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Abstract

We explore “discouragement attacks” on economic consensus mech-
anisms. A discouragement attack consists of an attacker acting mali-
ciously inside a consensus mechanism in order to reduce other partici-
pants’ revenue, even at some cost to themselves, in order to encourage
the victims to drop out of the mechanism. The motivations to conduct
discouragement attacks are twofold. First, the attacks can increase
the attacker’s profit, as the mechanism may contain long-run “com-
petitive” mechanics where some participants dropping out increases
revenue to the remaining ones. Second, the attacks can be part of a
two-step strategy where the second step is to carry out a traditional
51% attack on the consensus algorithm against a now much smaller
set of “honest” participants warding off the attacker, and hence pay
a much lower cost for the attack.

1 Introduction

We model an economic consensus mechanism as being a game where there is
an infinite set of participants each with an infinitesimally small deposit (we’ll
call the “size” of the set the total sum of deposits), of which some portion is
controlled by the attacker. The payout function takes as input x, the total
size of the participant set, and h, the extent to which the attacker deviates
from an “honest” strategy. The payout to each honest participant is 1−h

xp
,

where p is a protocol parameter that determines how the protocol reward
changes with the number of participants. For example:
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• p = 0: constant “interest rate”, eg. under optimal conditions each
participant earns a return of 8% per year.

• p = 1
2
: the rewards (and penalties) to participants scale with the inverse

square root of the size of the participant set, so total rewards scale with
the square root of the size of the participant set. This is a compromise
between p = 0 and p = 1.

• p = 1: constant total reward, ie. the total payout of the protocol is
dependent only on what percentage of participants take what actions,
not on the size of the participant set.

• p = ∞: the protocol is dead-set on ensuring that the total size of the
participant set is some specific constant k no matter what. If the size
exceeds k, the protocol keeps decreasing rewards until the size drops
to k, and if the size is below k, the protocol keeps increasing rewards
until the size rises to k.

Note that if revenues to participants are dominated by transaction fees,
then p = 1 will hold.

Each participant controlled by the attacker pays
1−h

r

xp
where r is the pro-

portional loss ratio. The proportional loss ratio is the ratio between the loss
the victims suffer and the loss the attacker suffers, where both losses are
expressed in percentage terms. For example, if an attack that causes the
attacker to lose 1% of deposits of all participants that they control causes
everyone else to lose 2%, then the proportional loss ratio is 2.

The reason behing the above formulas is as follows. We assume that there
is some “base interest rate” paid to all participants, which is proportional
to some inverse power of the total size of the participant set. There is not
necessary a principled in-protocol notion of the “extent” to which an attacker
is attacking, so we define our own: the extent of an attack is h if the victims’
return decreases to 1−h

xp
. We assume the proportional loss ratio r is fixed,

hence the attacking participants’ return must be
1−h

r

xp
.

In contracts the griefing factor, another way of comparing attacker and
victim losses, is defined in absolute terms: for example, if in such a scenario
the attacker controls 1

3
of the total participant set, then the set of victims

is twice as large as the attacker, and so altogether the victims lose four
times more than the attacker, and so the griefing factor would be 4. The
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relationship between the proportional loss ratio r and griefing factor is simple:

g = r ∗ 1− α
α

,

where α is the portion of participants controlled by the attacker. In our

above example, α = 1
3
, so g = 2 ∗

2
3
1
3

= 4.

