
Blockchain Resource Pricing

Vitalik Buterin

August 9, 2018
August 9, 2018

Abstract

[this will be reworked at the end]
One of the most challenging issues in blockchain protocol design is

how to limit and price the submission of transactions that get included
into the chain. Every transaction confers some private benefit to its
sender, but transactions also incur social costs to the network as a
whole, as every node in the network must process every transaction.
This results in a classic example of the “tragedy of the commons”
problem. In such cases, economic theory generally dictates pricing the
resources in question, and setting the price to equal the social cost that
the act of consuming each resource imposes on the network. However,
the heterogenous nature of the computation, bandwidth and storage
resources involved, the large portion of the social cost that exists in the
form of intangible and difficult-to-value harms such as centralization
risk, and the need to create an automated algorithm that can set prices
in a wide range of future scenarios without human intervention all
make it very difficult to set restrictions that are optimal. In this paper,
we discuss tradeoffs between different approaches and strategies that
can improve on the status quo on the margin.

1 Introduction and Model

A blockchain is a decentralized network consisting of a large number of
computers each of which must all process transactions that transaction senders

1



upload to the chain. Hence, a transaction that is published to a blockchain
confers some private benefit to its sender, but also confers an external social
cost to the network’s participants. In order to account for this social cost and
prevent abuse of the blockchain as a common pool resource, some economic
mechanism for restricting what transactions get included is required. However,
there are many types of economic mechanisms that can be used to solve
resource pricing problems of this type, and understanding which one is
optimal requires more deeply understanding the nature and types of social
costs in question.

The social costs can be broken down in two ways. First, one can categorize
by fundamental type of resource expenditure:

Bandwidth cost: the cost of all nodes downloading each submitted
transaction, bundling it into a block, and then rebroadcasting the
transaction as part of some block.

Computational cost: the cost of every node verifying each transac-
tion.

History storage cost: the cost of storing the transaction for all nodes
that store the blockchain’s history, for the time for which the history is
stored (possibly infinity).

State storage cost: the marginal cost of the impact of the transaction
on the size of the state (eg. contract code, account balances) that every
node must store to be able to process further transactions.

Note that the first two costs are costs that are paid by the nodes that are
online at the exact time when the transaction is included, the third cost is
paid by nodes that are online at that time or in the near future, but the
fourth cost must be paid by all nodes forever, unless a scheme is introduced
that makes all state entries temporary.

Second, one can categorize by different types of first and second-order effects.
We can understand these effects as follows. We can consider a blockchain
to be a network of n computers, C1...Cn, where any transaction that gets
included in the blockchain must be processed by all of the nodes that are still
online in the network. Some transactions are more complex than others; each
transaction has some “weight” W that represents the quantity of resources
needed to process it.

2



Each user Ui has some direct resource cost function Ri(W ) representing the
cost to the user of processing a given amount of weight. This cost can include
electricity and bandwidth costs, marginal disk wear and tear, inconvenience
from a user’s other applications running more slowly, reduced battery life, and
so on. For sufficiently high w, at some point the costs become unacceptable
to any given user, at which point the user will drop offline (we assume Ri(W )
is flat above this point). Let NodeCount(W ) be the number of users still
online at weight W . Note that different users could drop offline at different
points for either of two reasons: (i) some users have a lower resource cost
than others, and (ii) some users value being connected to the blockchain more
than others.

There is some utility function D(k) reflecting the social value of the level of
decentralization achieved by having the number of online nodes, which can
be translated into a function D(W ) of the total transaction load. There may
also be some cost function A(W ) that reflects the increased eash of attacking
the network as more transactions get included. We can summarize all of these
costs as a combined cost function C(W ) = ∑

iRi(W ) + (A(W ) − A(0)) −
(D(W )−D(0)).

The above suffices as a model of a blockchain for the purpose of this paper; we
do not need to care about details about proof of work, proof of stake, block
structure, etc, except insofar as the details of those consensus algorithms and
blockchain design patterns affect NodeCount and A, and therefore C.

2 Prior Work

In Bitcoin and Ethereum, resources are priced using a simple “cap-and-trade”
scheme. A metric is defined for the quantity of resources (called “weight” or
“gas”) that a transaction consumes, and there is a protocol-defined maximum
total quantity of resources that the transactions contained in a block will
consume. Validators have free rein to select transactions as long as the total
weight of the block is below that limit. An equilibrium is established where
users attach fees to their transactions which go to the validator that includes
the transaction in a block, and validators select the transactions paying the
highest fee per unit weight. In Bitcoin, for example, the weight limit is a
static 4 ∗ 106, and weight is defined as follows [1]:

3



weight(block) = 4 ∗ len(block.nonsignature data) + len(block.signature data) (1)

Where len(x) returns the number of bytes in x. For technical reasons that
have to do with attempting to price in history and state storage costs, the
bytes in signatures of transactions are priced more cheaply than the non-
signature data in transactions. In Ethereum, there is a measure called “gas”
which incorporates the size of the block as well as the computational cost of
verifying transactions and executing smart contract code. For simplicity of
exposition, this can be approximated as:

weight(block) = 68 ∗ len(block) + 3 ∗ num computational steps in block (2)

The gas function is in reality much more complex, but similar in spirit. There
is a per-block gas limit, which validators can vote on (when creating a block,
a miner can “upvote” or “downvote” the gas limit by a maximum of ∼0.1%),
and at the time of this writing most validators are voting for a gas limit of
∼8 million.

A major problem with this approach is that a priori it has been difficult
to determine a reasonable weight limit, and the question has often been a
source of controversy [?]. The purpose of this paper will be to try to go
beyond the one-dimensional design space of “there must be some limit, what
should it be?” and explore a much larger space of policies that attempt to
address transaction resource consumption externalities, and try to develop
policies that are both closer to optimal at the present time, and more robust
to changes in economic circumstances in the long-term future, reducing the
need for “extra-protocol interventions” such as hard forks.

