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Abstract

We give an introduction to the incentives in the Casper the Friendly
Finality Gadget protocol, and show how the protocol behaves under
individual choice analysis, collective choice analysis and griefing fac-
tor analysis. We show that (i) the protocol is a Nash equilibrium
assuming any individual validator’s deposit makes up less than 1

3 of
the total, (ii) collectively, the validators lose from causing protocol
faults, and there is a minimum ratio between the losses incurred by
the validators and the seriousness of the fault, and (iii) the griefing
factor can be bounded above by 1, though we will prefer an alterna-
tive model that bounds the griefing factor at 2 in exchange for other
benefits. We also describe tradeoffs between protocol fairness and in-
centivization and fallbacks to extra-protocol resolution mechanisms
such as market-driven chain splits.

We assume the ”Casper the Friendly Finality Gadget” paper as a
dependency.

1 Recap: The Casper Protocol

In the Casper protocol, there is a set of validators, and in each epoch valida-
tors have the ability to send two kinds of messages:

〈prepare, h, e, h?, e?,S〉
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Notation Description
h a checkpoint hash
e the epoch of the checkpoint
h? the most recent justified hash
e? the epoch of h?
S signature of (h, e, h?, e?) from the validator’s private key

〈commit, h, e,S〉

Notation Description
h a checkpoint hash
e the epoch of the checkpoint
S signature from the validator’s private key

The blockchain state maintains the current validator set Vc : v → R+,
a mapping of validators to their deposit sizes (non-negative real numbers)
and the previous validator set Vp : v → R+. The total current deposit size is
equal to

∑
v∈V Vc[v], the sum of all deposits in the current validator set, and

the total previous deposit size is likewise equal to the
∑
v∈V Vp[v]. Validators

can deposit n coins to join both validator sets with deposit size n, and a
validator with deposit size n′ can withdraw n′ coins with a delay. For any
deposit or withdraw action to fully take effect, three checkpoints need to be
finalized in a chain after the withdraw is included in that chain (validators
get inducted to and ejected from the current validator set first, so after two
finalized hashes, a validator will be in one validator set but not the other).

An epoch is a range of 100 blocks (e.g. blocks 600...699 are epoch 6), and
a checkpoint as the hash of a block right before the start of an epoch. The
epoch of a checkpoint is the epoch after the checkpoint, e.g. the epoch of a
checkpoint which is the hash of some block 599 is 6.

We will use “p of validators” for any fraction p (eg. 2
3
) as shorthand

for “some set of validators Vs such that
∑
v∈Vs Vc[v] ≥ ∑

v∈Vc Vc[v] ∗ p and∑
v∈Vs Vp[v] ≥ ∑

v∈Vp Vp[v] ∗ p” - that is, such a set must make up both p of
the current validator set and p of the previous validator set. The “portion
of validators that did X” refers to the largest value 0 ≤ p ≤ 1 such that p of
validators (using the definition above) did X.
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Every checkpoint hash h has one of three possible states: fresh, justified,
and finalized. Every hash starts as fresh. A hash h converts from fresh to
justified if 2

3
of validators send prepares for h with the same (e, h?, e?) triplet.

An “ideal execution” of the protocol is one where, at the start of every epoch,
every validator prepares and commits the same checkpoint for that epoch,
specifying the same e? and h?; thus, in every epoch, that checkpoint gets
finalized. We wish to incentivize this ideal execution.

Possible deviations from this ideal execution that we want to minimize
or avoid include:

• Safety failures, i.e. two incompatible checkpoints getting finalized.

• Liveness failures, i.e. a checkpoint not getting finalized during some
epoch.

These are both failures of the protocol. The next step from here is fault
assignment - if a failure of the protocol were to happen, determine what
failures of individual validators could have caused it, so that we can penalize
them.

1.1 Safety faults

There exists a proof that any safety fault can only be caused by at least
1
3

of validators violating one of the two Casper Commandments (“slashing
conditions”), defined below:

I. A validator shalt not publish two or more nonidentical
Prepares for same epoch.

In other words, a validator may Prepare at most exactly one (h , e? ,
h? ) triplet for any given epoch e .

II. A validator shalt not publish an Commit between the epochs
of a Prepare statement.

Equivalently, a validator may not publish

〈prepare, ep, hp, e?, h?,S〉 and 〈commit, ec, hc,S〉 , (1)

where the epochs satisfy e? < ec < ep.
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Hence, we can adequately penalize safety failures by simply taking away
the deposits of any validator that violates either of the two slashing condi-
tions.

