
Casper the Friendly Finality Gadget: Basic
Structure

Vitalik Buterin
Ethereum Foundation

August 15, 2017

Abstract

We give an introduction to the non-economic details of Casper:
the Friendly Finality Gadget, Phase 1.

1 Introduction, Protocol I

In the Casper protocol, there is a set of validators, and in each epoch valida-
tors have the ability to send two kinds of messages:

[PREPARE, epoch, hash, epochsource, hashsource]

and
[COMMIT, epoch, hash]

An epoch is a period of 100 epochs; epoch n begins at block n ∗ 100 and
ends at block n∗100+99. A checkpoint for epoch n is a block with number n∗
100−1; in a smoothly running blockchain there will usually be one checkpoint
per epoch, but due to network latency or deliberate attacks there may be
multiple competing checkpoints. The parent checkpoint of a checkpoint is
the 100th ancestor of the checkpoint block, and an ancestor checkpoint of a
checkpoint is either the parent checkpoint, or an ancestor checkpoint of the
parent checkpoint. We define the ancestry hash of a checkpoint as follows:

• The ancestry hash of the implied “genesis checkpoint” before epoch 0
is zero.

1



• The ancestry hash of any other checkpoint is the keccsk256 hash of the
ancestry hash of its parent concatenated with the hash of the check-
point.

Ancestry hashes thus form a direct hash chain, and otherwise have a
one-to-one correspondence with checkpoint hashes.

During epoch n, validators are expected to send prepare and commit mes-
sages specifying epoch n, and the ancestry hash of a checkpoint for epoch n
(i.e. with block number n∗ 100− 1). Prepare messages are expected to spec-
ify as hashsource a checkpoint for any previous epoch which is justified (see
below), and the epochsource is expected to be the epoch of that checkpoint.

Each validator has a deposit size; when a validator joins their deposit
size is equal to the number of coins that they deposited, and from there on
each validator’s deposit size rises and falls as the validator receives rewards
and penalties. For the rest of this paper, when we say “2

3
of validators”, we

are referring to a deposit-weighted fraction; that is, a set of validators whose
combined deposit size equals to at least 2

3
of the total deposit size of the

entire set of validators. We also use “2
3

commits” as shorthand for “commits
from 2

3
of validators”.

If, during an epoch e, for some specific ancestry hash h, for any specific
(epochsource, hashsource pair), there exist 2

3
prepares of the form

[PREPARE, e, h, epochsource, hashsource]

, then h is considered justified. If 2
3

commits are sent of the form

[COMMIT, e, h]

then h is considered finalized.
We add the following modifications:

• For a checkpoint to be finalized, it must be justified.

• For a checkpoint to be justified, the hashsource used to justify it must
itself be justified.

• Prepare and commit messages are only accepted as part of blocks; that
is, for a client to see 2

3
commits of some hash, they must receive a block

such that in the chain terminating at that block 2
3

commits for that
hash have been processed.

2



This gives substantial gains in implementation simplicity, because this
means that we can now have a fork choice rule where the “score” of a block
only depends on the block and its children, putting it into a similar category
as more traditional PoW-based fork choice rules such as the longest chain
rule and GHOST. However, this fork choice rule is also finality-bearing : it is
impossible for two incompatible checkpoints to be finalized unless at least 1

3

of the validators violated a slashing condition (see below).
There are two slashing conditions:

1. NO DBL PREPARE: a validator cannot prepare two different check-
points for the same epoch.

2. PREPARE COMMIT CONSISTENCY: if a validator has made
a commit with epoch n, they cannot make a prepare with epoch > n
and epochsource < n.

Earlier versions of Casper had four slashing conditions, but we can reduce
to two because of the three modifications above; they ensure that blocks will
not register commits or prepares that violate the other two conditions.

2 Proof Sketch of Safety and Plausible Live-

ness

We give a proof sketch of two properties of this scheme: safety and plausible
liveness. Safety means that two incompatible checkpoints cannot be finalized
unless at least 1

3
of validators violate a slashing condition. Plausible liveness

means that it is always possible for 2
3

of honest validators to finalize a new
checkpoint, regardless of what previous events took place.