3 Pricing Resources under Uncertainty

Blockchain resource pricing has many parallels to regulatory responses to
environmental pollution. Particularly, although the validator of a block is
compensated for publishing the transactions, the cost of that block being
published is borne by all full nodes, much like how pollution produced by one

4



factory must be suffered by everyone living in the village (if not an even larger
area). This cost being borne by all full nodes is the negative externality that
we wish to limit. Both blockchains and environmental regulators use economic
interventions to limit activities with negative externalities, where the negative
externalities have both measurable components as well as components with
high Knightian uncertainty (i.e., “unknown unknowns”) [2]. Many results
from environmental economics [3] are directly applicable to blockchains.

Weitzman’s 1974 paper “Prices vs Quantities” [4], outlines the tradeoffs
between regulation by price (e.g., carbon taxes) versus regulation by quantity
(e.g., issuing a fixed number of permits and letting them trade on the market).
One important insight that Weitzman cites is that if the policymaker has
perfect information about the social cost function and the demand curve for
consuming the resource (a.k.a. the “benefit function”), the two approaches are
equivalent: for any desired price, one can choose an equivalent quantity-based
policy by issuing exactly the number of permits equal to the equilibrium
quantity that would be purchased at that price. However, when there is
uncertainty about the position and shape of the cost-benefit curves, the two
approaches have substantial differences.

Consider a world where the marginal social cost (negative externalities) of
consuming a resource is fixed, but the marginal benefit function is rapidly
decreasing. If a policymaker sets a quantity limit that is too low, then the
quantity limit will intersect the marginal benefit curve at a point where the
cost and benefit are much higher than the social cost, and consumers suffer
very large opportunity costs from nonconsumption. But if a policymaker
instead sets a price, then the damage from a miscalculation is much lower.

If on the other hand, the private cost of abstaining is fixed yet the marginal
social cost of consumption increases rapidly, then setting a price is riskier.
For example, consider a scenario where the social cost of consuming <
1, 000 resource units is acceptable, but going above 1,000 risks disastrous
consequences (e.g., some “tipping point” theories of global warming [5]). The
marginal social cost of consuming an additional resource unit in a world
where people are already consuming 1,050 resource units will be much higher
than the marginal social cost in a world where people are merely consuming
900. In this case, if a policymaker anticipates a consumption of 900, and
targets a tax to equal the marginal social cost at the 900 level, then the
policy will be massively underpricing the additional social harm caused by

5



additional resource consumption. On the other hand, a policymaker that
simply issues 900 permits and allows them to trade on the market would see
the risk mitigated.

Cost

Quantity

est. private
benefit

private
benefit

est. social
cost 

Optimum

Cost

Quantity

private
benefit

set quantity

set price

equilibrium
with

set quantity

equilibrium
with

set price

est. social
cost 

Cost

Quantity

est. private
benefit

private
benefit

est. social
cost Optimum

equilibrium
with

set price

equilibrium
with

set quantity

Cost

Quantity

est. private
benefit

private
benefit

est. social
cost 

Figures (a)–(b) show the first scenario in which it’s better to set a price.
Figures (c)–(d) show the second scenario where it’s better to set a quantity.

Taken together, if the consumer’s marginal private costs increase faster with
quantity than the marginal social costs, that is when

private benefit′′(quantity)
social cost′′(quantity) > 1 , (3)

then setting prices is better, and in other cases setting quantities is better.
Note that we need to use the second derivative because we are specifically
talking about the the rate of change in marginal costs.

The argument above applies only if costs and benefits are independently
distributed. If changes in the cost and benefit curves are correlated, then an
additional term must be added into the choice rule, increasing the relative
attractiveness of limiting quantity. To see this intuitively, consider the extreme

6



case where uncertainty in cost and benefit is perfectly correlated; in such
a scenario, if original estimates of cost and benefit prove incorrect, both
curves will move up or down in lockstep, and so the new equilibrium will
be directly above or below the original estimated one; hence, a quantity-
targeting policy would be perfectly correct and a price-targeting policy would
be pessimal. This analysis covers only two possible policies, but a much
greater space of options is available. One can think of policy space as the
space of possible supply curves for a given resource, where a pricing policy
represents a horizontal supply curve and a cap-and-trade scheme represents
a vertical supply curve. Various forms of diagonal supply curves are also
possible, and in most cases, some form of not strictly horizontal or vertical
supply curve is optimal.

Should blockchains have a block size limit, or should they not have a limit
but instead charge a fixed fee per resource unit consumed, or would some
intermediate policy, one which charges a fee as a function F (w) of the weight
included in a block and where F ′(w) is increasing and possibly reaches an
asymptote, be optimal? To estimate optimal policy under the prices vs.
quantities framework, we start off by attempting to estimate the social cost
function.

A study from Cornell [6] provided an estimate of the node count as a response
to the weight load of the blockchain. The study was conducted at a time
when Bitcoin’s weight formula was simply one weight unit per byte, with a
weight limit of 106. The study found that 90% of nodes would remain online
at W = 4 ∗ 106, and 50% of nodes would stay online at W = 3.8 ∗ 107.

7



As a first approximation to quantifying the value to decentralization from hav-
ing more nodes, we can use a logarithmic utility: D(W ) = log(NodeCount(W )).
What we discover is that NodeCount(W ) is roughly proportional to 1

W
, which

in turn implies that D(W ) = −log(W ). This in turn implies D′(W ) = 1
W

:
the marginal social cost function is decreasing.

However, this model fails to take into account other kinds of harms that come
as a result of large blocks taking a longer time to propagate. A study by
Decker and Wattenhofer in 2013 found that the time that it takes for a block
to propagate through the network is roughly linear in the block’s size. Zohar
and Sompolinsky [7] show that with a network delay t and block time T , the
rate of honest block creation slows from 1

T
to 1

T+t , reducing resistance to “51%
attacks” from 1

2 to q where q
1−q ∗

1
T

= 1
T+t , i.e. q = T

2T+t . It seems reasonable
to define a cost function A(x) = 1

MinAttack(x) , where MinAttack(x) is the
minimum size of an attack that can succeed; since MinAttack(x) = T

2T+t ,
this implies that A(x) = 2 + t

T
. t is a function of W ; if t is linear in W , then

that implies that A(W ) = 2 + k ∗W for some constant k, so the social cost
function is linear.

In the case of Ethereum, we can try to look at the correlation between block
gas usage and the “uncle rate”, a measure of the percentage of blocks produced
that do not make it into the canonical chain and hence that do not contribute
to chain security.