1.2 Liveness Faults

Penalizing liveness faults is more difficult. If the only kind of faulty behavior
that were possible is nodes going offline, then penalization would also be
simple: find the validators that did not send prepares and commits during
any epoch, and take away their deposits. However, there are several other
faulty behaviors that are possible:

1. Preparing or committing too late

2. Preparing a different h from the hash prepared by most other validators.

3. Using a different h? and e? from that used by most other validators.

4. Network latency

5. A majority coalition finalizing a chain that does not include prepares or
commits sent by those outside of some coalition (a “censorship fault”)

6. A majority coalition waiting for other validators to prepare one h , and
then preparing another h instead.

7. A majority coalition waiting for other validators to prepare with one
h? , and then preparing another h? instead.

The list above is deliberately organized symmetrically, to illustrate a fun-
damental problem with attributing liveness faults known as speaker/listener
fault equivalence: given only a transcript of messages that were sent earlier,
that contain a record of user B sending a message that shows the absence of
an expected message from user A, this could arise because A was not speak-
ing, or because B was not listening, and there is no way to tell the two apart.
In this case, (1) and (5) are indistinguishable, as are (2) and (6), and (3) and
(7). Finally, all seven may be indistuiguishable from network latency.

What this means is that, in a liveness fault, we cannot unambiguously
determine who was at fault, and this creates a fundamental tension between
disincentivizing harm and fairness - between sufficiently penalizing validators
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who are malicious and not excessively penalizing validators who are not at
fault. A protocol which absolutely ensures that innocent validators will not
lose money must thus rely only on rewards, not on penalties, for discourag-
ing non-uniquely-attributable faults, and so will only have a cryptoeconomic
security margin equal to the size of the rewards that it issues. A protocol
that penalizes suspected validators to the maximum will be one where in-
nocent validators will not feel comfortable participating, which itself reduces
security.

A third “way out” is punting to off-chain governance. If a fault could
have been caused by either A or B, then split the chain in half, on one
branch penalize A, on the other branch penalize B, and let the market sort it
out. We can theorize that the market will prefer branches where malfeasant
validators control a smaller portion of the validator set, and so on the chain
that “wins” the validators that the market subjectively deems to have been
responsible for the fault will lose money and the innocent valdidators will
not.

[diagram]
However, there must be some cost to triggering a “governance event”;

otherwise, attackers could trigger these events as a deliberate strategy in
order to breed continual chaos among the users of a blockchain. The social
value of blockchains largely comes from the fact that their progression is
mostly automated, and so the more we can reduce the need for users to
appeal to the social layer the better.

2 Rewards and Penalties, Not Penalizing Ma-

jority Censorship

Suppose that we temporarily rule out cases (5), (6) and (7) above, so the only
possible explanations for a lack of prepares and commits are either validators
being offline or network latency that is not of their own fault. Maximizing
fairness clearly entails minimizing penalties, ideally to zero, as any failed
prepare or commit could possibly have been not of the validator’s own fault;
however, this runs counter to the goal of disincentivizing harm. If we want to
create a parametrized incentive scheme that can trade off between these two
goals, a simple way to do so is to maximize fairness subject to some minimum
level of harm disincentivization.
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We can formalize this further by introducing the notion of a protocol
utility function. A protocol utility function estimate how much harm the
users of a protocol have received from a given protocol execution. We will
define the utility as 0 in a perfect execution, and negative in an execution
that has any imperfections. One simple protocol utility function is the simple
sum-of-indicator function:

U = −
∑
e

0ifefinalizedelse1

3 Rewards and Penalties

We define the following nonnegative functions, all of which return a nonneg-
ative scalar with no units. Technically these values can exceed 1.0; in any
situation which appears to call for reducing some validator’s deposit size to
a negative value, the deposit size should instead simply be reduced to zero.

• BIR(TD): returns the base interest rate paid to a validator, taking as
an input the current total quantity of deposited coins.

• BP(TD, e − eLF): returns the “base penalty constant”—a value ex-
pressed as a percentage rate that is used as the scaling factor for all
penalties; for example, if at the current time BP(·, ·, ·) = 0.001, then
a penalty of 1.5 means a validator loses 0.15% of their deposit. Takes
as inputs the current total quantity of deposited coins TD, the cur-
rent epoch e and the last finalized epoch eLF . Note that in a perfect
protocol execution, e− eLF = 1.

