
Casper the Friendly Finality Gadget

Vitalik Buterin
Ethereum Foundation

August 27, 2017

Abstract

We give an introduction to the consensus algorithm details of
Casper: the Friendly Finality Gadget, as an overlay on an existing
proof of work blockchain such as Ethereum. Casper is a partial consen-
sus mechanism inspired by a combination of existing proof of stake al-
gorithm research and Byzantine fault tolerant consensus theory, which
if overlaid onto another blockchain (which could theoretically be proof
of work or proof of stake) adds strong finality guarantees that im-
prove the blockchain’s resistance to transaction reversion (or “double
spend”) attacks.

1 Introduction

Over the past few years there has been considerable research into “proof of
stake”-based blockchain consensus algorithms. In a proof of stake system, a
blockchain grows and agrees on new blocks through a process where anyone
who holds coins inside of the system can participate, and the amount of
influence that any given coin holder has is proportional to the number of
coins (or “stake”) that they hold. This represents an alternative to proof of
work “mining”, allowing blockchains to operate without the high hardware
and electricity costs that proof of work blockhains require.

There have been two major schools of thought in proof of stake algorithm
design. The earlier of the two, chain-based proof of stake, tries to closely
mirror the mechanics of proof of work, featuring a chain of blocks and an
algorithm that “simulates” mining by pseudorandomly assigning the right

1



to create new blocks to stakeholders. This includes Peercoin[?], Blackcoin[?]
and Iddo Bentov’s work[?].

The other school, BFT-based proof of stake, is based on a thirty year
old body of research into Byzantine fault tolerant consensus algorithms such
as PBFT [?]. BFT algorithms tend to have strong and rigorously proven
mathematical properties; for example, one can usually mathematically prove
that as long as at more than 2

3
of participants in the protocol are following

the protocol correctly, then the algorithm cannot possibly finalize conflict-
ing block hashes at the same time (“safety”); this result holds regardless of
network latency. The suggestion of repurposing BFT algorithms for proof of
stake was first introduced by Tendermint[?].

1.1 Our Work

We present an algorithm that follows in the latter tradition, though with
some modifications. Casper the Friendly Finality Gadget takes the form of
an overlay on top of some kind of proposal mechanism - a mechanism which
proposes checkpoints which the Casper mechanism can then set in stone by
finalizing them. Casper depends on the proposal mechanism for liveness,
but not safety; that is, if the proposal mechanism is entirely controlled by
attackers, then the attackers can prevent Casper from finalizing any future
checkpoints, but cannot cause a safety failure in Casper—i.e., they cannot
force Casper to finalize two conflicting blocks.

The proposal mechanism will initially be the existing Ethereum proof of
work chain, making the first version of Casper a hybrid PoW/PoS algorithm
that relies on proof of work for liveness but not safety, but in future versions
the proposal mechanism can be substituted with something else.

Our algorithm introduces several new properties that BFT algorithms by
themselves do not necessarily support. First, we change the emphasis of the
proof statement from the traditional “as long as more than 2

3
of validators

are honest, there will be no safety failures” to the contrapositive “if there is
a safety failure, that implies that ≥ 1

3
of validators violated some protocol

rule”, and furthermore we add accountability : “≥ 1
3

violated the rules, and
we know who they are”.

Accountability allows us to penalize malfeasant validators, solving the
nothing at stake problem that often plagues chain-based proof of stake al-
gorithms. The size of the penalty is equal to the size of validators’ entire
deposits; this ensures that the cost of violating protocol guarantees is much

2



higher than the size of the rewards that the system pays out during normal
operation, achieving a much stronger security guarantee than is possible with
proof of work.

Second, the design of the algorithm as an overlay makes it easier to im-
plement as an upgrade to a proof of work base chain. Third, we introduce a
provably safe way of allowing the validator set to change over time. Finally,
we introduce a way to recover from attacks where more than 1

3
of validators

drop offline, at the cost of a very weak tradeoff synchronicity assumption.

2 The Protocol

We will describe the protocol in stages, starting with a simple version and
then progressively adding features such as validator set changes and mass
liveness fault recovery. In the simple version, we simply assume that there is
a set of validators, as well as a proposal mechanism which is either a proof of
work chain or something which exhibits similar behavior. We define an epoch
as a range of 100 blocks (e.g. blocks 600...699 are epoch 6), and a checkpoint
as the hash of a block right before the start of an epoch. The epoch of a
checkpoint is the epoch after the checkpoint, e.g. the epoch of a checkpoint
which is the hash of some block 599 is 6. Validators have the ability to make
two types of messages:

〈prepare, h, e, h?, e?,S〉
Notation Description
h a checkpoint hash
e the epoch of the checkpoint
h? the most recent justified hash
e? the epoch of h?

