties incurred by the validators
that carried out the attack, is bounded above by some global constant,
even in the case where the attacker holds a majority of the total de-
posits.

4 Individual choice analysis

The individual choice analysis is simple. Suppose that the proposal mecha-
nism selects a hash H to prepare for epoch e, and the Casper incentivization
mechanism specifies some epochsource and hashsource. Because we are assum-
ing that the equilibrium is being followed, everyone prepared in the last epoch
and so epochsource = e − 1, and hashsource is the direct parent of H. Hence,
the PREPARE COMMIT CONSISTENCY slashing condition poses no bar-
rier to preparing (e,H, epochsource, hashsource). Assuming that, in this epoch,
everyone else will prepare these values and then commit H, we know H will
be the hash in the main chain, and so a validator will pay a penalty pro-
portional to NPP (plus a further penalty from their marginal contribution
to the NPCP penalty) if they do not prepare (e,H, epochsource, hashsource),
and avoid this penalty if they do prepare these values.

We are assuming that there are 2
3

prepares for (e,H, epochsource, hashsource),
and so PREPARE REQ poses no barrier to committing H. Committing H
allows a validator to avoid NCP (as well as their marginal contribution to
NCCP ). Hence, there is an economic incentive to commit H. This proves
that preparing and committing the value selected by the proposal mechanism
is a Nash equilibrium.

5 Collective choice model

To model the protocol in a collective-choice context, we will first define a
protocol utility function. The protocol utility function defines “how well the
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protocol execution is doing”. The protocol utility function cannot be derived
mathematically; it can only be conceived and justified intuitively.

Our protocol utility function is:
U =

∑ec
e=0−log2(e−max[e′ < e, e′finalized])−M ∗ F

Where:

• e is the current epoch, going from epoch 0 to ec, the current epoch

• e′ is the last finalized epoch before e

• M is a very large constant

• F is 1 if a safety failure has taken place, otherwise 0

The second term in the function is easy to justify: safety failures are
very bad. The first term is trickier. To see how the first term works, con-
sider the case where every epoch where emodN = 0 is finalized and other
epochs are not. The average total over each N -epoch slice will be roughly∑N
i=1−log2(i) ≈ N ∗ (log2(N) − 1

ln(2)
). Hence, the utility per block will be

roughly −log2(N). This basically states that a blockchain with some finality
time N has utility roughly −log(N), or in other words increasing the finality
time of a blockchain by a constant factor causes a constant loss of utility.
The utility difference between 1 minute finality and 2 minute finality is the
same as the utility difference between 1 hour finality and 2 hour finality.

This can be justified in two ways. First, one can intuitively argue that
a user’s psychological estimation of the discomfort of waiting for finality
roughly matches this kind of logarithmic utility schedule. Second, one can
look at various blockchain use cases, and see that they are roughly loga-
rithmically uniformly distributed along the range of finality times between
around 200 miliseconds (“Starcraft on the blockchain”) and one week (land
registries and the like).

Now, we need to show that, for any given total deposit size, loss to protocol utility
validator penalties

is bounded. There are two ways to reduce protocol utility: cause a safety
failure, and do not finalize epochs. In the first case, validators lose a large
amount of deposits for violating the slashing conditions. In the second case,
in a chain that has not been finalized for k epochs, the penalty to attackers
is min(1

3
∗ (NPP + NPCP ), 1

3
∗ (NCP + NCCP )) ∗ BIR ∗ floor(log2(k)),

which is equal to the loss of protocol utility multiplied by BIR ∗ min(1
3
∗

(NPP + NPCP ), 1
3
∗ (NCP + NCCP )), which for any given total deposit

size is a constant.
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6 Griefing factor analysis

Griefing factor analysis is important because it is one way to quanitfy the
risk to honest validators. In general, if all validators are honest, and if
network latency stays below the length of an epoch, then validators face
zero risk beyond the usual risks of losing or accidentally divulging access to
their private keys. In the case where malicious validators exist, they can
interfere in the protocol in ways that cause harm to both themselves and
honest validators.