• NPCP(α) (“non-prepare collective penalty”): if α of validators (0 ≤
α ≤ 1) are not seen to have Prepared during an epoch, then all valida-
tors are charged a penalty of NCCP(α). NPCP must be monotonically
increasing, and satisfy NPCP(0) = 0.

• NCCP(α) (“non-commit collective penalty”): if α of validators (0 ≤
α ≤ 1) are not seen to have Committed during an epoch, and that
epoch had a justified hash so any validator could have Committed,
then all validators are charged a penalty proportional to NCCP(α).
NCCP must be monotonically increasing, and satisfy NCCP(0) = 0.

We also define the following nonnegative constants:
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• NPP (“non-prepare penalty”): the penalty for not Preparing any block
during the epoch. correct?

• NCP (“non-commit penalty”): the penalty for not Committing any
block during the epoch, if there was a justified hash which the validator
could have Committed. correct?

Note that a validator publishing a Prepare/Commit doesn’t entail escap-
ing a NPP /NCP ; it could be the case that either because of high network
latency or a malicious majority censorship attack, the Prepares and Com-
mits are not included into the blockchain in time and so the incentivization
mechanism does not see them. Likewise, for NPCP and NCCP, the α input
is the proportion of validators whose Prepares and Commits are not visible,
not the proportion of validators who tried to send a Prepare/Commit.

When we talk about Preparing and Committing the “correct value”, we
are referring to the hash h and the parent epoch e? and parent hash h?.

We define the following reward and penalty schedule. This is the pro-
cedure for rewards and penalties, and is the entirety of the incentivization
structure. It runs at the end of every epoch:

1. All validators get a reward of BIR(TD) (e.g., if BIR(TD) = 0.0002
then a validator with 10, 000 coins deposited gets a per-epoch reward
of 2 coins)

2. If the protocol does not see a Prepare from a given validator during the
epoch, the validator is penalized BP(TD, e − eLF) ∗ NPP how does
the incentive mechanism know e ?

3. If the protocol does not see a Commit from a given validator during the
epoch, and a block was justified (so a Commit could have been seen),
the validator is penalized BP(TD, e− eLF) ∗NCP.

4. If the protocol saw Prepares from proportion p validators during the
epoch, then every validator is penalized BP(TD, e−eLF)∗NPCP(1−
p).

5. If the protocol saw Commits from proportion p validators during the
epoch, and a block was justified (so validators could have Commited),
then every validator is penalized BP(TD, e− eLF) ∗NCCP(1− p).
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6. The blockchain’s recorded eLF and hLF are updated to the latest val-
ues. correct?

4 Three theorems

We seek to prove the following:

Theorem 1 (First theorem). If no validator has more than 1
3

of the total de-

posit, i.e., maxi(D) ≤ TD
3

, then Preparing the last blockhash of the previous
epoch and then Committing that hash is a Nash equilibrium. (Section 4.1)

Theorem 2 (Second theorem). Even if all validators collude, the ratio of
the harm inflicted on the network and the penalties paid by the colluding
validators is upperbounded by some constant. (Section 4.2) Note that this
requires a measure of “harm inflicted”.

Theorem 3 (Third theorem). Even when the attackers hold a majority of the
total deposit, the ratio of the penalty incurred by the victims of an attack and
penalty incurred by the attackers, or griefing factor, is at most 2. (Section
4.3)

4.1 Individual choice analysis

The individual choice analysis is simple. Suppose that during epoch e the
proposal mechanism Prepares a hash h and the Casper incentivization mech-
anism specifies some e? and h?. Because, as per definition of the Nash equi-
librium, we are assuming that all validators except for the validator that we
are analyzing are following the equilibrium strategy, we know that ≥ 2

3
of

validators Prepared in the last epoch and so e? = e− 1, and h? is the direct
parent of h.

Hence, the PREPARE COMMIT CONSISTENCY slashing condition poses
no barrier to Preparing (e, h, e?, h?). Since, in epoch e , we are assuming that
all other validators will Prepare these values and then Commit h , we know
h will be a hash in the main chain, and so a validator will pay a penalty if
they do not Prepare (e, h, e?, h?), and they can avoid the penalty if they do
Prepare these values.

We are assuming there are 2
3

Prepares for (e, h, e?, h?), and so pre-
pare req also poses no barrier to committing h . Committing h allows
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a validator to avoid NCP . Hence, there is an economic incentive to Com-
mit h . This shows that, if the proposal mechanism succeeds at presenting
to validators a single primary choice, Preparing and Committing the value
selected by the proposal mechanism is a Nash equilibrium.

