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Abstract

We explore “discouragement attacks” on economic consensus mech-
anisms. A discouragement attack consists of an attacker acting mali-
ciously inside a consensus mechanism in order to reduce other valida-
tors’ revenue, even at some cost to themselves, in order to encourage
the victims to drop out of the mechanism. The motivations to conduct
discouragement attacks are twofold. First, the attacks can increase the
attacker’s profit, as the mechanism may contain long-run “competi-
tive” mechanics where some validators dropping out increases revenue
to the remaining ones. Second, the attacks can be part of a two-step
strategy where the second step is to carry out a traditional 51% at-
tack on the consensus algorithm against a now much smaller set of
“honest” validators warding off the attacker, and hence pay a much
lower cost for the attack.

1 Introduction

We model an economic consensus mechanism as being a game where there
is an infinite set of validators each with an infinitesimally small deposit,
with the total deposit size D, of which some portion is controlled by the
attacker. The payout function takes as input D, the total deposit size, and
h, the extent to which the attacker deviates from an “honest” strategy. The
payout to each honest validator is 1−h

Dp
, where p is a protocol parameter that

determines how the protocol reward changes with the number of validators.
For example:
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• p = 0: constant “interest rate”, eg. under optimal conditions each
validator earns a return of 8% per year.

• p = 1
2
: the rewards (and penalties) to validators scale with the inverse

square root of the total deposit size, so total rewards scale with the
square root of the total deposit size. This is a compromise between
p = 0 and p = 1.

• p = 1: constant total reward, ie. the total payout of the protocol is
dependent only on what percentage of validators take what actions, not
on the total deposit size.

• p =∞: the protocol is dead-set on ensuring that the total deposit size
is some specific constant Dk no matter what. If the total deposit size
exceeds Dk, the protocol keeps decreasing rewards until it drops to Dk,
and if the total deposit size is below Dk, the protocol keeps increasing
rewards until it rises to Dk.

Note that if revenues to validators are dominated by transaction fees,
then p = 1 will hold.

Each validator controlled by the attacker gets a return of
1−h

r

Dp
where r is

the proportional loss ratio. The proportional loss ratio is the ratio between
the loss the victims suffer and the loss the attacker suffers, where both losses
are expressed in percentage terms. For example, if an attack that causes
the attacker to lose 1% of deposits of all validators that they control causes
everyone else to lose 2%, then the proportional loss ratio is 2.

The reason behind the above formulas is as follows. We assume that there
is some “base interest rate” paid to all validators, which is proportional
to some inverse power of the total deposit size. This is certainly not an
exhaustive characterization of ways to assign the base interest rate based
on the total deposit size, but inverse powers are attractive because they are
robust to uncertainty; that is, if one designs a protocol using such a function
with the expectation that the total deposit size will usually be X, but then in
the real world the total deposit size unexpectedly turns out to be 10∗X, the
economics do not substantively change. There is not necessary a principled
in-protocol notion of the “extent” to which an attacker is attacking, so we
define our own: the extent of an attack is h if the victims’ return decreases
to 1−h

xp
. We assume the proportional loss ratio r is fixed, hence the attacking

validators’ return must be
1−h

r

xp
.
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In contracts the griefing factor, another way of comparing attacker and
victim losses, is defined in absolute terms: for example, if in such a scenario
the attacker controls 1

3
of the total validator set, then the set of victims

is twice as large as the attacker, and so altogether the victims lose four
times more than the attacker, and so the griefing factor would be 4. The
relationship between the proportional loss ratio r and griefing factor is simple:

g = r ∗ 1− α
α

,

where α is the portion of validators controlled by the attacker. In our above

example, α = 1
3
, so g = 2 ∗

2
3
1
3

= 4.

We now rephrase the problem into the language of supply and demand:
there exist a set of players, each of which has some reserve interest rate at
which they are willing to become validators in the consensus mechanism.
This is the supply curve, where the interest rate is the price. The protocol,
which offers interest rates for participation in the consensus mechanism, sets
the demand curve. If p = 0, the demand curve is horizontal - the protocol
offers that interest rate to an unlimited number of validators. If p =∞, the
demand curve is vertical. For any other p, the demand curve is declining
with a constant elasticity of 1

p
. We model the attacker as having unilateral

power to set h (by attacking), and this pushes down the demand curve.
We model the supply curve as also being a simple exponential function, xd.

