Added erasure code-based data availability checking code

This commit is contained in:
vub 2017-04-17 09:35:50 -04:00
parent efb1a85848
commit e3db8989b1
10 changed files with 276 additions and 695 deletions

View File

@ -0,0 +1,152 @@
import copy
import poly_utils
import rlp
try:
from Crypto.Hash import keccak
sha3 = lambda x: keccak.new(digest_bits=256, data=x).digest()
except ImportError:
import sha3 as _sha3
sha3 = lambda x: _sha3.sha3_256(x).digest()
# Every point is an element of GF(2**16), so represents two bytes
POINT_SIZE = 2
# Every chunk contains 128 points
POINTS_IN_CHUNK = 128
# A chunk is 256 bytes
CHUNK_SIZE = POINT_SIZE * POINTS_IN_CHUNK
def bytes_to_num(bytez):
o = 0
for b in bytez:
o = (o * 256) + b
return o
def num_to_bytes(inp, n):
o = b''
for i in range(n):
o = bytes([inp % 256]) + o
inp //= 256
return o
assert bytes_to_num(num_to_bytes(31337, 2)) == 31337
# Returns the smallest power of 2 equal to or greater than a number
def higher_power_of_2(x):
higher_power_of_2 = 1
while higher_power_of_2 < x:
higher_power_of_2 *= 2
return higher_power_of_2
# Unfortunately, most padding schemes standardized in cryptography seem to only work for
# block sizes strictly less than 256 bytes. So we'll use RLP plus zero byte padding
# instead (pre-RLP-encode because the RLP encoding adds length data, so the padding
# becomes reversible even in cases where the original data ends in zero bytes)
def pad(data):
med = rlp.encode(data)
return med + b'\x00' * (higher_power_of_2(len(med)) - len(med))
def unpad(data):
c, l1, l2 = rlp.codec.consume_length_prefix(data)
assert c == str
return data[:l1 + l2]
# Deserialize a chunk into a list of points in GF2**16
def chunk_to_points(chunk):
return [bytes_to_num(chunk[i: i + POINT_SIZE]) for i in range(0, CHUNK_SIZE, POINT_SIZE)]
# Serialize a list of points into a chunk
def points_to_chunk(points):
return b''.join([num_to_bytes(p, POINT_SIZE) for p in points])
testdata = sha3(b'cow') * (CHUNK_SIZE // 32)
assert points_to_chunk(chunk_to_points(testdata)) == testdata
# Make a Merkle tree out of a set of chunks
def merklize(chunks):
# Only accept a list of size which is exactly a power of two
assert higher_power_of_2(len(chunks)) == len(chunks)
merkle_nodes = [sha3(x) for x in chunks]
lower_tier = merkle_nodes[::]
higher_tier = []
while len(higher_tier) != 1:
higher_tier = [sha3(lower_tier[i] + lower_tier[i + 1]) for i in range(0, len(lower_tier), 2)]
merkle_nodes = higher_tier + merkle_nodes
lower_tier = higher_tier
merkle_nodes.insert(0, b'\x00' * 32)
return merkle_nodes
class Prover():
def __init__(self, data):
# Pad data
pdata = pad(data)
byte_chunks = [pdata[i: i + CHUNK_SIZE] for i in range(0, len(pdata), CHUNK_SIZE)]
# Decompose it into chunks, where each chunk is a collection of numbers
chunks = []
for byte_chunk in byte_chunks:
chunks.append(chunk_to_points(byte_chunk))
# Compute the polynomials representing the ith number in each chunk
polys = [poly_utils.lagrange_interp([chunk[i] for chunk in chunks], list(range(len(chunks)))) for i in range(POINTS_IN_CHUNK)]
# Use the polynomials to extend the chunks
new_chunks = []
for x in range(len(chunks), len(chunks) * 2):
new_chunks.append(points_to_chunk([poly_utils.eval_poly_at(poly, x) for poly in polys]))
# Total length of data including new points
self.length = len(byte_chunks + new_chunks)
self.extended_data = byte_chunks + new_chunks
# Build up the Merkle tree
self.merkle_nodes = merklize(self.extended_data)
assert len(self.merkle_nodes) == 2 * self.length
self.merkle_root = self.merkle_nodes[1]
# Make a Merkle proof for some index
def prove(self, index):
assert 0 <= index < self.length
adjusted_index = self.length + index
o = [self.extended_data[index]]
while adjusted_index > 1:
o.append(self.merkle_nodes[adjusted_index ^ 1])
adjusted_index >>= 1
return o
# Verify a merkle proof of some index (light client friendly)
def verify_proof(merkle_root, proof, index):
h = sha3(proof[0])
for p in proof[1:]:
if index % 2:
h = sha3(p + h)
else:
h = sha3(h + p)
index //= 2
return h == merkle_root
# Fill data from partially available proofs
# This method returning False can also be used as a verifier for fraud proofs
def fill(merkle_root, orig_data_length, proofs, indices):
if len(proofs) < orig_data_length:
raise Exception("Not enough proofs")
if len(proofs) > orig_data_length:
raise Exception("Too many proofs; if original data has n chunks, n chunks suffice")
for proof, index in zip(proofs, indices):
if not verify_proof(merkle_root, proof, index):
raise Exception("Merkle proof for index %d invalid" % index)
# Convert to points
coords = [chunk_to_points(p[0]) for p in proofs]
# Extract polynomials
polys = [poly_utils.lagrange_interp([c[i] for c in coords], indices) for i in range(POINTS_IN_CHUNK)]
# Fill in the remaining values
full_coords = [None] * orig_data_length * 2
for points, index in zip(coords, indices):
full_coords[index] = points
for i in range(len(full_coords)):
if full_coords[i] is None:
full_coords[i] = [poly_utils.eval_poly_at(poly, i) for poly in polys]
# Serialize
full_chunks = [points_to_chunk(points) for points in full_coords]
# Merklize
merkle_nodes = merklize(full_chunks)
# Check equality of the Merkle root
if merkle_root != merkle_nodes[1]:
return False
return full_chunks