8



Relationship between block gas limit and uncle rate

The nonlinearity in this figure is in part an artefact of the data; during the
period in late 2017, the composition of transactions changed away from smart
contract use cases toward ERC20 token transfers, which affect uncle rate more
than smart contract uses as their gas consumption is largely from bandwidth
and computation costs and not code and storage. The dots at the top left
are the 2016 DoS attack. Here’s the same graph rescaled with the dots from
late 2017 and the 2016 DoS attacks removed:

Relationship between block gas limit and uncle rate, Dec 2016 to Sep 2017

9



However, there are superlinear costs at play as well. Clients need to process
both the main chain and the blocks that do not become part of the canonical
chain; hence, if a level of canonical-chain throughput x causes an uncle rate p,
then the actual level of computational burden is x

1−p , with a denominator that
keeps decreasing toward zero as the canonical-chain throughput increases.
Additionally, with high uncle rates selfish mining attacks become much
easier [8], and the reduction in node count itself leads to pooling, which makes
selfish mining more likely. There is thus a qualitative sense in which the social
cost of increasing W to the point where t = T is more than ten times that of
setting W so that t = T ∗ 0.1.

Even if the cost function is superlinear at the extremes, however, it appears
to be linear at the lower side of the distribution, and the arguments from the
Cornell study suggest it may even be sublinear. If the block size increases
from 10kb to 1000kb, a significant social cost is incurred because IoT devices,
smartphones, Raspberry Pis, etc have a much harder time staying connected,
but an increase from 1000kb to 1990k does not have such a high cost, because
the range of use cases that become unusable within that interval is much
lower. Hence, it seems plausible that the social cost curve is U-shaped:

Rendering of a possible total social cost curve for blockchains accepting transactions

3.1 Estimating the Private Benefit Curve

The private benefit curve, the demand for sending transactions, is much
harder to estimate. We will try to make some estimates of a single variable,
the elasticity of demand (ie. by what percent demand increases with a 1%

10



fall in price), by looking at some “natural experiments” in the Bitcoin and
Ethereum blockchains.

One type of natural experiment is to look at day-by-day transaction fee
changes during a situation where the capacity of a blockchain suddenly
changes due to some extrinsic factor; Ethereum gas limit changes, and Bitcoin
block time instability due to interaction effects between Bitcoin and Bitcoin
Cash mining, are the easiest two cases. Charts show a correlation between
reduced Bitcoin blockchain capacity due to temporary block time increases
and spikes in transaction fee levels:

Bitcoin blocks per day

Bitcoin transaction fees

A more thorough analysis of similar data [9] gives elasticities of 0.4-0.7 for
Bitcoin, and 1-2 for Ethereum.

Additionally, it is important to note that this only measures the short-term
demand curve looking at actions taken over a few days to months and does
not take into account longer-term adjustments that could happen in the
market only after a couple of years; in the real world, for example, it is an
established fact that long-run demand elasticity of gasoline is higher than
short-run elasticity [10]; and this is likely true with Bitcoin transaction fees
and Ethereum gas as well.

11



So far, this model suggests a benefit curve with slope between -0.4 and -2 (if
rescaled so that the current supply/demand intersection is at (1, 1)), and a
social cost curve with (rescaled) slope that is difficult to determine, but at
current margins in various blockchains is likely to be low and may be positive
or negative. This suggests that a flat per-weight-unit in-protocol transaction
fee, coupled with a hard limit at the point where the marginal social cost
starts rapidly increasing, is superior to a pure weight limit-based regime.

——————

4 Cryptocurrency Prices

In the short run, one can assume that price movements, changes in the social
cost functions and changes in usage are all random and independent. In the
long run, however, the three factors are highly intertwined. Specifically, (i)
the price of a cryptocurrency; (ii) the social cost curve [as the number of ben-
eficiaries of the system increases, and the number of full nodes also increases];
and (iii) the benefit curve [as there are more users sending transactions] are
all highly correlated with a single variable, which we might call “adoption”.

We can make a model as follows. Suppose that a k-factor increase in adoption
leads to:

• A k-factor increase in the price.

• A k-factor increase in the number of transaction users, ie. a k-factor
horizontal stretch of the demand curve.

• A k-factor increase in the number of users and the number of full nodes.

Let us assume for simplicity that the demand elasticity is 1, and that the
decentralization utility of N full nodes is D(N) = log(N), so a k-factor
increase in the number of full nodes simply adds utility log(k); the k-factor
increase in the number of users scales up the social cost curve by a factor
of k, and the private benefit curve scales by a factor of k. This leads to the
result that, denominated in the cryptocurrency in question, adoption leaves
the private benefit and social cost curves unchanged, and so there is also no
correlation (!!). 1

1An astute reader might ask whether or not there is empirical data to support this

12



Reality is of course more complicated than this simple model, but the model
does suffice to show that, because of the lucky coincidence of being forced
to denominate fees in a cryptocurrency whose price is itself proportional
to adoption, there is at least no very strong first-order reason to expect
positive correlation between the nominal benefit and cost curves. Hence, the
arguments for using fixed fees in addition to gas limits still stand.

Arguably one of the key reasons behind the un-intuitiveness of fixed fees is
that for most of the history of blockchain protocols, blockchains operated in
a “non-full blocks” mode, where there was always space in a block to include
more transactions. Miners have a software setting representing the minimum
fee they are willing to accept, which almost all miners would keep at the
default value, and users needed to pay this amount to get included. When
a cryptocurrency experiences a large price rise, this causes fees experienced
by users to rise greatly, until eventually the defaults are manually adjusted
downwards [11–13]. Hence, transaction fees were kept artificially stable by
what are essentially political constraints, whereas no such stabilizing effect
existed for cryptocurrency prices.

Average gas price in gwei. The two marked sudden drops are coordinated attempts by miners and
developers to reduce minimum accepted gas prices, first from 50 gwei to 20 gwei, then from 20 gwei to 4

gwei. Similar coordinated fee decreases have taken place in Bitcoin [14].

However, Bitcoin has recently entered the “full blocks” regime, where trans-
actions are in permanent competition with each other to get included, and
Ethereum has entered this regime during high-intensity token sales [15]. In
this mode, fees become more volatile, and rises in adoption contribute to even
more volatility. In Bitcoin, this has led to a ∼ 10x increase in fees in less

claim; unfortunately, far less than a single cryptocurrency “business cycle” (in the financial
market bubble sense) has passed since blockchains started to typically have “full blocks”,
so there is far too little empirical data to make an assessment.

