
Casper the Friendly Finality Gadget: Basic
Structure

Vitalik Buterin
Ethereum Foundation

August 16, 2017

Abstract

We give an introduction to the non-economic details of Casper:
the Friendly Finality Gadget, Phase 1.

1 Principles

Casper the Friendly Finality Gadget is designed as an overlay that must be
built on top of some kind of “proposal mechanism” - a mechanism which
“proposes” blocks which the Casper mechanism can then set in stone by “fi-
nalizing” them. The Casper mechanism depends on the proposal mechanism
for liveness, but not safety; that is, if the proposal mechanism is entirely cor-
rupted and controlled by adversaries, then the adversaries can prevent Casper
from finalizing any blocks, but cannot cause a safety failure in Casper; that
is, they cannot force Casper to finalize two conflicting blocks.

The base mechanism is heavily inspired by partially synchronous sys-
tems such as Tendermine [cite] and PBFT [cite], and thus has 1

3
Byzantine

fault tolerance and is safe under asynchrony and dependent on the proposal
mechanism for liveness. We later introduce a modification which increases
Byzantine fault tolerance to 1

2
, with the proviso that attackers with size

1
3
< x < 1

2
can delay new blocks being finalized by some period of time D

(think D ≈ 3 weeks), at the cost of a “tradeoff synchrony assumption” where
fault tolerance decreases as network latency goes up, decreasing to zero when
network latency reaches D.

1



In the Casper Phase 1 implementation for Ethereum, the “proposal mech-
anism” is the existing proof of work chain, modified to have a greatly reduced
block reward because the chain no longer relies as heavily on proof of work
for security, and we describe how the Casper mechanism, and fork choice
rule, can be “overlaid” onto the proof of work mechanism in order to add
Casper’s guarantees.

2 Introduction, Protocol I

In the Casper protocol, there exists a set of validators, and in each epoch
(see below) validators have the ability to send two kinds of messages:

[PREPARE, epoch, hash, epochsource, hashsource]

and
[COMMIT, epoch, hash]

An epoch is a period of 100 epochs; epoch n begins at block n ∗ 100 and
ends at block n∗100+99. A checkpoint for epoch n is a block with number n∗
100−1; in a smoothly running blockchain there will usually be one checkpoint
per epoch, but due to network latency or deliberate attacks there may be
multiple competing checkpoints. The parent checkpoint of a checkpoint is
the 100th ancestor of the checkpoint block, and an ancestor checkpoint of a
checkpoint is either the parent checkpoint, or an ancestor checkpoint of the
parent checkpoint. We define the ancestry hash of a checkpoint as follows:

• The ancestry hash of the implied “genesis checkpoint” before epoch 0
is zero.

• The ancestry hash of any other checkpoint is the keccsk256 hash of the
ancestry hash of its parent concatenated with the hash of the check-
point.

2



Ancestry hashes thus form a direct hash chain, and otherwise have a
one-to-one correspondence with checkpoint hashes.

During epoch n, validators are expected to send prepare and commit mes-
sages specifying epoch n, and the ancestry hash of a checkpoint for epoch n
(i.e. with block number n∗ 100− 1). Prepare messages are expected to spec-
ify as hashsource a checkpoint for any previous epoch which is justified (see
below), and the epochsource is expected to be the epoch of that checkpoint.

Each validator has a deposit size; when a validator joins their deposit
size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls as the validator receives rewards
and penalties. For the rest of this paper, when we say “2

3
of validators”, we

are referring to a deposit-weighted fraction; that is, a set of validators whose
combined deposit size equals to at least 2

3
of the total deposit size of the

entire set of validators. We also use “2
3

commits” as shorthand for “commits
from 2

3
of validators”. At first, we will consider the set of validators, and

their deposit sizes, static, but in later sections we will introduce the notion
of validator set changes.

If, during an epoch e, for some specific ancestry hash h, for any specific
(epochsource, hashsource pair), there exist 2

3
prepares of the form

[PREPARE, e, h, epochsource, hashsource]

, then h is considered justified. If 2
3

commits are sent of the form

[COMMIT, e, h]

then h is considered finalized.
We add the following modifications:

• For a checkpoint to be finalized, it must be justified.

• For a checkpoint to be justified, the hashsource used to justify it must
itself be justified.

• Prepare and commit messages are only accepted as part of blocks; that
is, for a client to see 2

3
commits of some hash, they must receive a block

such that in the chain terminating at that block 2
3

commits for that
hash have been processed.