We now rephrase the problem into the language of supply and demand:
there exist a set of players, each of which has some reserve interest rate at
which they are willing to become participants in the consensus mechanism.
This is the demand curve, where the interest rate is the price. The protocol,
which offers interest rates for participation in the consensus mechanism, sets
the supply curve. If p = 0, the supply curve is horizontal - the protocol offers
that interest rate to an unlimited number of participants. If p = ∞, the
supply curve is vertical. For any other p, the supply curve is declining with
a constant elasticity of 1

p
. We model the attacker as having unilateral power

to set h (by attacking), and this pushes down the supply curve.
We model the demand curve as also being a simple exponential function,

xd. In general, we expect there to be wide disparities between the reserve
interest rates of different players, as they have different levels of wealth,
technical capability to operate a node in the consensus mechanism, and will-
ingness to lock up their capital; additionally, we expect many players will be
readily willing to lock up 50% of their capital, somewhat willing to lock up
80%, hard pressed to lock up 95%, and not willing at all to lock up 100%.
Hence, d > 1 seems likely, though we will consider the problem abstractly
and give results for various values of d.

2 Analysis

We want to learn two things. First, are there opportunities to perform a dis-
couragement attack for profit? Second, what is the difficulty of performing
a discouragement attack in order to set up a cheaper later attack on consen-
sus? To examine the second case, we can compare the pre-discouragement
and post-discouragement intersections of the supply and demand curves.

Pre-discouragement, the intersection is between y = 1
xp

and y = xd.
The unique solution is clearly x = 1 and y = 1. Note that we can adjust
the currency unit and the time unit so that the default equilibrium of 1
unit and an interest rate of 100% per period holds; hence, the omission
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of adjustable constants in the supply and demand curve formulas does not
sacrifice generality.

Post-discouragement, it becomes:
1−h
xp

= xd

x = (1− h)
1
d+p

Let us now look at the attacker’s interest rate,
1−h

r

xp
. First, let us take the

easy case: r ≤ 1. In this case,
1−h

r

xp
≤ 1−h

(1−h)
p
d+p

= (1 − h)
d
d+p < 1. Hence, if

r ≤ 1, the attacker will always lose money. This may seem counterintuitive;
one might ask, what if the discouragement attack pushes out so many other
participants that the new equilibrium is on the very high part of the the
supply curve close to zero? The important thing to keep in mind, however, is
that if r = 1 (i.e. the attacker gets the same interest rate as the victims), then
the attacker’s revenue will necessarily be at some point along the original,
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unchanged, upward sloping demand curve. Because the demand curve is
upward sloping, and the number of participants decreased, the interest rate
paid to the attacker must have also decreased. If r < 1, then the attacker
loses even more than the victims, at least if expressed as an interest rate,
and so the attacker’s interest rate will end up below the lower point along
the demand curve experienced by victims. Hence, if r ≤ 1, discouragement
attacks are necessarily costly.

In general, it is certainly feasible to design a consensus mechanism where
we can ensure r ≤ 1 as long as the attacker controls less than 50% of partic-
ipants, so this is already a very useful result. Now, let us examine the case
where r > 1. For very high values of r, it is easy to see how the attacker can
theoretically make a net gain from a discouragement attack:

However, with the right bounds we can still prevent such an attack from
being profitable. Consider the case where p = 1, and where the attacker must
maintain a 50% share of active participants to exert r > 1 griefing (note that
at the 50% boundary, the proportional loss ratio r and the griefing factor
are the same value). The next question is, does the attacker remove some of
their own participants to keep their share at 50%, or do all of the participants
controlled by the attacker stay?

In the first case, as long as p ≤ 1, no matter how high r is, the attacker’s
revenue must still decrease, or in the worst case where r =∞, the attacker’s
revenue will be unchanged. In the second case, we note that the size of the

participant set will decline more slowly - specifically, x = 1
2

+ 1
2
∗ (1− h)

1
d+p .