13



than a year; in Ethereum, fees increase by a similar factor during token sales.
Even on average, in the last year transaction fees have become considerably
more volatile than the ETH price:

ETH price (lower) and average gasprice in USD (higher), Oct 2017 (post-Byzantium-hardfork) to July
2018. The mean absolute daily percentage change is 4.2% for the ETH price in the shown time period,
and 16.0% for the USD-denominated average gasprice, and is standard deviation is used the average

gasprice is ≈ 25 times more volatile due to spikes.

2

In the absence of political pressure on miners to make further gas limit
increases, we see no reason for this state of affairs to not continue; and if
political pressure can be used to increase gas limits when needed, then the
same processes could be used to adjust a fixed fee.

5 Transaction Fees and Auction Theory

So far, we have discussed resource pricing policies in the abstract, but we have
not discussed the specific mechanism that is used to implement them. The
field of mechanism design has made many discoveries about what types of
auctions perform better under what circumstances, and much of it is relevant
to transaction fee markets.

In nearly all blockchains so far, transaction fee markets work as follows.
Transaction senders are free to specify any fee they want as part of their
transaction when they broadcast it. Transactions are included into blocks
by block proposers, which we can assume here are randomly selected for each
block. Block proposers are constrained by the weight limit, which specifies

2Source: http://etherscan.io/charts; spreadsheet with data and calculations at
http://vitalik.ca/files/FeesAndETH.ods

14



how much they can include in each block. Naturally, block proposers will
include the transactions that pay them the most, and as part of the protocol
they collect the fees that are specified in the transaction.

In mechanism design speak, this is a first price auction, characterized by the
key property that “you pay what you specify, and only if you win”. This
kind of auction is generally considered to be deeply suboptimal, because it
requires complex and inefficient strategies on the part of the buyers (here,
transaction senders). For example, suppose that a given buyer values their
transaction getting included at $1. How much should they bid? The answer
is certainly less than $1; but how much less? If everyone else is bidding $0.05,
then clearly $0.06 will suffice. If everyone else is bidding fees that have some
complex distribution with mean $0.10 and standard deviation $0.05, with a
fat tail on the right side, then the calculation becomes extremely complicated,
and very often there are no efficient equilibria. [16] 3

The typical alternative is for selling many items a kth price auction: everyone
pays the same as the lowest fee that gets included. 4 This mechanism allows
for a very simple, and optimal, buyer-side strategy: if a transaction sender
values getting their transaction included at $x, they bid $x. If the minimum
bid in a block ends up being less than $x, they get in (and pay less than
$x, so they are happy that they got in), but their bid being higher does not
marginally affect the amount they pay. If the minimum bid in a block ends
up being more than $x, the transaction sender does not get included, and is
happy they were not included, because were they included they would have
had to pay a fee higher than they were willing to pay.

However, kth price auctions have a different kind of serious flaw: they are
not incentive-compatible for the auctioneer (ie. the block proposer). First
of all, if a block proposer is presented with a suitably steep demand curve,
it is in their interest to fill the block with at least some high-fee-paying
“dummy transactions”, displacing low-fee-paying transactions and sacrificing
the revenue from these transactions but at the same time dramatically raising

3The inefficiency of first price auctions in existing blockchain networks has already
shown itself with many cases of users and businesses overpaying for fees [17], and self-help
articles directing users to tools that facilitate “fee estimation” [18].

4Technically, everyone should pay the same as the highest fee that did not get included,
but this is even harder to implement and enforce, and for a sufficiently large number of
items the difference between the two is very minor.

15



the fee that everyone else has to pay.

A more serious issue is collusion between the proposer and some transaction
senders. A proposer can potentially collude with low-fee transaction senders
(eg. suppose there is a single entity, like an exchange or mining pool, that
sends such transactions and can be easily negotiated with) that are sending
transactions with some fee flow. The proposer can ask them to instead send
their transactions with fee fhigh, and refund them fhigh− flow

2 . The proposer’s
revenue is now even higher: the proposer benefits from the increased height
of the “rectangle” of fee revenue that they would get with the “dummy
transaction” strategy above, but they would also get a portion of the revenue
from transactions that they would otherwise have sacrificed. 5

Hence, both first-price and second-price auctions are unsatisfactory. However,
note that these issues are exclusively properties of auctions, and not properties
of a fixed-price sale. If being included in the blockchain simply requires paying
some minFee (which would be burned, rather than given to the miner, to
prevent side-dealing between transaction senders and miners allowing free
transactions), then transaction senders have a simple strategy that they can
use to set the fee on their transaction. Let v be a user’s private valuation
for a transaction getting included in the next block. The user would check if
v > minFee; if it is, they would bid minFee+ ε (to provide a slight incentive
for the block producer to include the transaction); if v < minFee they would
not send the transaction. This is a very simple strategy that does not require
knowledge of others’ valuations and is optimal for the transaction sender.

5For a more detailed treatment of similar issues, see [19] and [20].

16



6 Improving the Second Best

So far the evidence suggests that hard quantity limits are overused and price
floors are underused. But how do we even start trying to set the price floor?
What we will show in this section is that in cases where a price floor is better,
it is possible to improve upon a hard quantity limit in a way that specifically
alleviates the problem of deadweight losses from short-term transaction fee
volatility, without having to set a specific price as a protocol parameter.
Clearly, large deadweight losses from short-term transaction fee volatility
exist: Ethereum transaction fees are sometimes 2 gwei and sometimes 100
gwei, but it is definitely not true that the marginal social cost of a block
containing 8000001 gas rather than 8000000 is 50 times higher in the case
where the latter is true.