Suppose that two incompatible checkpoints A (epoch eA) and B (epoch
eB) are finalized:

[diagram]
This implies 2

3
commits and 2

3
prepares in epochs eA and eB. In the triv-

ial case where eA = eB, this implies that some intersection of 1
3

of validators
must have violated NO DBL PREPARE. In other cases, there must exist
two chains eA > e1A > e2A > ... > G and eB > e1B > e2B > ... > G of justified
checkpoints, both terminating at the genesis. Suppose without loss of gener-
ality that eA > eB. Then, there must be some eiA that either eiA = eB or eiA >

3



eB > ei+1
A . In the first case, since Ai and B both have 2

3
prepares, at least 1

3

of validators violated NO DBL PREPARE. Otherwise, B has 2
3

commits
and there exist 2

3
prepares with epoch > B and epochsource < B, so at least

1
3

of validators violated PREPARE COMMIT CONSISTENCY. This
proves safety.

Now, we prove liveness. Suppose that all existing validators have sent
some sequence of prepare and commit messages. Let M with epoch eM
be the highest-epoch checkpoint that was justified. Honest validators have
not committed on any block which is not justified. Hence, neither slashing
condition stops them from making prepares on a child of M , using eM as
epochsource, and then committing this child.

3 Dynamic Validator Sets

We define the following constants and functions:

• BIR(D): determines the base interest rate paid to each validator, tak-
ing as an input the current total quantity of deposited ether.

• BP (D, e, LFE): determines the “base penalty constant” - a value ex-
pressed as a percentage rate that is used as the “scaling factor” for all
penalties; for example, if at the current time BP (...) = 0.001, then a
penalty of size 1.5 means a validator loses 0.15% of their deposit. Takes
as inputs the current total quantity of deposited ether D, the current
epoch e and the last finalized epoch LFE. Note that in a “perfect”
protocol execution, e− LFE always equals 1.

• NCP (“non-commit penalty”): the penalty for not committing, if there
was a justified hash which the validator could have committed

• NCCP (α) (“non-commit collective penalty”): if α of validators are not
seen to have committed during an epoch, and that epoch had a justified
hash so any validator could have committed, then all validators are
charged a penalty proportional to NCCP (α). Must be monotonically
increasing, and satisfy NCCP (0) = 0.

• NPP (“non-prepare penalty”): the penalty for not preparing

4



• NPCP (α) (“non-prepare collective penalty”): if α of validators are not
seen to have prepared during an epoch, then all validators are charged a
penalty proportional to NCCP (α). Must be monotonically increasing,
and satisfy NPCP (0) = 0.

Note that preparing and committing does not guarantee that the validator
will not incur NPP and NCP ; it could be the case that either because of
very high network latency or a malicious majority censorship attack, the
prepares and commits are not included into the blockchain in time and so
the incentivization mechanism does not know about them. For NPCP and
NCCP similarly, the α input is the portion of validators whose prepares
and commits are included, not the portion of validators who tried to send
prepares and commits.

When we talk about preparing and committing the “correct value”, we
are referring to the hash and epochsource and hashsource recommended by the
protocol state, as described above.

We now define the following reward and penalty schedule, which runs
every epoch.

• Let D be the current total quantity of deposited ether, and e − LFE
be the number of epochs since the last finalized epoch.

• All validators get a reward of BIR(D) every epoch (eg. if BIR(D) =
0.0002 then a validator with 10000 coins deposited gets a per-epoch
reward of 2 coins)

• If the protocol does not see a prepare from a given validator during the
given epoch, they are penalized BP (D, e, LFE) ∗NPP

• If the protocol saw prepares from portion pp validators during the given
epoch, every validator is penalized BP (D, e, LFE) ∗NPCP (1 − pp)

• If the protocol does not see a commit from a given validator during the
given epoch, and a prepare was justified so a commit could have been
seen, they are penalized BP (D,E,LFE) ∗NCP .

• If the protocol saw commits from portion pc validators during the given
epoch, and a prepare was justified so any validator could have commit-
ted, then every validator is penalized BP (D, e, LFE) ∗NCCP (1− pp)

5



This is the entirety of the incentivization structure, though without func-
tions and constants defined; we will define these later, attempting as much as
possible to derive the specific values from desired objectives and first princi-
ples. For now we will only say that all constants are positive and all functions
output non-negative values for any input within their range. Additionally,
NPCP (0) = NCCP (0) = 0 and NPCP and NCCP must both be nonde-
creasing.