Suppose r ≤ 2, and p ≤ 1. Then:
1−h

r

xp
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≤ 1−h
2

( 1
2
+ 1

2
∗(1−h)

1
d+p )p

≤ 1−h
2

1
2
+ 1

2
∗(1−h)

p
d+p

=
1
2
+ 1

2
∗(1−h)

1
2
+ 1

2
∗(1−h)

p
d+p
≤

1
2
+ 1

2
∗(1−h)

1
2
+ 1

2
∗(1−h) = 1 Hence

both strategies are unprofitable. For values r > 2, the proof would need to be
more conditional on specific values of p. We can make the claim that, if the
griefing factor is bounded by GF , i.e. r ≤ GF ∗ α

1−α , then a discouragement

attack cannot be profitable if and only if p ≤ 1
GF

.
We can check this at the boundary h = 1 as follows. We want to show

that
1−hp∗ 1−α

α

(α+(1−α)(1−h)
d
d+p )p

≤ 1, so we show that the numerator is less than or

equal to the denominator. At h = 1, the numerator simplifies to 1 − p
α

+ p
and the denominator to αp. At α = 1, the two are equal. To show that
the numerator is strictly less for α < 1, we can take the derivative of both
with respect to α; the numerator becomes p

α2 and the denominator becomes
p∗αp−1, and since α < 1 the derivative of the numerator is clearly greater, so
for α < 1 the original fraction will be less than one. Checking for 0 < h < 1
is much harder, but analytically it can be verified that it holds.

Hence, if the griefing factor is bounded by 2, we want p ≤ 1
2
, and similarly

for other griefing factors.

3 Discouragement Attacks for Breaking Con-

sensus

Here we evaluate the feasibility of attackers with a two-step plan. First, run
a discouragement attack to push other participants out. Second, attack the
network against a now much smaller participant set. The second attack could
either be a finality reversion attack, or it could be censorship. In the given
model, this is clearly doable: an attacker can grief with h > 1 to push all
other participants out, then remove most of their own participants, then use
the remainder to perform the attack. This can be overcome with an honest
minority assumption, where some participants are willing to stay despite
the lack of economic incentive, and it can also be overcome with outside
donations to “honest” participants. A third way that it can be overcome is
if, when such an attack starts taking place, a large number of outside players
temporarily join the participant set, diluting the attacker to below 50% and
thereby making their attack ineffective.

This kind of attack is difficult to economically model because under cer-
tain assumptions the cost is zero: if an attacker can credibly announce that
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they will grief with h > 1, then all other participants will leave, and the
attacker will then be free to join with one single participant and perform a
censorship attack at infinitesimal cost. This result is true in any game where
the net profit of a participant can be made to drop below zero through no
fault of their own, which is itself true of any consensus algorithm where a
censorship attack has nonzero cost, because of the fundamental fault inat-
tributability of censorship versus a minority going offline.

What we can do is model the game in various ways that add realistic
“friction” to non-attacking participants’ economic reasoning, and see how
the parameters of the game can be optimized so as to maximize the cost of
attack given these frictions. One possibility is to model it as a three-phase
game, where in phase 1 the attacker griefs with some h, all participants get
their due rewards and penalties (y0∗(1−h) for the attacker, y0∗(1−r∗h) for
everyone else, where y0 = 1

xp0
is the default“peacetime” interest rate), then in

phase 2 both the attacker and other participants make choices about how to
allocate their resources and finally in phase 3 the attacker decides whether
or not to attack. The attacker is modeled as having a budget b; the attacker
is only willing to lose b in order to carry out the attack.

Let us first consider finality reversion attacks. In a finality reversion
attack, if the total validator set has size x, the cost of an attack is x

3
. An

attacker’s strategy is easy: grief with h = 1
r

in phase 1, drive all other
participants away as their revenue drops to zero, and then attack in phase 2.
The attacker’s cost here, assuming the attacker had 50% of the validator set
in phase 1, is x0 ∗ 1

2
∗ (1− 1

r
).

Now, let us modify the game slightly: suppose that of the x
3

penalized,
half goes to all other participants. Suppose the total validator set has size
x1 in phase 1, with base interest rate y1 = 1

xp1
. The attacker griefs with some

h in phase 1, and as a result in phase 2 the validator set drops in size to x2,
with base interest rate y2 = 2

xp2
. The attacker then attacks with probability

Pattack.
The attacker’s cost is:
1
2
∗ x1 ∗ y1 ∗ h+ Pattack ∗ 1

3
∗ x2

The first term in the sum is the cost in phase 1, and the second term is
the expected cost in phase 2.