Suppose that we start with an existing policy which sets a weight limit wmax.
We normalize weight units so that the optimal weight limit and transaction
fee level are both 1. For simplicity, we assume linearity of the marginal social
cost and demand function: C ′(1 +x) = 1 +C ′′ ∗x and D′(1 +x) = 1−D′′ ∗x,
where D′′ can also be viewed as the demand elasticity. Suppose that wmax is
set incorrectly, to 1 + r for some r (in reality, wmax will of course inevitably
be set incorrectly, though we likely won’t know the value of r or even if it is
positive or negative). We can draw a deadweight loss triangle to calculate
the size of the economic inefficiency:

17



The area of the triangle, representing the total economic losses from an
excessive (or if r is negative, insufficient) number of transactions being
included, is 1

2 ∗ r
2 ∗ (C ′′ + D′′); for simplicity we’ll call this value A. Now,

we will incorporate into the model the fact that demand is naturally volatile.
We will approximate this with a simple model where D′(1 + x) half the time
equals to 1 +D′′ ∗x+ δ and the other half of the time equals to 1 +D′′ ∗x− δ.
In the −δ period, the height of the triangle increases from r ∗ (C ′′ +D′′) to
r ∗ (C ′′ +D′′) + δ, or a ratio of 1 + δ

r∗(C′′+D′′) .

By similar triangle laws the width increases by the same proportion, so the
area increases from A to A ∗ (1 + δ

r∗(C′′+D′′))
2. In the +δ period, the area

decreases to A ∗ (1− δ
r∗(C′′+D′′))

2. The average of (1 + x)2 + (1− x)2 is 1 + x2,
so the average of the two areas is A ∗ (1 + ( δ

r∗(C′′+D′′))
2).

Now, suppose we use a different algorithm. The protocol targets a long run
average weight of 1 + r, but it does so by setting a price for transactions
that adjusts slowly over time. The price that it would target is in this case is
1−D′′ ∗ r. Now, let us consider the average deadweight loss. Moving demand
up by δ will move the triangle to the right by δ

D′′
, which increases its height

by δ∗C′′
D′′

.

18



The original height was r ∗ (C ′′ + D′′), so the height increases by a ratio
of 1 +

δ∗C′′
D′′

r∗(C′′+D′′) . By similar triangle laws the width increases by the same
proportion, and in the −δ case we flip the sign in a similar way; the end result
is that the average area is A ∗ (1 + (

δ∗C′′
D′′

r∗(C′′+D′′))
2).

It should be clear that the average area in the second case is smaller (ie. less
inefficiency) than the average area in the first case if and only if

δ∗C′′
D′′

r∗(C′′+D′′) <
δ

r∗(C′′+D′′) , or alternatively δ∗C′′
D′′

< δ, or even more simply C ′′ < D′′, and in
other cases the average area in the second case is larger. What this thus
proves is a sort of marginal analogue to Weitzman’s 1974 result [4], where in
the exact same case where choosing a price is better than choosing a quantity,
a quantity limit can be improved on the margin by replacing it with a “flexible
limit” that is really just a price level that adjusts over the medium term to
target the quantity limit.

We now propose an alternate resource pricing/limit rule that we believe
provides superior properties to a hard limit wmax:

• Define a constantly adjusting in-protocol parameter minFee. Trans-
action senders are charged a fee of minFee per weight unit; this fee
is either burned or redistributed to consensus participants other than
the proposer of the block that included this transaction; this prevents
profitable side-dealing arrangements where the transaction senders are
refunded this fee.

• Define a new weight limit, wnewmax = 2 ∗ wmax.

19



• Define an adjustment speed parameter adjSpeed, with 0 < adjSpeed <
2.

• In any particular block, let wprev be the amount of weight consumed
in the previous block, and minFeeprev be the previous block’s minFee
value. See minFee for this block to equal minFeeprev ∗ (1 + ( wprev

wnewmax
−

1
2) ∗ adjSpeed.

This rule is likely to outperform simple limits in terms of allocative efficiency
for the reasons cited above, and it also (except during sudden and extreme
spikes) eliminates the issues with first and second price auctions described
above. 6

As a philosophical note, complex gas and fee policies are often criticized as
being a form of economic “central planning”, which is frowned upon because
planners may not have aligned incentives and have less information than
participants closer to the day-to-day economic activity. That said, note that
any transaction pricing policy, whether fee-based or limit-based, necessarily
has centrally planned parameters. I would argue that the correct way to
apply the Hayekian anti-central-planning intuition is to treat it as saying that
central plans are less bad if those plans have lower Kolmogorov complexity, a
simple strict weight limit being an ideal example.

Plans with low Kolmogorov complexity are ideal because they have fewer
moving parts that can fail, are less likely to overfit, and because there is so
little entropy in the specification and parametrization of the plan, it is very
difficult to encode attempts to favor or disfavor specific users or applications;
this helps foster a shared impression of fairness. For this reason, we will argue
for policies that are as simple as possible while still being substantial and
needed improvements on the status quo.

6In the specific case of storage pricing, a quirk in Ethereum gas pricing rules that allows
storage to be (mostly) paid for before it is actually used allows for second-layer markets
like GasToken [21] where gas can be burned to generate “congealed storage use privileges”,
which can then be used later. The possibility of doing this unintentionally creates efficiency
gains similar in type, though smaller in size, than those described here.

20



7 Heterogenous Resources in Computation and
Bandwidth

The above weight limit analyses assume that a single scalar can sufficiently
quantify the burden a transaction imposes upon the network. In reality,
however, a transaction consumes several heterogeneous resources: calculation
and state I/O (here grouped into “computation”), bandwidth, and state
storage. Each of these have different properties, and an optimal pricing
scheme should likely take these differences into account.

We will start off by looking at computation and bandwidth. Computation
and bandwidth both contribute to the computational load of a node, and
both contribute to “uncle rate”; hence, both seem to be subject to the same
mechanics of linear or sublinear social cost at lower weights and superlinear
social cost at higher weights. If the factors creating the superlinear social
costs are independent, it may be prudent to have a separate gas limit for
computation and block size limit for bandwidth; however, because much
of the superlinearity comes from the uncle rate itself, and the impacts of
computation and bandwidth on uncle rate seem to be additive, it seems more
likely that a single combined limit actually is optimal.

One question worth asking is: can we somehow measure in-protocol the social
cost of computation and bandwidth, or at least a more limited statistic like
the maximum level of computation and bandwidth that the median client
can safely handle? Proof of work mining difficulty does very directly give an
exchange rate between a blockchain’s native cryptocurrency and at least one
kind of computation: if a blockchain’s block reward is R, its mining algorithm
is H, and its difficulty is D, then in general we should expect cost(H) ≈ R

D
.