S signature of (h, e, h?, e?) from the validator’s private key

〈commit, h, e,S〉
Notation Description
h a checkpoint hash
e the epoch of the checkpoint
S signature from the validator’s private key

3



Each validator has a deposit size; when a validator joins their deposit
size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls with rewards and penalties. For
the rest of this paper, when we say “2

3
of validators”, we are referring to a

deposit-weighted fraction; that is, a set of validators whose sum deposit size
equals to at least 2

3
of the total deposit size of the entire set of validators. “2

3

prepares” will be used as shorthand for “prepares from 2
3

of validators”. We
also use e(h) to denote “the epoch of h”.

Every checkpoint hash h has one of three possible states: fresh, justified,
and finalized. Every hash starts as fresh. A hash h converts from fresh to
justified if 2

3
of validators send prepares of the form

〈prepare, e(h), h, e(h?), h?,S〉 (1)

for some specific h?. A hash h can only be justified if its h? is already
justified or finalized.

Additionally, a hash h converts from justified to finalized, if 2
3

of validators
commit

〈commit, e(h), h,S〉 , (2)

An “ideal execution” of the protocol is one where, at the start of every
epoch, every validator prepares and commits the same checkpoint for that
epoch, specifying the same e? and h?.

Figure 1: Illustrating prepares, commits and checkpoints. Arrows represent
dependency (e.g. a commit depends on there being 2

3
existing prepares)

4



During epoch n, validators are expected to send prepare and commit
messages with e = n and h equal to a checkpoint of epoch n. Prepare
messages may specify as h? a checkpoint for any previous epoch (preferably
the preceding checkpoint) of h , and which is justified (see below), and the
e? is expected to be the epoch of that checkpoint.

Validators only pay attention to prepares and commits if they have been
included in blocks, even if those blocks are not part of the main chain. This
simplifies our finalty mechanism because it allows it to be expressed as a fork
choice rule where the “score” of a block only depends on the block and its
children, putting it into a similar category as more traditional PoW-based
fork choice rules such as the longest chain rule and GHOST[?].

Unlike GHOST, however, this fork choice rule is also finality-bearing :
there exists a “finality” mechanism that has the property that (i) the fork
choice rule always prefers finalized blocks over non-finalized competing blocks,
and (ii) it is impossible for two incompatible checkpoints to be finalized unless
at least 1

3
of the validators violated one of the two Casper Commandments

(a.k.a. slashing conditions):

I. A validator shalt not publish two or more nonidentical
Prepares for same epoch.

In other words, a validator may Prepare at most exactly one (h , e? ,
h? ) triplet for any given epoch e .

II. A validator shalt not publish an Commit between the epochs
of a Prepare statement.

Equivalently, a validator may not publish

〈prepare, ep, hp, e?, h?,S〉 and 〈commit, ec, hc,S〉 , (3)

where the epochs satisfy e? < ec < ep.

If a validator violates a slashing condition, the evidence that they did
this can be included into the blockchain as a transaction, at which point the
validator’s entire deposit will be taken away, with a 4% “finder’s fee” given
to the submitter of the evidence transaction.

Earlier versions of Casper had four slashing conditions,[?] but we can
reduce to two because of the requirements that (i) finalized hashes must be

5



justified, and (ii) justified hashes must point to an already justified ancestor;
these requirements ensure that blocks will not register commits or prepares
that violate the other two slashing conditions, making them superfluous.

3 Proofs of Safety and Plausible Liveness

We give a proof of two properties of Casper: accountable safety and plausible
liveness. Accountable safety means that two conflicting checkpoints cannot
be finalized unless ≥ 1

3
of validators violate a slashing condition (meaning at

least one third of the total deposits are lost). Honest validators will never
violate slashing conditions, so this implies the usual Byzantine fault tolerance
safety property, but expressing this in terms of slashing conditions means that
we are actually proving a stronger claim: if two conflicting checkpoints get
finalized, then at least 1

3
of validators were malicious, and we know whom to

blame, and so we can maximally penalize them in order to make such faults
expensive.

Plausible liveness means that it is always possible for 2
3

of honest val-
idators to finalize a new checkpoint, regardless of what previous events took
place.

Theorem 1 (Accountable Safety). Two conflicting checkpoints cannot be
finalized unless ≥ 1

3
of validators violate a slashing condition.

Proof. Suppose the two conflicting checkpoints are A in epoch eA and B in
epoch eB. If both are finalized, this implies 2

3
commits and 2

3
prepares in

epochs eA and eB. In the trivial case where eA = eB, this implies that some
intersection of 1

3
of validators must have violated slashing condition (1). In

other cases, there must exist two chains G < . . . < e2A < e1A < eA and
G < . . . < e2B < e1B < eB of justified checkpoints, both terminating at the
genesis. Suppose without loss of generality that eA > eB. Then, there must
be some eiA that either eiA = eB or eiA > eB > ei+1

A . In the first case, since
Ai and B both have 2

3
prepares, at least 1

3
of validators violated slashing

condition (I). Otherwise, B has 2
3

commits and there exist 2
3

prepares with
e > B and e? < B, so at least 1

3
of validators violated slashing condition

(II).