View File

@ -0,0 +1,105 @@
modulus_poly = [1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 1,
1]
modulus_poly_as_int = sum([(v << i) for i, v in enumerate(modulus_poly)])
degree = len(modulus_poly) - 1
two_to_the_degree = 2**degree
two_to_the_degree_m1 = 2**degree - 1
def galoistpl(a):
# 2 is not a primitive root, so we have to use 3 as our logarithm base
if a * 2 < two_to_the_degree:
return (a * 2) ^ a
else:
return (a * 2) ^ a ^ modulus_poly_as_int
# Precomputing a log table for increased speed of addition and multiplication
glogtable = [0] * (two_to_the_degree)
gexptable = []
v = 1
for i in range(two_to_the_degree_m1):
glogtable[v] = i
gexptable.append(v)
v = galoistpl(v)
gexptable += gexptable + gexptable
# Add two values in the Galois field
def galois_add(x, y):
return x ^ y
# In binary fields, addition and subtraction are the same thing
galois_sub = galois_add
# Multiply two values in the Galois field
def galois_mul(x, y):
return 0 if x*y == 0 else gexptable[glogtable[x] + glogtable[y]]
# Divide two values in the Galois field
def galois_div(x, y):
return 0 if x == 0 else gexptable[(glogtable[x] - glogtable[y]) % two_to_the_degree_m1]
# Evaluate a polynomial at a point
def eval_poly_at(p, x):
if x == 0:
return p[0]
y = 0
logx = glogtable[x]
for i, p_coeff in enumerate(p):
if p_coeff:
# Add x**i * coeff
y ^= gexptable[(logx * i + glogtable[p_coeff]) % two_to_the_degree_m1]
return y
# Given p+1 y values and x values with no errors, recovers the original
# p+1 degree polynomial.
# Lagrange interpolation works roughly in the following way.
# 1. Suppose you have a set of points, eg. x = [1, 2, 3], y = [2, 5, 10]
# 2. For each x, generate a polynomial which equals its corresponding
# y coordinate at that point and 0 at all other points provided.
# 3. Add these polynomials together.
def lagrange_interp(pieces, xs):
# Generate master numerator polynomial, eg. (x - x1) * (x - x2) * ... * (x - xn)
root = [1]
for x in xs:
logx = glogtable[x]
root.insert(0, 0)
for j in range(len(root)-1):
if root[j+1] and x:
root[j] ^= gexptable[glogtable[root[j+1]] + logx]
assert len(root) == len(pieces) + 1
# Generate per-value numerator polynomials, eg. for x=x2,
# (x - x1) * (x - x3) * ... * (x - xn), by dividing the master
# polynomial back by each x coordinate
nums = []
for x in xs:
output = [0] * (len(root) - 2) + [1]
logx = glogtable[x]
for j in range(len(root) - 2, 0, -1):
if output[j] and x:
output[j-1] = root[j] ^ gexptable[glogtable[output[j]] + logx]
else:
output[j-1] = root[j]
assert len(output) == len(pieces)
nums.append(output)
# Generate denominators by evaluating numerator polys at each x
denoms = [eval_poly_at(nums[i], xs[i]) for i in range(len(xs))]
# Generate output polynomial, which is the sum of the per-value numerator
# polynomials rescaled to have the right y values
b = [0 for p in pieces]
for i in range(len(xs)):
log_yslice = glogtable[pieces[i]] - glogtable[denoms[i]] + two_to_the_degree_m1
for j in range(len(pieces)):
if nums[i][j] and pieces[i]:
b[j] ^= gexptable[glogtable[nums[i][j]] + log_yslice]
return b
a = 124
b = 8932
c = 12415
assert galois_mul(galois_add(a, b), c) == galois_add(galois_mul(a, c), galois_mul(b, c))