However, this approach is extremely fragile against advances in technology
such as specialized hardware. [22] and [23] suggest a roughly 1000-5000x
difference between the mining efficiency of ASIC and GPU hardware for
mining Bitcoin at present, and a further disparity exists between GPUs and
CPUs. This suggests that, were mining difficulty used as a proxy to determine
the computational capacity of clients in order to determine Bitcoin block size
limits, a block size limit initially targeted to 1 MB would by now have grown
to be many gigabytes. A block weight limit targeted to an optimal value
based on the assumption of a 10000x disparity between ASICs and CPUs

21



today may in contrast lead to the limit becoming 100-10000x below optimal if
the advantage of specialization decreases in the future, due to either more use
of adaptive semi-specialized hardware such as FPGAs in consumer hardware
or specialized hardware being unable to squeeze out larger efficiencies once
even general-purpose hardware starts to come close to thermodynamic limits.

The proof-of-work-based cost metric has an additional flaw: cost(H) is only
the cost of calculating a computation once. The actual social cost also depends
heavily on the number of nodes in the network, as each node will need to run
the computation, and this is also extremely difficult to measure. This issue
can be circumvented by changing the mechanism, instead requiring miners to
compute a non-outsourceable proof of work [24] and setting a computation
gas limit based on the highest amount of work submitted within some time
period, but this does not get around the specialized hardware issues. One
can try to incentivize transaction submitters to submit these proofs, but that
carries the high risk of incentivizing users to use wallets with centralized
custody of private keys.

One can similarly attempt to measure bandwidth with proofs of band-
width [25], but this also carries a high risk of incentivizing concentration.
Fundamentally, incentive-compatibly measuring the level of capability of a
node requires incentivizing them to reveal capability, with higher rewards for
higher levels of revealed capability, and this inherently incentivizes specialized
and concentrated hardware-driven centralization.

8 Pricing State Storage

Pricing state storage is a fundamentally different kind of burden from com-
putation, bandwidth and state IO (treated above as being simply another
kind of computation) for one simple reason: whereas those costs are one-time
burdens on validators and nodes that are online at that particular time, state
space must be stored by, and thus burdens, all full nodes, forever.

In Bitcoin, there is no explicit fee for filling storage; transactions are simply
charged per byte, and filling storage is charged for indirectly because filling a
new storage slot (consuming an average 61 bytes [26]) requires adding about
34 bytes [27] to a transaction (at least for “regular” outputs; non-standard

22



outputs can be made for as little as 9 bytes [28] [29]), so there is a maximum
amount by which one can increase the size of the UTXO set within a single
block. The recent Segregated Witness fork includes a modification where
signature data is charged as 1 weight unit per byte and nonsignature data
as 4 weight units per byte, up to a maximum of 4 million weight units; this
relatively reduces the cost of spending UTXOs and increases the cost of
creating new UTXOs [30].

In Ethereum, there is a more complex gas cost schedule for storage-affecting
operations, There are two types of operations that can affect the storage size:

1. The sstore opcode, which saves a value in the contract’s storage. If
sstore overwrites an existing value, it costs 5000 gas, but if it adds
a new value to storage, it costs 20,000 gas. If sstore is used to clear
an existing value (so it no longer has to be saved in storage), then it
costs the contract 5,000 gas, but a “refund” of 15,000 gas is given to
the transaction sender.

2. Account creation. Accounts can be created7 in three ways:

• creating a contract using the create opcode (32,000 gas, plus 200
per byte of code)

• creating a contract using a transaction (53,000 gas, or 32,000 +
the 21,000 base cost of sending a transaction)

• sending ether to a previously non-existent account (25,000 gas if
done from a contract; if done from a transaction the 21,000 gas
base cost).

The gas costs were computed by taking as a goal a cost of ≈ 200 gas per
byte in storage, estimating the number of bytes added to storage space by
each particular type of storage-filling operation, multiplying the two values,
and then adding an additional term to take into account other costs such as
computation and contribution to history size.

However, both the Bitcoin and Ethereum approaches have four large problems
that lead to very suboptimal outcomes:

7Accounts can also be deleted through the selfdestruct opcode, which costs the
contract 5,000 gas but refunds the transaction sender a 24,000 gas.

23



• Storage is far too cheap in an absolute sense. For example, it costs 68
gas to force current users of the Ethereum network to download and
process a byte, but 200 gas is enough to force all present and future
users to do the same (and store the data forever)

• The social cost of storage is far more linear, especially in the short and
medium run, than computation, bandwidth and disk IO. If the storage
normally increases by 1 MB per day, but in one month it increases by
100 kB per day most days except for the last day when it suddenly
increases by 27 MB, the extra volatility in storage growth does not
really hurt anyone.

• There is insufficient incentive to clear storage. In the extreme case,
depending on fee rates 10-60% of the UTXOs in Bitcoin’s state [31] have
a value sufficiently low that it costs more money to clear them than is
contained in the UTXOs. Most Ethereum contracts that get created do
not get destroyed, and many do not have any effective “storage hygiene”.

• There is no incentive to clear storage earlier rather than later. Even if
storage clearing refunds exist, at present they are not time-based.

The first problem can possibly be solved by simply making storage more
expensive. However, making storage more expensive and doing nothing else
would make it prohibitively expensive to use storage for very short periods of
time. One could offer a time-based refund, refunding more if a storage slot is
cleared earlier rather than later; the only arbitrage-free scheme for this is to
define some decreasing nonnegative function F (t) (eg. F (t) = h ∗ e−kt) of the
current time, and charge F (t) for filling a storage slot at time t, and refund
F (t) for clearing a storage slot at time t.8 However, this approach is very
capital-inefficient, requiring large deposits to use storage, and additionally
rests on the assumption that the social cost of storage will continue to forever
decrease quickly enough that the integral is convergent.

A solution that does not have these problems is to implement a time-based
storage maintenance fee (sometimes also called “rent”). The simplest way to

8If different storage slots can have different F (t) functions, then at any point where
F ′

1(t) > F ′
2(t), there is an arbitrage opportunity where if the holder of F1 (the slower-falling

function) no longer needs their storage slot, they can instead assign permission to use it to
the holder of the other storage slot, and the holder of the other storage slot can clear it
immediately.

