from merkle_tree import merkelize, mk_branch, verify_branch, blake from compression import compress_fri, decompress_fri, compress_branches, decompress_branches, bin_length from ecpoly import PrimeField from better_lagrange import lagrange_interp_4, lagrange_interp_2 import time from fft import fft from fri import prove_low_degree, verify_low_degree_proof from utils import get_power_cycle, get_pseudorandom_indices modulus = 2**256 - 2**32 * 351 + 1 f = PrimeField(modulus) nonresidue = 7 spot_check_security_factor = 240 # Compute a MIMC permutation for 2**logsteps steps, using round constants # from the multiplicative subgroup of size 2**logprecision def mimc(inp, logsteps, logprecision): start_time = time.time() steps = 2**logsteps precision = 2**logprecision # Get (steps)th root of unity subroot = pow(7, (modulus-1)//steps, modulus) # We use powers of 9 mod 2^256 as the ith round constant for the moment k = 1 for i in range(steps-1): inp = (inp**3 + (k ^ 1)) % modulus k = (k * 9) & ((1 << 256) - 1) print("MIMC computed in %.4f sec" % (time.time() - start_time)) return inp # Convert a polynomial P(x) into a polynomial Q(x) = P(fac * x) def multiply_base(poly, fac): o = [] r = 1 for p in poly: o.append(p * r % modulus) r = r * fac % modulus return o # Divides a polynomial by x^n-1 def divide_by_xnm1(poly, n): if len(poly) <= n: return [] return f.add_polys(poly[n:], divide_by_xnm1(poly[n:], n)) # Generate a STARK for a MIMC calculation def mk_mimc_proof(inp, logsteps, logprecision): start_time = time.time() assert logsteps < logprecision <= 32 steps = 2**logsteps precision = 2**logprecision # Root of unity such that x^precision=1 root_of_unity = pow(7, (modulus-1)//precision, modulus) # Root of unity such that x^skips=1 skips = precision // steps subroot = pow(root_of_unity, skips) # Powers of the root of unity, our computational trace will be # along the sequence of roots of unity xs = get_power_cycle(subroot, modulus) last_step_position = xs[steps-1] # Generate the computational trace constants = [] values = [inp] k = 1 for i in range(steps-1): values.append((values[-1]**3 + (k ^ 1)) % modulus) constants.append(k ^ 1) k = (k * 9) & ((1 << 256) - 1) constants.append(0) output = values[-1] print('Done generating computational trace') # Interpolate the computational trace into a polynomial values_polynomial = fft(values, modulus, subroot, inv=True) constants_polynomial = fft(constants, modulus, subroot, inv=True) print('Converted computational steps and constants into a polynomial') # Create the composed polynomial such that # C(P(x), P(rx), K(x)) = P(rx) - P(x)**3 - K(x) term1 = multiply_base(values_polynomial, subroot) p_evaluations = fft(values_polynomial, modulus, root_of_unity) term2 = fft([pow(x, 3, modulus) for x in p_evaluations], modulus, root_of_unity, inv=True)[:len(values_polynomial) * 3 - 2] c_of_values = f.sub_polys(f.sub_polys(term1, term2), constants_polynomial) print('Computed C(P, K) polynomial') # Compute D(x) = C(P(x), P(rx), K(x)) / Z(x) # Z(x) = (x^steps - 1) / (x - x_atlast_step) d = divide_by_xnm1(f.mul_polys(c_of_values, [-last_step_position, 1]), steps) # Consistency check assert (f.eval_poly_at(d, 90833) * (pow(90833, steps, modulus) - 1) * f.inv(f.eval_poly_at([-last_step_position, 1], 90833)) - f.eval_poly_at(c_of_values, 90833)) % modulus == 0 print('Computed D polynomial') # Compute interpolant of ((1, input), (x_atlast_step, output)) interpolant = lagrange_interp_2([inp, output], [1, last_step_position], modulus) quotient = f.mul_polys([-1, 1], [-last_step_position, 1]) b = f.div_polys(f.sub_polys(values_polynomial, interpolant), quotient) # Consistency check assert f.eval_poly_at(f.add_polys(f.mul_polys(b, quotient), interpolant), 7045) == f.eval_poly_at(values_polynomial, 7045) print('Computed B polynomial') # Evaluate B, D and K across the entire subgroup d_evaluations = fft(d, modulus, root_of_unity) k_evaluations = fft(constants_polynomial, modulus, root_of_unity) b_evaluations = fft(b, modulus, root_of_unity) print('Evaluated low-degree extension of B, D and K') # Compute their Merkle