3



This gives substantial gains in implementation simplicity, because this
means that we can now have a fork choice rule where the “score” of a block
only depends on the block and its children, putting it into a similar category
as more traditional PoW-based fork choice rules such as the longest chain
rule and GHOST. However, this fork choice rule is also finality-bearing : it is
impossible for two incompatible checkpoints to be finalized unless at least 1

3

of the validators violated a slashing condition (see below).
There are two slashing conditions:

1. NO DBL PREPARE: a validator cannot prepare two different check-
points for the same epoch.

2. PREPARE COMMIT CONSISTENCY: if a validator has made
a commit with epoch n, they cannot make a prepare with epoch > n
and epochsource < n.

Earlier versions of Casper had four slashing conditions, but we can reduce
to two because of the three modifications above; they ensure that blocks will
not register commits or prepares that violate the other two conditions.

3 Proof Sketch of Safety and Plausible Live-

ness

We give a proof sketch of two properties of this scheme: safety and plausible
liveness. Safety means that two incompatible checkpoints cannot be finalized
unless at least 1

3
of validators violate a slashing condition. Plausible liveness

means that it is always possible for 2
3

of honest validators to finalize a new
checkpoint, regardless of what previous events took place.

Suppose that two conflicting checkpoints A (epoch eA) and B (epoch eB)
are finalized.

4



This implies 2
3

commits and 2
3

prepares in epochs eA and eB. In the triv-
ial case where eA = eB, this implies that some intersection of 1

3
of validators

must have violated NO DBL PREPARE. In other cases, there must exist
two chains eA > e1A > e2A > ... > G and eB > e1B > e2B > ... > G of justified
checkpoints, both terminating at the genesis. Suppose without loss of gener-
ality that eA > eB. Then, there must be some eiA that either eiA = eB or eiA >
eB > ei+1

A . In the first case, since Ai and B both have 2
3

prepares, at least 1
3

of validators violated NO DBL PREPARE. Otherwise, B has 2
3

commits
and there exist 2

3
prepares with epoch > B and epochsource < B, so at least

1
3

of validators violated PREPARE COMMIT CONSISTENCY. This
proves safety.

Now, we prove liveness. Suppose that all existing validators have sent
some sequence of prepare and commit messages. Let M with epoch eM
be the highest-epoch checkpoint that was justified. Honest validators have
not committed on any block which is not justified. Hence, neither slashing
condition stops them from making prepares on a child of M , using eM as
epochsource, and then committing this child.

4 Fork Choice Rule

The mechanism described above ensures plausible liveness ; however, it by
itself does not ensure actual liveness - that is, while the mechanism cannot
get stuck in the strict sense, it could still enter a scenario where the proposal
mechanism (i.e. the proof of work chain) gets into a state where it never

5



ends up creating a checkpoint that could get finalized.
Here is one possible example:

In this case, HASH1 or any descendant thereof cannot be finalized with-
out slashing 1

6
of validators. However, miners on a proof of work chain would

interpret HASH1 as the head and start mining descendants of it.
In fact, when any checkpoint gets k > 1

3
commits, no conflicting check-

point can get finalized without k − 1
3

of validators getting slashed. This
necessitates modifying the fork choice rule used by participants in the under-
lying proposal mechanism (as well as users and validators): instead of blindly
following a longest-chain rule, there needs to be an overriding rule that (i)
finalized checkpoints are favored, and (ii) when there are no further finalized
checkpoints, checkpoints with more (justified) commits are favored.

One complete description of such a rule would be:

1. Start with HEAD equal to the genesis of the chain.

2. Select the descendant checkpoint of HEAD with the most commits
(only justified checkpoints are admissible)

3. Repeat (2) until no descendant with commits exists.

4. Choose the longest proof of work chain from there.

6



The commit-following part of this rule can be viewed in some ways as
mirroring the ”greegy heaviest observed subtree” (GHOST) rule that has
been proposed for proof of work chains [cite]. The symmetry is this: in
GHOST, a node starts with the head at the genesis, then begins to move
forward down the chain, and if it encounters a block with multiple children
then it chooses the child that has the larger quantity of work built on top of
it (including the child block itself and its descendants).