Theorem 2 (Plausible Liveness). It is always possible for 2
3

of honest val-
idators to finalize a new checkpoint, regardless of what previous events took
place.

6



Figure 2: Two checkpoints are conflicting if they are on distinct chains, i.e.
one is not an ancestor or a descendant of the other.

Proof. Suppose that all existing validators have sent some sequence of pre-
pare and commit messages. Let M with epoch eM be the highest-epoch
checkpoint that was justified, and let n ≥ eM be the highest epoch in which
an honest validator prepared. Honest validators have not committed on any
block which is not justified. Hence, neither slashing condition stops them
from making prepares on a descendant of M in epoch n+ 1, using eM as e?,
and then committing this child.

4 Fork Choice Rule

The mechanism described above ensures plausible liveness ; however, it by
itself does not ensure actual liveness - that is, while the mechanism cannot
get stuck in the strict sense, it could still enter a scenario where the proposal
mechanism (i.e. the proof of work chain) gets into a state where it never
ends up creating a checkpoint that could get finalized.

In Figure 3 we see one possible example. In this case, HASH1 or
any descendant thereof cannot be finalized without slashing 1

6
of validators.

7



However, miners on a proof of work chain would interpret HASH1 as the
head and forever keep mining descendants of it, ignoring the chain based on
HASH0′ which actually could get finalized.

Figure 3: Miners following the traditional proof of work fork choice rule
would create blocks on HASH1, but because of the slashing conditions only
blocks on top of HASH1’ can be finalized.

In fact, when any checkpoint gets k > 1
3

commits, no conflicting check-
point can get finalized without k − 1

3
of validators getting slashed. This

necessitates modifying the fork choice rule used by participants in the under-
lying proposal mechanism (as well as users and validators): instead of blindly
following a longest-chain rule, there needs to be an overriding rule that (i)
finalized checkpoints are favored, and (ii) when there are no further finalized
checkpoints, checkpoints with more (justified) commits are favored.

One complete description of such a rule would be:

1. Start with HEAD equal to the genesis of the chain.

8



2. Select the descendant checkpoint of HEAD with the most commits
(only justified checkpoints are admissible)

3. Repeat (2) until no descendant with commits exists.

4. Choose the longest proof of work chain from there.

The commit-following part of this rule can be viewed as mirroring the
“greegy heaviest observed subtree” (GHOST) rule that has been proposed
for proof of work chains[?]. The symmetry is as follows. In GHOST, a node
starts with the head at the genesis, then begins to move forward down the
chain, and if it encounters a block with multiple children then it chooses the
child that has the larger quantity of work built on top of it (including the
child block itself and its descendants).

In this algorithm, we follow a similar approach, except we repeatedly seek
the child that comes the closest to achieving finality. Commits on a descen-
dant are implicitly commits on all of its lineage, and so if a given descendant
of a given block has more commits than any other descendant, then we know
that all children along the chain from the head to this descendant are closer
to finality than any of their siblings; hence, looking for the descendant with
the most commits and not just the child replicates the GHOST principle
most faithfully. Finalizing a checkpoint requires 2

3
commits within a single

epoch, and so we do not try to sum up commits across epochs and instead
simply take the maximum.

This rule ensures that if there is a checkpoint such that no conflicting
checkpoint can be finalized without at least some validators violating slashing
conditions, then this is the checkpoint that will be viewed as the “head” and
thus that validators will try to commit on.

5 Allowing Dynamic Validator Sets

The set of validators needs to be able to change. New validators need to be
able to join, and existing validators need to be able to leave. To accomplish
this, we define a variable kept track of in the state called the dynasty counter.
When a user sends a “deposit” transaction to become a validator, if this
transaction is included in dynasty n, then the validator will be inducted in
dynasty n+ 2. The dynasty counter increments when the chain detects that
the checkpoint of the current epoch that is part of its own history has been

9



perfectly finalized (that is, the checkpoint of epoch e must be finalized during
epoch e , and the chain must learn about this before epoch e ends). In simpler
terms, when a user sends a “deposit” transaction, they need to wait for the
transaction to be perfectly finalized, and then they need to wait again for
the next epoch to be finalized; after this, they become part of the validator
set. We call such a validator’s start dynasty n+ 2.