Supply-demand equilibrium tells us that in phase 2 we have:
y2 ∗ (1− h) + 1

4
∗ Pattack = xd2

The 1
4

fraction comes from the fact that during an attack, non-attacker’s
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deposits would increase by 25%. Let us assume d = p = 1. We can simplify:
1
x2
∗ (1− h) + 1

4
∗ Pattack = x2

This gives us x2 out of Pattack and h through a quadratic equation, which
we can then plug into the attacker’s cost. If we normalize x1 = y1 = 1, then
this gives the cost as a function of h and Pattack. The quadratic equation is:

x2 =
Pattack

4
+(

P2
attack
16

−4∗(h−1))
1
2

2

Let’s look at the case Pattack = 1. Then, x2 =
1
4
+( 1

16
−4∗(h−1))

1
2

2
. The

discriminant equals zero when h = 65
64

, and for higher values of h the discrim-
inant goes negative. Hence, for any value of h substantially above 1, there is
no solution, suggesting that there is no x2 at which participants would find
it profitable to stay. This can be seen as a negative feedback loop: the lower
x1 goes, the more highly negative the interest rate can go, and so x1 goes
further down. This suggests a rationale for designing the mechanism so that
the maximum possible h is lower the lower the size of the participant set,
until below some critical size it is not much lower than 1. Additionally, it is
also an argument for selecting lower values of p, though the benefit is fairly
marginal.

In general, what this analysis suggests is that (i) discouragement attacks
for consensus breaking are difficult to fully defeat, (ii) setting lower values of
p is a good idea, and (iii) perhaps the best way to is to increase friction for
participants in the consensus game looking to drop out.

4 Bribing to counter-grief

Suppose that victims (≤ 50% of the participant pool) are concerned that
their revenue will decrease from y0 to 0 as part of a discouragement attack.
They can choose to bribe outsiders to enlist in order to prevent this from
happening. Bribing outsiders individually is expensive, because the bribe
must overcome the outsider’s concern that they themselves will suffer from
the attack. However, with an assurance contract we can create a bribe that
only works if enough outsiders show up. A bribe to increase the participant
set by a factor of n would cost (n− 1) ∗ (nd − 1

np
). If p = d = 1, this equals

n ∗ (n − 1
n
) = n2 − 1. Hence, such a bribe would be rational to organize if

n ≤
√

2.
However, suppose that participants fear not just loss of profits, also heavy

losses, because they believe that an attacker will launch an attack and destroy
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a large portion of their deposits. Then, n can be increased further, especially
if the choice is between a small change between already relatively low interest
rates and a large short-term harm of losing a large portion of one’s deposit.
To assist this mechanism, it is worth considering paying a small interest rate
to those who are not participating in the consensus game, but are willing
to make their deposits “conscriptable”, in the sense that they automatically
join the consensus game as soon as some condition is triggered (for example,
net interest rates including penalties dropping below zero).

5 Conclusion

Discouragement attacks as a cheaper way of attacking a consensus algorithm
are one of the hardest classes of attacks to come up with defenses against.
This is true in proof of work as well: if a 51% attack succeeds, then there is a
coordination problem opposing “honest” miners trying to recover the original
fork, as none have the private incentive to participate in a fork unless everyone
else does. Hence, our recommendations at this point can consist only of two
parts. First, there exist marginal tweaks that can be made to mechanisms
to reduce the effectiveness of discouragement, increasing difficulty of leaving
the validator pool and keeping p values low (particularly by not relying solely
on transaction fees) being chief among them. Second, if a discouragement
attack does start happening, expect an assurance contract bringing in more
participants to be an important building block in the solution.

In general, this is still an active area of research, and more research in
counter-strategies is desired.
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