In general, we expect there to be wide disparities between the reserve interest
rates of different players, as they have different levels of wealth, technical
capability to operate a node in the consensus mechanism, and willingness to
lock up their capital to become a validator; additionally, we expect many
players will be readily willing to lock up 50% of their capital, somewhat
willing to lock up 80%, hard pressed to lock up 95%, and not willing at all
to lock up 100%. Hence, d > 1 seems likely, though we will consider the
problem abstractly and give results for various values of d.

2 Analysis

We want to learn two things. First, are there opportunities to perform a dis-
couragement attack for profit? Second, what is the difficulty of performing
a discouragement attack in order to set up a cheaper later attack on consen-
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sus? To examine the second case, we can compare the pre-discouragement
and post-discouragement intersections of the supply and demand curves.

Pre-discouragement, the intersection is between y = 1
Dp

and y = Dd.
The unique solution is clearly x = 1 and y = 1. Note that we can adjust
the currency unit and the time unit so that the default equilibrium of 1
unit and an interest rate of 100% per period holds; hence, the omission
of adjustable constants in the supply and demand curve formulas does not
sacrifice generality.

Post-discouragement, it becomes:
1−h
Dp

= Dd

D = (1− h)
1
d+p

Let us now look at the attacker’s interest rate,
1−h

r

Dp
. First, let us take the

easy case: r ≤ 1. In this case:
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1−h
r

Dp
≤ 1−h

(1−h)
p
d+p

= (1− h)
d
d+p < 1.

Hence, if r ≤ 1, the attacker will always lose money. This may seem
counterintuitive; one might ask, what if the discouragement attack pushes
out so many other validators that the new equilibrium is on the very high
part of the the demand curve close to zero? The important thing to keep
in mind, however, is that if r = 1 (i.e. the attacker gets the same interest
rate as the victims), then the attacker’s revenue will necessarily be at some
point along the original, unchanged, upward sloping supply curve. Because
the supply curve is upward sloping, and the number of validators decreased,
the interest rate paid to the attacker must have also decreased. If r < 1,
then the attacker loses even more than the victims, at least if expressed as
an interest rate, and so the attacker’s interest rate will end up below the
lower point along the supply curve experienced by victims. Hence, if r ≤ 1,
discouragement attacks are necessarily costly.

In general, it is certainly feasible to design a consensus mechanism where
we can ensure r ≤ 1 as long as the attacker controls less than 50% of val-
idators, so this is already a very useful result. Now, let us examine the case
where r > 1. For very high values of r, it is easy to see how the attacker can
theoretically make a net gain from a discouragement attack:

However, with the right bounds we can still prevent such an attack from
being profitable. Consider the case where p = 1, and where the attacker must
maintain a 50% share of active validators to exert r > 1 griefing (note that
at the 50% boundary, the proportional loss ratio r and the griefing factor
are the same value). The next question is, does the attacker remove some of
their own validators to keep their share at 50%, or do all of the validators
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controlled by the attacker stay?
In the first case, as long as p ≤ 1, no matter how high r is, the attacker’s

revenue must still decrease, or in the worst case where r =∞, the attacker’s
revenue will be unchanged. In the second case, we note that the total deposit

size will decline more slowly - specifically, D = 1
2

+ 1
2
∗ (1 − h)

1
d+p . Suppose

r ≤ 2, and p ≤ 1. Then:
1−h

r

Dp

≤ 1−h
2

( 1
2
+ 1

2
∗(1−h)

1
d+p )p

≤ 1−h
2

1
2
+ 1

2
∗(1−h)

p
d+p

=
1
2
+ 1

2
∗(1−h)

1
2
+ 1

2
∗(1−h)

p
d+p

≤
1
2
+ 1

2
∗(1−h)

1
2
+ 1

2
∗(1−h)

= 1
Hence both strategies are unprofitable. For values r > 2, the proof would

need to be more conditional on specific values of p. We can make the claim
that, if the griefing factor is bounded by GF , i.e. r ≤ GF ∗ α

1−α , then a

discouragement attack cannot be profitable if and only if p ≤ 1
GF

.
We can check this at the boundary h = 1 as follows. We want to show

that
1−hp∗ 1−α

α

(α+(1−α)(1−h)
1
d+p )p

≤ 1, so we show that the numerator is less than or

equal to the denominator. At h = 1, the numerator simplifies to 1 − p
α

+ p
and the denominator to αp. At α = 1, the two are equal. To show that
the numerator is strictly less for α < 1, we can take the derivative of both
with respect to α; the numerator becomes p

α2 and the denominator becomes
p∗αp−1, and since α < 1 the derivative of the numerator is clearly greater, so
for α < 1 the original fraction will be less than one. Checking for 0 < h < 1
is much harder, but analytically it can be verified that it holds.