For a validator to leave, they must send a “withdraw” message. If their
withdraw message gets included during dynasty n, the validator similarly
leaves the validator set during dynasty n+ 2; we call n+ 2 their end dynasty.
When a validator withdraws, their deposit is locked for a long period of time
(the withdrawal delay, for now think “four months”) before they can take
their money out; if they are caught violating a slashing condition within that
time then their deposit is forfeited.

For a checkpoint to be justified, it must be prepared by a set of validators
which contains (i) at least 2

3
of the current dynasty (that is, validators with

startDynasty ≤ curDynasty < endDynasty), and (ii) at least 2
3

of the pre-
vious dyansty (that is, validators with startDynasty ≤ curDynasty − 1 <
endDynasty. Finalization with commits works similarly. The current and
previous dynasties will usually greatly overlap; but in cases where they sub-
stantially diverge this “stitching” mechanism ensures that dynasty diver-
gences do not lead to situations where a finality reversion or other failure
can happen because different messages are signed by different validator sets
and so equivocation is avoided.

5.1 Long Range Attacks

Note that the withdrawal delay introduces a synchronicity assumption be-
tween validators and clients. Because validators can withdraw their deposits
after the withdrawal delay, there is an attack where a coalition of validators
which had more than 2

3
of deposits long ago in the past withdraws their de-

posits, and then uses their historical deposits to finalize a new chain that
conflicts with the original chain without fear of getting slashed.

We solve this problem by simply having clients not accept a finalized
checkpoint that conflicts with finalized checkpoints that they already know
about. Suppose that clients can be relied on to log on at least once every
time δ, and the withdrawal delay is W . Suppose an attacker sends one final-
ized checkpoint at time 0, and then another right after. We pessimistically
suppose the first checkpoint arrives at all clients at time 0, and that the

10



Figure 4: Without the validator set stitching mechanism, it’s possible for two
conflicting checkpoints to be finalized with no validators slashed

second reaches a client at time δ. The client will then know of the fraud,
and will be able to create and publish an evidence transaction. We then add
a consensus rule that requires clients to reject chains that do not include
evidence transactions that the client has known about for time δ. Hence,
clients will not accept a chain that has not included the evidence transaction
within time 2 ∗ δ. So if W > 2 ∗ δ then slashing conditions are enforcible.

In practice, this means that if the withdrawal delay is four months, then
clients will need to log on at least once per two months to avoid accepting
bad chains for which attackers cannot be penalized.

6 Recovering from Castastrophic Crashes

Suppose that > 1
3

of validators crash-fail at the same time—i.e, they are
no longer connected to the network due to a network partition, computer
failure, or are malicious actors. Then, no later checkpoint will be able to get
finalized.

We can recover from this by instituting a “leak” which dissipates the
deposits of validators that do not prepare or commit, until eventually their
deposit sizes decrease low enough that the validators that are preparing

11



Figure 5: Despite violating slashing conditions to make a chain split, because
the attacker has already withdrawn on both chains they do not lose any
money. This is often called a long-range atack.

and committing are a 2
3

supermajority. The simplest possible formula is
something like “validators with deposit size D lose D ∗ p in every epoch
in which they do not prepare and commit”, though to resolve catastrophic
crashes more quickly a formula which increases the rate of dissipation in the
event of a long streak of non-finalized blocks may be optimal.

The dissipated portion of deposits can either be burned or simply forcibly
withdrawn and immediately refunded to the validator; which of the two
strategies to use, or what combination, is an economic incentive concern and
thus outside the scope of this paper.

Note that this does introduce the possibility of two conflicting check-
points being finalized, with validators only losing money on one of the two
checkpoints as seen in Figure 6.

If the goal is simply to achieve maximally close to 50% fault tolerance,
then clients should simply favor the finalized checkpoint that they received
earlier. However, if clients are also interested in defeating 51% censorship
attacks, then they may want to at least sometimes choose the minority

12



Figure 6: The checkpoint on the left can be finalized immediately. The
checkpoint on the right can be finalized after some time, once offline validator
deposits sufficiently dissipate.

chain. All forms of “51% attacks” can thus be resolved fairly cleanly via
“user-activated soft forks” that reject what would normally be the dominant
chain. Particularly, note that finalizing even one block on the dominant chain
precludes the attacking validators from preparing on the minority chain be-
cause of Commandment II, at least until their balances decrease to the point
where the minority can commit, so such a fork would also serve the function
of costing the majority attacker a very large portion of their deposits.

7 Conclusions

This introduces the basic workings of Casper the Friendly Finality Gadget’s
prepare and commit mechanism and fork choice rule, in the context of Byzan-
tine fault tolerance analysis. Separate papers will serve the role of explaining
and analyzing incentives inside of Casper, and the different ways that they

13



can be parametrized and the consequences of these paramtrizations.

8 Acknowledgements

We thank Virgil Griffith for review and Sandro Lera for mathematics.

14