24



implement this is simple: every account object is charged X coins per block
per byte that it consumes in the state. If an account has less coins than
the amount needed to pay for pokeThreshold blocks (say, pokeThreshold =
500), then anyone can “poke” the account and delete it from storage and
claim k ∗ pokeThreshold blocks’ worth of rent as a bounty where k ∈ (0, 1].
Implementing the above is impractical as every block going through every
account and decrementing its balance has immense overhead. However, this
can be computed quite practically through lazy evaluation:

• All accounts store an additional data field, LastBlockAccessed

• An account’s current balance can be computed as

balance−perBlockFee∗sizeOf(account)∗(curBlock−LastBlockAccessed)

• An account can be poked if this value goes below perBlockFee ∗
sizeOf(account) ∗ pokeThreshold

• When an account’s state is modified, its balance is updated based on
the above formula, and LastBlockAccessed is set to the current block
number

Suppose that we want the maintenance fee to be able to vary over time.
Then, for all block heights h we save in storage totalFee[h] = ∑h

i=1 Fee[i] =
totalFee[h− 1] + Fee[h]. We compute the current balance as

balance−sizeOf(account)∗(totalFee[curBlock]−totalFee[LastBlockAccessed])

, where totalFee[curBlock] − totalFee[LastBlockAccessed] can be under-
stood as ∑curBlock

i=LastBlockAccessed Fee[i].

However, we will argue in favor of simply setting the maintenance fee to
one specific value (eg. 10−7 ETH per byte per year) and leaving it this
way forever. First of all, the social cost of storage use is clearly almost
perfectly linear in the short and medium run, but it is also much more
linear in the long run. There is no analog to the natural asymptote of
bandwidth and computation costs in blockchains where at some point the
uncle rate reaches 100%; even if the storage of the Ethereum blockchain starts
increasing by 10 GB per day, then blockchain nodes will be quickly relegated
to only running on data centers, but the blockchain will still fundamentally
be functional. In fact, if you assume that node storage capacity is distributed

25



among the same distribution as the Cornell study [6] shows bandwidth is, so
NodeCount(W ) = 1

W
, and assume the logarithmic utility function for node

count, so D(x) = log(x) = −log(W ) then the social cost component from
node centralization is roughly C(W ) = log(W ), or C ′(W ) = 1

W
- very steeply

sublinear.

Second, the developer and user experience considerably improves if developers
and users can determine with exactness a minimum “time to live” for any given
contract far ahead in advance. Variable fees do not have this property; a fixed
fee does. Third, as cryptocurrency prices are more stable than transaction
fees, a fixed fee improves price predictability, in both cryptocurrency and
fiat-denominated terms. Fourth, a fixed fee is simple, both intuitively and in
the semi-formal sense of having low Kolmogorov complexity.

9 Storage Pricing and User Experience

For a simple cryptocurrency, the harm from one particular UTXO or account
being deleted because its balance was completely drained paying storage
maintenance fees is very simple to understand, and there are no complex
interaction effects between different accounts or UTXOs that could result.
For a more complex smart contract blockchain, rent does introduce more
complexities, as there will be contracts that are very valuable for reasons
other than the ETH (or other protocol-level base currency) contained in
them, such as their function as software libraries, user-defined assets (ERC20,
ERC721, etc) that they hold, active relationships with other smart contracts,
etc. Hence, there is larger risk of an application suddenly becoming unusable
because someone forgot to pay a maintenance fee.

One possible mitigation is to introduce two ways of paying for storage, one
requiring a time-based fee and the other requiring a relatively very large
one-time fee that ensures that the account can last forever. However, this
is also vulnerable to arbitrage issues: an account that lasts forever can rent
its storage out, and thereby earn interest by filling up storage slots, leading
to complexities arising from competition between base-layer storage with
maintenance fees and the second-layer storage market. If a permanent option
is strongly desired, then the approach based on the time-based pricing/refund
function F (t) described above is likely optimal.

26



Such situations can generally be detected far ahead of time, but if this
happens, then there is a second backstop that can be added to mitigate the
effect of deletions arising from negligent failure to pay maintenance fees: a
hibernation/waking scheme. Accounts that run out of funds to pay their
maintenance fees do get removed from the state, but they are not deleted;
rather, they are hibernated. For any hibernated contract, anyone can submit
Merkle proofs that prove two claims:

1. A given hibernated contract exists.

2. That particular instance of hibernation was not already used to wake
the contract.

Condition (2) is needed to prevent a double-waking attack, where a contract
is hibernated once, and then the proof of its hibernation is used to wake the
old contract twice:

If the contract contains more funds at the time of the older hibernation that
it does at the time of the newer hibernation, then such an attack could be
used to create funds out of nowhere. The second kind of proof could be done
as follows. Define MinInterval as the minimum length of time a storage slot
can be used for (eg. 1 week):

• Add a condition to the fee payment logic: when a contract is wo-
ken, it must be filled with at least (MinInterval + pokeThreshold) ∗
sizeOf(contract) ∗ feePerBlock ether. A contract also cannot with-
draw so much that its remaining balance after the withdrawal falls
below this threshold.

• A proof of non-prior-waking consists of a Merkle branch pointing to the
contract’s address once every MinInterval

AdjustingMinInterval is a tradeoff: smaller values enable launching contracts
cheaply for shorter periods of time, but larger values shrink the size of the
witness required for waking, as well as shrinking the number of ever-growing
historical state roots that need to be stored. For a MinInterval of one week,

27



and a state with 230 accounts, waking a ten year old contract would require
32 ∗ log(2 < sup > 30 < /sup >) ∗ 10∗365.242

7 ≈ 500,000 bytes; a MinInterval
of one month reduces this to 115,200 bytes.

10 Conclusion

Economic analysis can be used to significantly improve the incentive alignment
of resource usage inside of public blockchains. Simplistic models of one-
dimensional weight limits often lead to prices that are highly mismatched
relative to social costs, and slightly more complex techniques involving a
combination of “Pigovian taxes” and cap-and-trade mechanics such as weight
limits can improve significantly on the status quo. Storage in particular is a
very different resource market from other types of resource markets, and it
should be treated separately.