Hence, if the griefing factor is bounded by 2, we want p ≤ 1
2
, and similarly

for other griefing factors.
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3 Discouragement Attacks for Breaking Con-

sensus

Here we evaluate the feasibility of attackers with a two-step plan. First,
run a discouragement attack to push other validators out. Second, attack
the network against a now much smaller validator set. The second attack
could either be a finality reversion attack, or it could be censorship. In the
given model, this is clearly doable: an attacker can grief with h > 1 to push
all other validators out, then remove most of their own validators, then use
the remainder to perform the attack. This can be overcome with an honest
minority assumption, where some validators are willing to stay despite the
lack of economic incentive, and it can also be overcome with outside donations
to “honest” validators. A third way that it can be overcome is if, when such
an attack starts taking place, a large number of outside players temporarily
join the validator set, diluting the attacker to below 50% and thereby making
their attack ineffective.

This kind of attack is difficult to economically model because under cer-
tain assumptions the cost is zero: if an attacker can credibly announce that
they will grief with h > 1, then all other validators will leave, and the attacker
will then be free to join with one single validator and perform a censorship
attack at infinitesimal cost. This result is true in any game where the net
profit of a validator can be made to drop below zero through no fault of
their own, which is itself true of any consensus algorithm where a censorship
attack has nonzero cost, because of the fundamental fault inattributability
of censorship versus a minority going offline.

What we can do is model the game in various ways that add realistic
“friction” to non-attacking validators’ economic reasoning, and see how the
parameters of the game can be optimized so as to maximize the cost of attack
given these frictions. To more clearly illustrate the difference between losses
on the order of security deposits and losses on the order of rewards, we now
assume that all rewards and penalties are multiplied by some base interest

rate y0; that is, the victims earn y0 ∗ 1−h
Dp

and the attacker earns y0 ∗
1−h

r

Dp
.

One possibility is to model it as a three-phase game, where in phase 1 the
attacker griefs with some h, all validators get their due rewards and penalties,
then in phase 2 both the attacker and other validators make choices about
how to allocate their resources and finally in phase 3 the attacker decides
whether or not to attack.
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Let us first consider finality reversion attacks. In a finality reversion
attack, if the deposit size is D, the cost of an attack is D

3
. An attacker’s

strategy is easy: grief with h = 1 in phase 1, drive all other validators away
as their revenue drops to zero, and then attack in phase 2. The attacker’s
cost here, assuming the attacker had 50% of the validator set in phase 1, is
1
2
∗ y0 ∗ (1− 1

r
).

Now, let us modify the game slightly: suppose that of the D
3

penalized,
half goes to all other validators. The attacker griefs with some h in phase 1,
and as a result in phase 2 the total deposit size drops from 1 to D2, with base
interest rate y2 = y0

Dp2
. The attacker then attacks with probability Pattack.

The attacker’s cost is:
1
2
∗ y0 ∗ h+ Pattack ∗ 1

3
∗D2

The first term in the sum is the cost in phase 1, and the second term is
the expected cost in phase 2.

Supply-demand equilibrium tells us that in phase 2 we have:
y2 ∗ (1− h) + 1

4
∗ Pattack = y0 ∗Dd

2

The 1
4

fraction comes from the fact that during an attack, non-attacker’s
deposits would increase by 25%, and because the original intersection was
(1, y0) the supply curve must also be multiplied by y0. Let us assume d =
p = 1. We can simplify:

y0
D2
∗ (1− h) + 1

4
∗ Pattack = y0 ∗D2

Or:
(h− 1)− Pattack

y0∗4 ∗D2 +D2
2 = 0

This gives us D2 out of Pattack and h through a quadratic equation, which
we can then plug into the attacker’s cost. This gives the cost as a function
of h and Pattack. The quadratic equation is:

D2 =

Pattack
4∗y0

+(
P2
attack
16∗y2

0

−4∗(h−1))
1
2

2

The discriminant equals zero at when
P 2
attack

16∗y20
= 4 ∗ (h − 1), or h = 1 +

(Pattack
8∗y0 )2; if h is higher than this value then there is no intersection between

the new de-facto demand curve and the supply curve, meaning that non-
attacking validators will lose money regardless of what happens, and so D2 =
0.