We can approximately define the ”griefing factor” as follows:
A strategy used by a coalition in a given mechanism exhibits a griefing

factor B if it can be shown that this strategy imposes a loss of B ∗x to those
outside the coalition at the cost of a loss of x to those inside the coalition.
If all strategies that cause deviations from some given baseline state exhibit
griefing factors less than or equal to some bound B, then we call B a griefing
factor bound.

A strategy that imposes a loss to outsiders either at no cost to a coalition,
or to the benefit of a coalition, is said to have a griefing factor of infinity.
Proof of work blockchains have a griefing factor bound of infinity because a
51% coalition can double its revenue by refusing to include blocks from other
participants and waiting for difficulty adjustment to reduce the difficulty
and increase their rewards. With selfish mining, the griefing factor may be
infinity for coalitions of size as low as 23.21%.

Let us start off our griefing analysis by not taking into account validator
churn, so all dynasties are identical. Because the equations involved are
fractions of linear equations, we know that small churn will only lead to small
changes in the results. In Casper, we can identify the following deviating
strategies:

1. A minority of validators do not prepare, or prepare incorrect values.

2. (Mirror image of 1) A censorship attack where a majority of validators
does not accept prepares from a minority of validators (or other iso-
morphic attacks such as waiting for the minority to prepare hash H1
and then preparing H2, making H2 the dominant chain and denying
the victims their rewards)

3. A minority of validators do not commit.
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4. (Mirror image of 3) A censorship attack where a majority of validators
does not accept commits from a minority of validators

Notice that, from the point of view of griefing factor analysis, it is im-
material whether or not a given epoch was prepared or committed. The
reward and penalty schedule only pays attention to prepares and commits
for the purpose of setting f , the value proportional to the logarithm of the
time since the last finalized epoch. This value scales penalties evenly for all
participants, so it does not affect griefing factors.

Let us now analyze the griefing factors:
Attack Amount lost by attacker Amount lost by victims Griefing factor Notes

Minority of size α < 1
2

non-prepares NCP ∗ α +NCCP ∗ α2 NCCP ∗ α ∗ (1− α) NCCP∗(1−α)
NCP+NCCP∗α The griefing factor is maximized when α ≈ 0

Majority censors α < 1
2

minority prepares NCCP ∗ α ∗ (1− α) NCP ∗ α +NCCP ∗ α2 NCP+NCCP∗α
NCCP∗(1−α) The griefing factor is maximized when α ≈ 1

2

In general, we see a perfect symmetry between the non-commit case and
the non-prepare case, so we can assume NCCP

NCP
= NPCP

NPP
. Also, from a protocol

utility standpoint, we can make the observation that seeing 1
3
≤ pc <

2
3

com-
mits is better than seeing fewer commits, as it gives at least some economic
security against finality reversions, so we do want to reward this scenario
more than the scenario where we get 1

3
≤ pc <

2
3

prepares. Another way
to view the situation is to observe that 1

3
non-prepares causes everyone to

non-commit, so it should be treated with equal severity.
In the normal case, anything less than 1

3
commits provides no economic

security, so we can treat pc <
1
3

commits as equivalent to no commits; this
thus suggests NPC = 2 ∗NCC.

7 Conclusions

The above analysis shows Casper’s basic properties in the context of an
individual-choice model, a collective-choice model where the validator set is
modeled as a single player, and a model where one coalition is trying to
cause other validators to lose money possibly at some cost to itself. Non-
economic honest-majority models are out of scope, as is the proof that causing
a safety failure requires a large number of slashed validators, as those topics
are covered elsewhere. More complex economic attacks involving extortion,
blackmail and validator discouragement are not covered here, although the
griefing factor analysis made here does serve as a foundation for the analyses
of these topics.
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Optimal selfish mining strategies in Bitcoin; Ayelet Sapirshtein, Yonatan
Sompolinsky, and Aviv Zohar: https://arxiv.org/pdf/1507.06183.pdf
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