Here, we follow a similar approach, except we repeatedly seek the child
that comes the closest to achieving finality. Commits on a descendant are
implicitly commits on all of its ancestors, and so if a given descendant of
a given block has more commits than any other descendant, then we know
that all children along the chain from the head to this descendant are closer
to finality than any of their siblings; hence, looking for the descendant with
the most commits and not just the child replicates the GHOST principle
most faithfully. Finalizing a checkpoint requires 2/3 commits within a single
epoch, and so we do not try to sum up commits across epochs and instead
simply take the maximum.

This rule ensures that if there is a checkpoint such that no conflicting
checkpoint can be finalized without at least some validators violating slashing
conditions, then this is the checkpoint that will be viewed as the “head” and
thus that validators will try to commit on.

5 Dynamic Validator Sets

In an open protocol, the validator set needs to be able to change; old valida-
tors need to be able to withdraw, and new validators need to be able to enter.
To accomplish this end, we define a variable kept track of in the state called
the dynasty counter. When a user sends a “deposit” transaction to become a
validator, if this transaction is included in dynasty n, then the validator will
be inducted in dynasty n+ 2. The dynasty counter is incremented when the
chain detects that the checkpoint of the current epoch that is part of its own
history has been finalized (that is, the checkpoint of epoch e must be finalized
during epoch e, and the chain must learn about this before epoch e ends). In
simpler terms, when a user sends a “deposit” transaction, they need to wait
for the transaction to be finalized, and then they need to wait again for that
epoch to be finalized; after this, they become part of the validator set. We
call such a validator’s start dynasty n + 2.

7



For a validator to leave, they must send a “withdraw” message. If their
withdraw message gets included during dynasty n, the validator similarly
leaves the validator set during dynasty n + 2; we call n + 2 their end dy-
nasty. When a validator withdraws, their deposit is locked for four months
before they can take their money out; if they are caught violating a slashing
condition within that time then their deposit is forfeited.

For a checkpoint to be justified, it must be prepared by a set of validators
which contains (i) at least 2

3
of the current dynasty (that is, validators with

startDynasty ≤ curDynasty < endDynasty), and (ii) at least 2
3

of the pre-
vious dyansty (that is, validators with startDynasty ≤ curDynasty − 1 <
endDynasty. Finalization with commits works similarly. The current and
previous dynasties will usually mostly overlap; but in cases where they sub-
stantially diverge this “stitching” mechanism ensures that dynasty diver-
gences do not lead to situations where a finality reversion or other failure
can happen because different messages are signed by different validator sets
and so equivocation is avoided.

6 Mass Crash Failure Recovery

Suppose that more than one third of validators crash-fail at the same time;
that is, they either are no longer connected to the network due to a network
partition, or their computers fail, or they do this as a malicious attack. Then,
no checkpoint will be able to get finalized.

We can recover from this by instituting a rule that validators who do not
prepare or commit for a long time start to see their deposit sizes decrease

8



(depending on the desired economic incentives this can be either a compul-
sory partial withdrawal or an outright confiscation), until eventually their
deposit sizes decrease low enough that the validators that are preparing and
committing are once again a 2

3
supermajority.

Note that this does introduce the possibility of two conflicting check-
points being finalized, with validators only losing money on one of the two
checkpoints:

If the goal is simply to achieve maximally close to 50% fault tolerance,
then clients should simply favor the finalized checkpoint that they received
earlier. However, if clients are also interested in defeating 51% censorship at-
tacks, then they may want to at least sometimes choose the minority chain.
All forms of “51% attacks” can thus be resolved fairly cleanly via “user-
activated soft forks” that reject what would normally be the dominant chain.
Particularly, note that finalizing even one block on the dominant chain pre-
cludes the attacking validators from preparing on the minority chain because
of PREPARE COMMIT CONSISTENCY, at least until their balances
decrease to the point where the minority can commit, so such a fork would
also serve the function of costing the majority attacker a very large portion
of their deposits.

9



7 Conclusions

This introduces the basic workings of Casper the Friendly Finality Gadget’s
prepare and commit mechanism and fork choice rule, in the context of Byzan-
tine fault tolerance analysis. Separate papers will serve the role of explaining
and analyzing incentives inside of Casper, and the different ways that they
can be parametrized and the consequences of these paramtrizations.

8 References

• Aviv Zohar and Yonatan Sompolinsky, “Fast Money Grows on Trees,
not Chains”: https://eprint.iacr.org/2013/881.pdf

• Jae Kwon, “Tendermint”: http://tendermint.org/tendermint.pdf

• Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Toler-
ance”: http://pmg.csail.mit.edu/papers/osdi99.pdf

10