4 Claims

We seek to prove the following:

• If each validator has less than 1
3

of total deposits, then preparing and
committing the value suggested by the proposal mechanism is a Nash
equilibrium.

• Even if all validators collude, the ratio between the harm incurred by
the protocol and the penalties paid by validators is bounded above by
some constant. Note that this requires a measure of “harm incurred by
the protocol”; we will discuss this in more detail later.

• The griefing factor, the ratio between penalties incurred by validators
who are victims of an attack and penalties incurred by the validators
that carried out the attack, can be bounded above by 2, even in the
case where the attacker holds a majority of the total deposits.

5 Individual choice analysis

The individual choice analysis is simple. Suppose that the proposal mecha-
nism selects a hash H to prepare for epoch e, and the Casper incentivization
mechanism specifies some epochsource and hashsource. Because, as per defini-
tion of the Nash equilibrium, we are assuming that all validators except for
one particular validator that we are analyzing is following the equilibrium
strategy, we know that ≥ 2

3
of validators prepared in the last epoch and so

epochsource = e− 1, and hashsource is the direct parent of H.
Hence, the PREPARE COMMIT CONSISTENCY slashing condition poses

no barrier to preparing (e,H, epochsource, hashsource). Since, in epoch e, we

6



are assuming that all other validators will prepare these values and then
commit H, we know H will be the hash in the main chain, and so a val-
idator will pay a penalty proportional to NPP (plus a further penalty from
their marginal contribution to the NPCP penalty) if they do not prepare
(e,H, epochsource, hashsource), and they can avoid this penalty if they do pre-
pare these values.

We are assuming that there are 2
3

prepares for (e,H, epochsource, hashsource),
and so PREPARE REQ poses no barrier to committing H. Committing H
allows a validator to avoid NCP (as well as their marginal contribution to
NCCP ). Hence, there is an economic incentive to commit H. This shows
that, if the proposal mechanism succeeds at presenting to validators a single
primary choice, preparing and committing the value selected by the proposal
mechanism is a Nash equilibrium.

6 Collective choice model

To model the protocol in a collective-choice context, we will first define a
protocol utility function. The protocol utility function defines “how well the
protocol execution is doing”. The protocol utility function cannot be derived
mathematically; it can only be conceived and justified intuitively.

Our protocol utility function is:

U =
ec∑
e=0

−log2(e− LFE(e)) −M ∗ F

Where:

• e is the current epoch, going from epoch 0 to ec, the current epoch

• LFE(e) is the last finalized epoch before e

• M is a very large constant

• F is 1 if a safety failure has taken place, otherwise 0

The second term in the function is easy to justify: safety failures are very
bad. The first term is trickier. To see how the first term works, consider the
case where every epoch such that e mod N , for some N , is zero is finalized
and other epochs are not. The average total over each N -epoch slice will be

7



roughly
∑N
i=1 −log2(i) ≈ N ∗ (log2(N) − 1

ln(2)
). Hence, the utility per block

will be roughly −log2(N). This basically states that a blockchain with some
finality time N has utility roughly −log(N), or in other words increasing the
finality time of a blockchain by a constant factor causes a constant loss of
utility. The utility difference between 1 minute finality and 2 minute finality
is the same as the utility difference between 1 hour finality and 2 hour finality.

This can be justified in two ways. First, one can intuitively argue that
a user’s psychological estimation of the discomfort of waiting for finality
roughly matches this kind of logarithmic utility schedule. At the very least, it
should be clear that the difference between 3600 second finality and 3610 sec-
ond finality feels much more negligible than the difference between 1 second
finality and 11 second finality, and so the claim that the difference between
10 second finality and 20 second finality is similar to the difference between
1 hour finality and 2 hour finality should not seem farfetched. Second, one
can look at various blockchain use cases, and see that they are roughly log-
arithmically uniformly distributed along the range of finality times between
around 200 miliseconds (“Starcraft on the blockchain”) and one week (land
registries and the like).

Now, we need to show that, for any given total deposit size, loss to protocol utility
validator penalties

is bounded. There are two ways to reduce protocol utility: (i) cause a safety
failure, and (ii) have ≥ 1

3
of validators not prepare or not commit to prevent

finality. In the first case, validators lose a large amount of deposits for vi-
olating the slashing conditions. In the second case, in a chain that has not
been finalized for e− LFE epochs, the penalty to attackers is

min(NPP ∗ 1

3
+NPCP (

1

3
), NCP ∗ 1

3
+NCCP (

1

3
)) ∗BP (D, e, LFE)

To enforce a ratio between validator losses and loss to protocol utility, we
set:

BP (D, e, LFE) =
k

Dp
+ k2 ∗ floor(log2(e− LFE))

The first term serves to take profits for non-committers away; the second
term creates a penalty which is proportional to the loss in protocol utility.