roots p_mtree = merkelize(p_evaluations) d_mtree = merkelize(d_evaluations) k_mtree = merkelize(k_evaluations) b_mtree = merkelize(b_evaluations) print('Computed hash root') # Based on the hashes of P, D and B, we select a random linear combination # of P * x^steps, P, B * x^steps, B and D, and prove the low-degreeness of that, # instead of proving the low-degreeness of P, B and D separately k1 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x01'), 'big') k2 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x02'), 'big') k3 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x03'), 'big') k4 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x04'), 'big') lincomb = f.add_polys(f.add_polys(d, f.mul_by_const(values_polynomial, k1) + f.mul_by_const(values_polynomial, k2)), f.mul_by_const(b, k3) + [0, 0] + f.mul_by_const(b, k4) + [0,0]) l_evaluations = fft(lincomb, modulus, root_of_unity) l_mtree = merkelize(l_evaluations) print('Computed random linear combination') # Do some spot checks of the Merkle tree at pseudo-random coordinates branches = [] samples = spot_check_security_factor // (logprecision - logsteps) positions = get_pseudorandom_indices(l_mtree[1], precision - skips, samples) for pos in positions: branches.append(mk_branch(p_mtree, pos)) branches.append(mk_branch(p_mtree, pos + skips)) branches.append(mk_branch(d_mtree, pos)) branches.append(mk_branch(k_mtree, pos)) branches.append(mk_branch(b_mtree, pos)) branches.append(mk_branch(l_mtree, pos)) print('Computed %d spot checks' % samples) # Return the Merkle roots of P and D, the spot check Merkle proofs, # and low-degree proofs of P and D o = [p_mtree[1], d_mtree[1], k_mtree[1], b_mtree[1], l_mtree[1], branches, prove_low_degree(lincomb, root_of_unity, l_evaluations, steps * 2, modulus)] print("STARK computed in %.4f sec" % (time.time() - start_time)) return o # Verifies a STARK def verify_mimc_proof(inp, logsteps, logprecision, output, proof): p_root, d_root, k_root, b_root, l_root, branches, fri_proof = proof start_time = time.time() steps = 2**logsteps precision = 2**logprecision # Get (steps)th root of unity root_of_unity = pow(7, (modulus-1)//precision, modulus) skips = precision // steps # Verifies the low-degree proofs assert verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2, modulus) # Performs the spot checks k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big') k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big') k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big') k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big') samples = spot_check_security_factor // (logprecision - logsteps) positions = get_pseudorandom_indices(l_root, precision - skips, samples) last_step_position = pow(root_of_unity, (steps - 1) * skips, modulus) for i, pos in enumerate(positions): # Check C(P(x)) = Z(x) * D(x) x = pow(root_of_unity, pos, modulus) x_to_the_steps = pow(x, steps, modulus) p_of_x = verify_branch(p_root, pos, branches[i*6]) p_of_rx = verify_branch(p_root, pos+skips, branches[i*6 + 1]) d_of_x = verify_branch(d_root, pos, branches[i*6 + 2]) k_of_x = verify_branch(k_root, pos, branches[i*6 + 3]) b_of_x = verify_branch(b_root, pos, branches[i*6 + 4]) l_of_x = verify_branch(l_root, pos, branches[i*6 + 5]) zvalue = f.div(pow(x, steps, modulus) - 1, x - last_step_position) assert (p_of_rx - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0 interpolant = lagrange_interp_2([inp, output], [1, last_step_position], modulus) quotient = f.mul_polys([-1, 1], [-last_step_position, 1]) assert (p_of_x - b_of_x * f.eval_poly_at(quotient, x) - f.eval_poly_at(interpolant, x)) % modulus == 0 assert (l_of_x - d_of_x - k1 * p_of_x - k2 * p_of_x * x_to_the_steps - k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0 print('Verified %d consistency checks' % (spot_check_security_factor // (logprecision - logsteps))) print('Verified STARK in %.4f sec' % (time.time() - start_time)) print('Note: this does not include verifying the Merkle root of the constants tree') print('This can be done by every client once as a precomputation') return True