Preparing 〈e, h, e?, h?〉
Action Payoff
Preparing 0
Not Preparing −NPP−NPCP(α)

Committing 〈e, h〉
Action Payoff
Commiting 0
Not Commiting −NCP−NCCP(α)

Table 1: Payoffs for ideal individual behaviors.

4.2 Collective choice model

To model the protocol in a collective-choice context, we first define a pro-
tocol utility function. The protocol utility function quantifies “how well the
protocol execution is doing”. Although our specific protocol utility function
cannot be derived from first principles, we can intuitively justify it. We define
our protocol utility function as,

U ≡
e∑

k=0

− log2

[
k − eLF

]
−MF . (2)

the above equation might be able to simplifiable
Where:

• e is the current epoch, starting from 0.

• eLF is the index of the last finalized epoch. To be clear, does the eLF
change with the term k, or is it fixed?

• M is a very large constant.

• F is an Indicator Function. It returns 1 if a safety failure has taken
place, otherwise 0. A safety failure is defined as the mechanism final-
izing two conflicting blocks. This is discussed in Apppendix A
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The second term in the function is easy to justify: safety failures are very
bad. The first term is trickier. To see how the first term works, consider the
case where every epoch such that e mod N , for some N , is zero is finalized
and other epochs are not. The average total over each N -epoch slice will be
roughly

∑N
i=1− log2(i) ≈ N ∗

[
log2(N)− 1

ln(2)

]
. Hence, the utility per block

will be roughly − log2(N). This basically states that a blockchain with some
finality time N has utility roughly − log(N), or in other words increasing the
finality time of a blockchain by a constant factor causes a constant loss of
utility. The utility difference between 1 minute and 2 minute finality is the
same as the utility difference between 1 hour and 2 hour finality.

This can be justified in two ways. First, one can intuitively argue that
a user’s psychological discomfort of waiting for finality roughly matches a
logarithmic schedule. At the very least, the difference between 3600 sec and
3610 sec finality feels much more negligible than the difference between 1 sec
and 11 sec finality, and so the claim that the difference between 10 sec and
20 sec finality is similar to the difference between 1 hour finality and 2 hour
finality seems reasonable.1

Now, we need to show that, for any given total deposit size, loss to protocol utility
validator penalties

is bounded. There are two ways to reduce protocol utility: (i) cause a safety
failure, or (ii) prevent finality by having > 1

3
of deposit-weighted validators

not Prepare or Commit to the same hash. Causing a safety failure requires
violating one of the Casper Commandments (Section 1) and thus ensures
immense loss in deposits. In the second case, in a chain that has not been
finalized for e− eLF epochs, the penalty to attackers is at least,

min
[
NPP

(
1

3

)
+ NPCP

(
1

3

)
,NCP

(
1

3

)
+ NCCP

(
1

3

)]
∗BP(TD, e−eLF)

(
1

3

)
min [NPP + NPCP,NCP + NCCP]∗BP(TD, e−eLF)

(3)
To enforce a ratio between validator losses and loss to protocol utility, we

set,

BP(TD, e− eLF) ≡ k1
TDp + k2 ∗ blog2(e− eLF)c . (4)

what is p in the in the above equation?

1One can look at various blockchain use cases, and see that they are roughly loga-
rithmically uniformly distributed along the range of finality times between around 200
miliseconds (“Starcraft on the blockchain”) and one week (land registries and the like).
add a citation for this or delete.
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The first term serves to take profits for non-committers away; the second
term creates a penalty which is proportional to the loss in protocol utility.

This connection between validator losses and loss to protocol utility has
several consequences. First, it establishes that harming the protocolexecution
is always a net loss, with the net loss increasing with the harm inflicted.
Second, it establishes that the protocol approximates the properties of a
game [?]. Potential games have the property that Nash equilibria of the game
correspond to local maxima of the potential function (in this case, protocol
utility), and so correctly following the protocol is a Nash equilibrium even in
cases where attackers control > 1

3
of the total deposit.

Here, the protocol utility function is not a perfect potential function, as
it does not always take into account changes in the quantity of Prepares
and Commits whereas validator rewards do, but it does come close. Could
someone do better than our eq. 2?

4.3 Griefing factor analysis

Griefing factor analysis quanitfies the risk to honest validators. In general,
if all validators are honest, and if network latency stays below half half,
right? the time of an epoch, then they face zero penalties. In the case where
malicious validators exist, however, they can create penalties for themselves
as well as honest validators.