8



7 Griefing factor analysis

Griefing factor analysis is important because it provides one way to quanitfy
the risk to honest validators. In general, if all validators are honest, and if
network latency stays below the length of an epoch, then validators face zero
risk beyond the usual risks of losing or accidentally divulging access to their
private keys. In the case where malicious validators exist, however, they can
interfere in the protocol in ways that cause harm to both themselves and
honest validators.

We can approximately define the ”griefing factor” as follows:

Definition 1 A strategy used by a coalition in a given mechanism exhibits
a griefing factor B if it can be shown that this strategy imposes a loss of
B ∗ x to those outside the coalition at the cost of a loss of x to those inside
the coalition. If all strategies that cause deviations from some given baseline
state exhibit griefing factors less than or equal to some bound B, then we call
B a griefing factor bound.

A strategy that imposes a loss to outsiders either at no cost to a coalition,
or to the benefit of a coalition, is said to have a griefing factor of infinity.
Proof of work blockchains have a griefing factor bound of infinity because a
51% coalition can double its revenue by refusing to include blocks from other
participants and waiting for difficulty adjustment to reduce the difficulty.
With selfish mining, the griefing factor may be infinity for coalitions of size
as low as 23.21%.

Let us start off our griefing analysis by not taking into account validator
churn, so the validator set is always the same. In Casper, we can identify the
following deviating strategies:

1. A minority of validators do not prepare, or prepare incorrect values.

2. (Mirror image of 1) A censorship attack where a majority of validators
does not accept prepares from a minority of validators (or other iso-
morphic attacks such as waiting for the minority to prepare hash H1
and then preparing H2, making H2 the dominant chain and denying
the victims their rewards)

3. A minority of validators do not commit.

9



4. (Mirror image of 3) A censorship attack where a majority of validators
does not accept commits from a minority of validators

Notice that, from the point of view of griefing factor analysis, it is im-
material whether or not any hash in a given epoch was justified or finalized.
The Casper mechanism only pays attention to finalization in order to calcu-
late DF (D, e, LFE), the penalty scaling factor. This value scales penalties
evenly for all participants, so it does not affect griefing factors.

Let us now analyze the attack types:
Attack Amount lost by at-

tacker
Amount lost by victims

Minority of size α < 1
2

non-prepares
NPP ∗α+NPCP (α)∗
α

NPCP (α) ∗ (1 − α)

Majority censors α < 1
2

prepares
NPCP (α) ∗ (1 − α) NPP ∗α+NPCP (α)∗

α
Minority of size α < 1

2

non-commits
NCP ∗α+NCCP (α)∗
α

NCCP (α) ∗ (1 − α)

Majority censors α < 1
2

commits
NCCP (α) ∗ (1 − α) NCP ∗α+NCCP (α)∗

α
In general, we see a perfect symmetry between the non-commit case and

the non-prepare case, so we can assume NCCP (α)
NCP

= NPCP (α)
NPP

. Also, from a
protocol utility standpoint, we can make the observation that seeing 1

3
≤

pc <
2
3

commits is better than seeing fewer commits, as it gives at least some
economic security against finality reversions, so we do want to reward this
scenario more than the scenario where we get 1

3
≤ pc <

2
3

prepares. Another
way to view the situation is to observe that 1

3
non-prepares causes everyone

to non-commit, so it should be treated with equal severity.
In the normal case, anything less than 1

3
commits provides no economic

security, so we can treat pc <
1
3

commits as equivalent to no commits; this
thus suggests NPP = 2 ∗NCP . We can also normalize NCP = 1.