More economic analysis and econometric research can be used to help identify
further mechanisms that can be used to better reduce costs while discouraging
wasteful use of public blockchain resources.

Acknowledgements. [fill me in.]

References

[1] (2018). Bitcoin wiki: Weight units. URL https://en.bitcoin.it/
wiki/Weight_units.

[2] Knight FH (1921) Risk, uncertainty and profit. Courier Corporation.

[3] Lépissier A, Barder O (2014). A global carbon tax or cap-and-trade?
part 1: The economic arguments. URL https://www.cgdev.org/blog/
global-carbon-tax-or-cap-and-trade-part-1-economic-arguments.

[4] Weitzman ML (1974) Prices vs. quantities. The review of economic
studies 41: 477–491.

28



[5] Wikipedia (2017). Runaway climate change — wikipedia, the free
encyclopedia. URL https://en.wikipedia.org/w/index.php?title=
Runaway_climate_change&oldid=776345569. [Online; accessed 5-May-
2017].

[6] Kyle Croman IEea Christian Decker (2016). On scaling decentralized
blockchains. URL https://fc16.ifca.ai/bitcoin/papers/CDE+16.
pdf.

[7] Yonatan Sompolinsky AZ (2013). Accelerating bitcoin’s trans-
action processing: Fast money grows on trees, not chains.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.433.6590&rep=rep1&type=pdf.

[8] Ayelet Sapirshtein YS, Zohar A (2015). Optimal selfish mining strategies
in bitcoin. URL https://arxiv.org/pdf/1507.06183.pdf.

[9] Buterin V (2018). Estimating cryptocurrency transaction demand
elasticity from natural experiments. URL https://ethresear.ch/t/
estimating-cryptocurrency-transaction-demand-elasticity-from-natural-experiments/
2330.

[10] Haab T (2008). The long run elasticity of demand for gas. URL http:
//www.env-econ.net/2008/06/the-long-run-el.html.

[11] Bradbury D (2014). Bitcoin transaction fees to be
slashed tenfold. URL http://www.coindesk.com/
bitcoin-transaction-fees-slashed-tenfold/.

[12] Jameson H (2017). Recommendations to miners to change gas limit
and gas price settings. URL https://www.reddit.com/r/ethereum/
comments/6ehp60/recommendations_to_miners_to_change_gas_
limit_and/.

[13] Buterin V (2017). Tweet. URL https://twitter.com/
VitalikButerin/status/871218258212290560.

[14] Bradbury D (2014). Bitcoin transaction fees to be
slashed tenfold. URL https://www.coindesk.com/
bitcoin-transaction-fees-slashed-tenfold/.

29



[15] Southurst J (2017). Bat token sale causes hours of
ethereum network delays. URL http://www.bitsonline.com/
bat-sale-ethereum-network-delays/.

[16] Tim Roughgarden ET Vasilis Syrgkanis (2017). The price of anarchy
in auctions. URL https://theory.stanford.edu/˜tim/papers/jair.
pdf.

[17] Town S (2018). Bitcoin transaction fees skyrocket as bithumb
cleans out hot wallets due to hack. URL https://cryptoslate.com/
bitcoin-transaction-fees-skyrocket-as-bithumb-cleans-out-hot-wallets-due-to-hack/.

[18] Hertig A (2018). How to save on bitcoin’s soaring fees. URL https:
//www.coindesk.com/save-bitcoins-soaring-fees/.

[19] Shengwu Li MA (2018). Credible mechanisms. URL https://ssrn.
com/abstract=3033208.

[20] Rothkopf MH (2007). Thirteen reasons whythe vickrey-clarke-groves
process is not practical. URL https://cs.uwaterloo.ca/˜klarson/
teaching/F08-886/Rothkopf.pdf.

[21] Chicago P (2018). URL https://gastoken.io/.

[22] (2018). Bitcoin wiki, non-specialized hardware comparison. URL https:
//en.bitcoin.it/wiki/Non-specialized_hardware_comparison.

[23] (2018). Bitcoin wiki, mining hardware comparison. URL https://en.
bitcoin.it/wiki/Mining_hardware_comparison.

[24] Andrew Miller JK Ahmed Kosba, Shi E (2014). Nonoutsourceable
scratch-off puzzles to discourage bitcoin mining coalitions. URL http:
//soc1024.ece.illinois.edu/nonoutsourceable.pdf.

[25] AuthorGhosh BF M Richardson, Jansen R (2014). A tor-
path to torcoin: Proof-of-bandwidth altcoins for compen-
sating relays. URL https://www.nrl.navy.mil/itd/chacs/
ghosh-torpath-torcoin-proof-bandwidth-altcoins-compensating-relays.

30



[26] Sergi Delgado-Segura GNA Cristina Perez-Sola, Herrera-Joancomartı J
(2018). Analysis of the bitcoin utxo set. URL https://eprint.iacr.
org/2017/1095.pdf.

[27] Moore C (2013). How to calculate transaction size be-
fore sending (legacy non-segwit - p2pkh/p2sh). URL
https://bitcoin.stackexchange.com/questions/1195/
how-to-calculate-transaction-size-before-sending-legacy-non-segwit-p2pkh-p2sh.

[28] (2018). Bitcoin wiki: Transaction. URL https://en.bitcoin.it/
wiki/Transaction#General_format_.28inside_a_block.29_of_
each_output_of_a_transaction_-_Txout.

[29] (2018). Bitcoin wiki: Script, anyone can spend outputs. URL https:
//en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs.

[30] (2017). Why a discount factor of 4? why
not 2 or 8? URL https://segwit.org/
why-a-discount-factor-of-4-why-not-2-or-8-bbcebe91721e.

[31] C Perez-Sol‘a GNA S Delgado-Segura, Herrera-Joancomarti J (2018).
Another coin bites the dust: An analysis of dust in utxo based cryptocur-
rencies. URL https://eprint.iacr.org/2018/513.pdf.

[32] McCorry P, Shahandashti SF, Hao F (2017) A smart contract for board-
room voting with maximum voter privacy. In: Proceedings of Financial
Cryptography and Data Security. International Financial Cryptography
Association. URL http://fc17.ifca.ai/preproceedings/paper_80.
pdf.

31



Appendix

A The Full Ethereum Gas Function

[Put the full gas function here.]

32