We define the degree that malicious validators can create penalties for
honest validators relative to their own penalties as the “griefing factor” of a
game. We define this as,

GF ( G, C) ≡ max
S∈strategies(T\C)

loss(C)

min[0, loss(Players \ C)]
. (5)

I need to work on this equation more. I don’t like it yet.

Definition 1. A strategy used by a coalition in a given mechanism has a
griefing factor B if it can be shown that this strategy imposes a loss of B ∗ x
to those outside the coalition at the cost of a loss of x to those inside the
coalition. If all strategies that cause deviations from some given baseline
state have griefing factors less than or equal to some bound B, then we call
B a griefing factor bound. I plan to write this in terms of classical game
theory.
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A strategy that imposes a loss to outsiders either at no cost to a coalition,
or to the benefit of a coalition, is said to have a griefing factor of infinity.
Proof of work blockchains have a griefing factor bound of infinity because a
51% coalition can double its revenue by refusing to include blocks from other
participants and waiting for difficulty adjustment to reduce the difficulty.
With selfish mining, the griefing factor may be infinity for coalitions of size
as low as 23.21%. [?]

COMING SOON!

Figure 1: Plotting the griefing factor as a function of the proportion of players
coordinating to grief.

Then to define the griefing factor over the entire game, we sum the area
under the curve in Figure 2 leading to,

GF ( G) ≡
∫ 1

0
GF ( G, α) dα . (6)

Let us start off our griefing analysis by not taking into account validator
churn, so the validator set is always the same. In Casper, we can identify the
following deviating strategies:

1. A minority of validators do not Prepare, or Prepare incorrect values.

2. (Mirror image of 1) A censorship attack where a majority of validators
does not accept Prepares from a minority of validators (or other iso-
morphic attacks such as waiting for the minority to Prepare hash H1

and then preparing H2, making H2 the dominant chain and denying
the victims their rewards).
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Attack Amount lost by malicious validators Amount lost by honest validators

Minority of size α < 1
2

non-Prepares NPP ∗ α + NPCP(α) ∗ α NPCP(α) ∗ (1− α)

Majority censors α < 1
2

Prepares NPCP(α) ∗ (1− α) NPP ∗ α + NPCP(α) ∗ α

Minority of size α < 1
2

non-Commits NCP ∗ α + NCCP(α) ∗ α NCCP(α) ∗ (1− α)

Majority censors α < 1
2

Commits NCCP(α) ∗ (1− α) NCP ∗ α + NCCP(α) ∗ α

Table 2: Attacks on the protocols and their costs to malicious validators and
honest validators.

3. A minority of validators do not commit.

4. (Mirror image of 3) A censorship attack where a majority of validators
does not accept commits from a minority of validators.

Notice that, from the point of view of griefing factor analysis, it is im-
material whether or not any hash in a given epoch was justified or finalized.
The Casper mechanism only pays attention to finalization in order to calcu-
late BP(D, e− eLF), the penalty scaling factor. This value scales penalties
evenly for all participants, so it does not affect griefing factors.

Let us now analyze the attack types:

4.4 Shape of the penalities

There is a symmetry between the non-Prepare case and the non-Commit

case, so we assume NCCP(α)

NCP = NPCP(α)

NPP . Also, from a protocol utility

standpoint (4.4), increasing Commits are always useful as long as p > 1
3
, as

it gives at least some economic security against finality reversions. However,
Prepares < 2

3
is exceedingly harmful as is it prevents any Commits.

In the normal case, anything less than 1
3

Commits provides no economic
security, so we can treat pc <

1
3

Commits as equivalent to no Commits; this
thus suggests NPP = 2 ∗NCP. We can also normalize NCP = 1.

Now, let us analyze the griefing factors, to try to determine an optimal
shape for NCCP. The griefing factor for non-Committing is,
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Figure 2: Plotting the griefing factor as a function of the proportion of players
coordinating to grief.

GF =
(1− α) ∗NCCP(α)

α ∗ (1 + NCCP(α))
. (7)

The griefing factor for censoring is the inverse of this. If we want the
griefing factor for non-Committing to equal one, then we could compute:

α ∗ (1 + NCCP(α)) = (1− α) ∗NCCP(α) (8)
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1 + NCCP(α)

NCCP(α)
=

1− α
α

(9)

1

NCCP(α)
=

1− α
α
− 1 (10)

NCCP(α) =
α

1− 2α
(11)

Note that for α = 1
2
, this would set the NCCP to infinity. Hence, with

this design a griefing factor of 1 is infeasible. We can achieve that effect in a
different way - by making NCP itself a function of α; in this case, NCCP = 1
and NCP = max[0, 1 − 2α] would achieve the desired effect. If we want to
keep the formula for NCP constant, and the formula for NCCP reasonably
simple and bounded, then one alternative is to set NCCP(α) = α

1−α ; this

keeps griefing factors bounded between 1
2

and 2.