Now, let us analyze the griefing factors, to try to determine an optimal
shape for NCCP . The griefing factor for non-committing is:

(1 − α) ∗NCCP (α)

α ∗ (1 +NCCP (α))

The griefing factor for censoring is the inverse of this. If we want the
griefing factor for non-committing to equal one, then we could compute:

10



α ∗ (1 +NCCP (α)) = (1 − α) ∗NCCP (α)

1 +NCCP (α)

NCCP (α)
=

1 − α

α

1

NCCP (α)
=

1 − α

α
− 1

NCCP (α) =
α

1 − 2α

Note that for α = 1
2
, this would set the NCCP to infinity. Hence, with

this design a griefing factor of 1 is infeasible. We can achieve that effect in a
different way - by makingNCP itself a function of α; in this case, NCCP = 1
and NCP = max(0, 1−2∗α) would achieve the desired effect. If we want to
keep the formula for NCP constant, and the formula for NCCP reasonably
simple and bounded, then one alternative is to set NCCP (α) = α

1−α ; this

keeps griefing factors bounded between 1
2

and 2.

8 Pools

In a traditional (ie. not sharded or otherwise scalable) blockchain, there
is a limit to the number of validators that can be supported, because each
validator imposes a substantial amount of overhead on the system. If we
accept a maximum overhead of two consensus messages per second, and an
epoch time of 1400 seconds, then this means that the system can handle 1400
validators (not 2800 because we need to count prepares and commits). Given
that the number of individual users interested in staking will likely exceed
1400, this necessarily means that most users will participate through some
kind of “stake pool”.

Two other reasons to participate in stake pools are (i) to mitigate key
theft risk (i.e. an attacker hacking into their online machine and stealing
the key), and (ii) to mitigate liveness risk, the possibility that the validator
node will go offline, perhaps because the operator does not have the time to
manage a high-uptime setup.

There are several possible kinds of stake pools:

11



• Fully centrally managed: users B1...Bn send coins to pool opera-
tor A. A makes a few deposit transactions containing their combined
balances, fully controls the prepare and commit process, and occasion-
ally withdraws one of their deposits to accommodate users wishing to
withdraw their balances. Requires complete trust.

• Centrally managed but trust-reduced: users B1...Bn send coins
to a pool contract. The contract sends a few deposit transactions con-
taining their combined balances, assigning pool operator A control over
the prepare and commit process, and the task of keeping track of with-
drawal requests. A occasionally withdraws one of their deposits to ac-
commodate users wishing to withdraw their balances; the withdrawals
go directly into the contract, which ensures each user’s right to with-
draw a proportional share. Users need to trust the operator not to
get their coins lose, but the operator cannot steal the coins. The trust
requirement can be reduced further if the pool operator themselves
contributes a large portion of the coins, as this will disincentivize them
from staking maliciously.

• 2-of-3: a user makes a deposit transaction and specifies as validation
code a 2-of-3 multisig, consisting of (i) the user’s online key, (ii) the pool
operator’s online key, and (iii) the user’s offline backup key. The need
for two keys to sign off on a prepare, commit or withdraw minimizes
key theft risk, and a liveness failure on the pool side can be handled by
the user sending their backup key to another pool.

• Multisig managed: users B1...Bn send coins to a pool contract that
works in the exact same way as a centrally managed pool, except that
a multisig of several semi-trusted parties needs to approve each prepare
and commit message.

• Collective: users B1...Bn send coins to a pool contract that that works
in the exact same way as a centrally managed poolg , except that a
threshold signature of at least portion p of the users themselves (say,
p = 0.6) needs to approve each prepare and commit messagge.

We expect pools of different types to emerge to accomodate smaller users.
In the long term, techniques such as blockchain sharding will make it possible
to increase the number of users that can participate as validators directly,

12



and techniques that allow validators to temporarily “log out” of the validator
set when they are offline can mitigate liveness risk.

9 Conclusions

The above analysis gives a parametrized scheme for incentivizing in Casper,
and shows that it is a Nash equilibrium in an uncoordinated-choice model
with a wide variety of settings. We then attempt to derive one possible set of
specific values for the various parameters by starting from desired objectives,
and choosing values that best meet the desired objectives. This analysis does
not include non-economic attacks, as those are covered by other materials,
and does not cover more advanced economic attacks, including extortion and
discouragement attacks. We hope to see more research in these areas, as well
as in the abstract theory of what considerations should be taken into account
when designing reward and penalty schedules.

10 References

Optimal selfish mining strategies in Bitcoin; Ayelet Sapirshtein, Yonatan
Sompolinsky, and Aviv Zohar: https://arxiv.org/pdf/1507.06183.pdf

13