Because the benefits to the attacker of removing validators from the val-
idator set are so high, we find that the optimal h for any given Pattack is
generally precisely the one which sets D2 = 0, ie. h = 1 + (Pattack

8∗y0 )2 + ε.
One possible mitigation to this kind of attack is to simply make it more
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difficult to grief with h much higher than 1 in the specific case where D is
low. That is, suppose that there exists some behavior in the network that
causes some given amount of harm to the protocol, and one cannot determine
whether it is caused by offline validators or censoring validators. Instead
of setting punishments proportional to y0

Dp
, set them proportional to y0, or

perhaps as a compromise y0

D
p
2

, or a piecewise function. This means that if D

is low, attackers will be able to cause more disruption of performance to the
network at lower cost to themselves, but in return creates a scenario where
it is more difficult to engage in a discouragement attack, because causing
enough damage to the network for h to exceed 1 will take a longer time.

The second case that we can analyze is the case where the attacker en-
gages in a discouragement attack, and then in the second stage engages in
a censorship attack. Here, there is no counter-pressure where validators are
encouraged to stay because of the possibility they will get a windfall from
the attack, as in a censorship attack all validators, including the attacker
and victims, must be penalized. This case is even worse than the above, as
the h required to drive out other validators will be less than 1. However, the
mitigation strategy is broadly similar. Because this kind of attack is strictly
worse than a finality reversion attack, it may not be worth the complexity to
implement a scheme where malicious validators’ rewards are distributed to
other validators, as we can expect that malicious attackers will nearly always
opt for a censorship attack instead of a finality reversion attack in any case.

4 Bribing to counter-grief

Suppose that victims (≤ 50% of the current validator set) are concerned
that their revenue will decrease from y0 to 0 as part of a discouragement
attack. They can choose to bribe players who are not currently validators to
enlist in order to prevent this from happening. Bribing players individually
is expensive, because the bribe must overcome the player’s concern that they
themselves will suffer from the attack. However, with an assurance contract
we can create a bribe that only works if enough players show up to properly
restrain the attacker. A bribe to increase the validator set by a factor of Dn

would need to pay the Dn − 1 newly joining players the difference between
the natural supply at Dn and the natural demand at Dn.
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Note that existing validators do not need to receive the subsidy, as we
can design the protocol so that it is easy to become a validator but takes a
long time to leave, so they will remain validators long enough to prevent the
discouragement attack (in fact, we are assuming that the current validator
set are the ones paying the bribe).

The cost of the bribe is (Dn−1)∗y0 ∗ (Dd
n− 1

Dpn
). If p = d = 1, this equals

(Dn− 1) ∗ y0 ∗ (Dn− 1
Dn

) = y0 ∗ (Dn−1)2∗(Dn+1)
Dn

. If the attacker is threatening
to take away the victims rewards and additionally take away portion q of
their deposits, then the cost of not bribing is y0 + q. A bribe is worth it if:

y0 ∗ (Dn−1)2∗(Dn+1)
Dn

≤ y0 + q
(Dn−1)2∗(Dn+1)

Dn
≤ 1 + q

y0
This is a quartic equation, and so has no clean solution. But we can give

some approximations:
q = 0, y0 = 0.04→ Dn < 1.8
q = 0.25, y0 = 0.04→ Dn < 3.36
q = 1, y0 = 0.04→ Dn < 5.7
q = 0.25, y0 = 0.01→ Dn < 5.7
q = 1, y0 = 0.01→ Dn < 10.61
If we reduce to p = 1

2
, then we can increase the maximum amounts of

validators we can bribe to join further, though only slightly, as for high values
of Dn the cost of the subsidy is dominated by the increased reserve interest
rates, not the reduced in-protocol interest rates. For example, with p = 1

2
the

maximum that it makes sense for validators to bribe in the q = 0, y0 = 0.04
case increases from 1.8 to ≈ 1.87.
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5 Conclusion

Discouragement attacks as a cheaper way of attacking a consensus algorithm
are one of the hardest classes of attacks to come up with defenses against.
This is true in proof of work as well: if a 51% attack succeeds, then there is a
coordination problem opposing “honest” miners trying to recover the original
fork, as none have the private incentive to participate in a fork unless everyone
else does. Hence, our recommendations at this point can consist only of two
parts. First, there exist marginal tweaks that can be made to mechanisms
to reduce the effectiveness of discouragement, increasing difficulty of leaving
the validator pool and keeping p values low (particularly by not relying solely
on transaction fees) being chief among them. Second, if a discouragement
attack does start happening, expect an assurance contract bringing in more
validators to be an important building block in the solution.

In general, this is still an active area of research, and more research on
counter-strategies is desired.
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