5 Pools

In a traditional (i.e., not sharded or otherwise scalable) blockchain, there
is a limit to the number of validators that can be supported, because each
validator imposes a substantial amount of overhead on the system. If we
accept a maximum overhead of two consensus messages per second, and an
epoch time of 1400 seconds, then this means that the system can handle 1400
validators (not 2800 because we need to count prepares and commits). Given
that the number of individual users interested in staking will likely exceed
1400, this necessarily means that most users will participate through some
kind of “stake pool”.

There are several possible kinds of stake pools:

• Fully centrally managed: users B1 . . . Bn send coins to pool opera-
tor A. A makes a few deposit transactions containing their combined
balances, fully controls the Prepare and Commit process, and occasion-
ally withdraws one of their deposits to accommodate users wishing to
withdraw their balances. Requires complete trust.

• Centrally managed but trust-reduced: users B1 . . . Bn send coins
to a pool contract. The contract sends a few deposit transactions con-
taining their combined balances, assigning pool operator A control over
the Prepare and Commit process, and the task of keeping track of
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withdrawal requests. A occasionally withdraws one of their deposits
to accommodate users wishing to withdraw their balances; the with-
drawals go directly into the contract, which ensures each user’s right
to withdraw a proportional share. Users need to trust the operator
not to get their deposits penalized, but the operator cannot steal the
coins. The trust requirement can be reduced further if the pool op-
erator themselves contributes a large portion of the coins, as this will
disincentivize them from staking maliciously.

• 2-of-3: a user makes a deposit transaction and specifies as validation
code a 2-of-3 multisig, consisting of (i) the user’s online key, (ii) the pool
operator’s online key, and (iii) the user’s offline backup key. The need
for two keys to sign off on a prepare, Commit or withdraw minimizes
key theft risk, and a liveness failure on the pool side can be handled by
the user using their backup key.

• Multisig managed: users B1 . . . Bn send coins to a pool contract that
works in the exact same way as a centrally managed pool, except that a
multisig of several semi-trusted parties needs to approve each Prepare
and Commit message.

• Collective: users B1 . . . Bn send coins to a pool contract that that
works in the exact same way as a centrally managed poolg , except
that a threshold signature of at least portion p of the users themselves
(say, p = 0.6) needs to approve each Prepare and Commit messagge.

We expect pools of different types to emerge to accomodate smaller users.
In the long term, techniques such as blockchain sharding will make it possible
to increase the number of users that can validate directly, and extensions to
allow validators to temporarily “drop out” from the validator set when they
are offline can mitigate liveness risk.

6 Conclusions

The above analysis gives a parametrized scheme for incentivizing in Casper,
and shows that it is a Nash equilibrium in an uncoordinated-choice model
with a wide variety of settings. We then attempt to derive one possible set of
specific values for the various parameters by starting from desired objectives,
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and choosing values that best meet the desired objectives. This analysis does
not include non-economic attacks, as those are covered by other materials,
and does not cover more advanced economic attacks, including extortion and
discouragement attacks. We hope to see more research in these areas, as well
as in the abstract theory of what considerations should be taken into account
when designing reward and penalty schedules.

Future Work. We would like to see a better protocol utility function
eq. 2. fill me in

Acknowledgements. We thank Virgil Griffith for review.
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Appendix

A Safety Failure

Put the full description/definition of conflicting blocks here.

B Unused text

This is where text goes that for which a home hasn’t been found yet. If no
home is found, it will be deleted.

Two other reasons to participate in stake pools are (i) to mitigate key
theft risk (i.e. an attacker hacking into their online machine and stealing
the key), and (ii) to mitigate liveness risk, the possibility that the validator
node will go offline, perhaps because the operator does not have the time to
manage a high-uptime setup.

Do we want to require that the Prepare be done in the first 1/2 of the
epoch? I’m mildly concerned there may not always be enough time to Com-
mit.

Remember: The only block you’re allowed to Prepare is the last block of
each epoch.

Remember: Even if the Finalization goes through, the collective penalties
are still applied.

Questions

• It’s unclear to me why we need e? in the Prepare.
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