View File

@ -0,0 +1,19 @@
import ec65536
import rlp
# 12.8 kilobyte test string
testdata = 'the cow jumped over the moon!!! ' * 400
prover = ec65536.Prover(testdata)
print("Created prover")
assert ec65536.verify_proof(prover.merkle_root, prover.prove(13), 13)
proofs = [prover.prove(i) for i in range(0, prover.length, 2)]
print("Created merkle proofs")
print("Starting to attempt fill")
response = ec65536.fill(prover.merkle_root, prover.length // 2, proofs, list(range(0, prover.length, 2)))
assert response is not False
assert b''.join(response)[:len(rlp.encode(testdata))] == rlp.encode(testdata)
print("Fill successful")

View File

@ -1,695 +0,0 @@
import copy
# Galois field class and logtable
#
# See: https://en.wikipedia.org/wiki/Finite_field
#
# Note that you can substitute "Galois" with "float" in the code, and
# the code will then magically start using the plain old field of rationals
# instead of this spooky modulo polynomial thing. If you are not an expert in
# finite field theory and want to dig deep into how this code works, I
# recommend adding the line "Galois = float" immediately after this class (and
# not using the methods that require serialization)
#
# As a quick intro to finite field theory, the idea is that there exist these
# things called fields, which are basically sets of objects together with
# rules for addition, subtraction, multiplication, division, such that algebra
# within this field is consistent, even if the results look nonsensical from
# a "normal numbers" perspective. For instance, consider the field of integers
# modulo 7. Here, for example, 2 * 5 = 3, 3 * 4 = 5, 6 * 6 = 1, 6 + 6 = 5.
# However, all algebra still works; for example, (a^2 - b^2) = (a + b)(a - b)
# works for all a,b. For this reason, we can do secret sharing arithmetic
# "over" any field. The reason why Galois fields are preferable is that all
# elements in the Galois field are values in [0 ... 255] (at least using the
# canonical serialization that we use here); no amount of addition,
# multiplication, subtraction or division will ever get you anything else.
# This guarantees that our secret shares will always be serializable as byte
# arrays. The way the Galois field we use here works is that the elements are
# polynomials of elements in the field of integers mod 2, so addition and
# subtraction are xor, and multiplication is modulo x^8 + x^4 + x^3 + x + 1,
# and division is defined by a/b = c iff bc = a and b != 0. In practice, we
# do multiplication and division via a precomputed log table using x+1 as a
# base
# per-byte 2^8 Galois field
# Note that this imposes a hard limit that the number of extended chunks can
# be at most 256 along each dimension
def galoistpl(a):
# 2 is not a primitive root, so we have to use 3 as our logarithm base
unrolla = [a/(2**k) % 2 for k in range(8)]
res = [0] + unrolla
for i in range(8):
res[i] = (res[i] + unrolla[i]) % 2
if res[-1] == 0:
res.pop()
else:
# AES Polynomial
for i in range(9):
res[i] = (res[i] - [1, 1, 0, 1, 1, 0, 0, 0, 1][i]) % 2
res.pop()
return sum([res[k] * 2**k for k in range(8)])
# Precomputing a multiplication and XOR table for increased speed
glogtable = [0] * 256
gexptable = []
v = 1
for i in range(255):
glogtable[v] = i
gexptable.append(v)
v = galoistpl(v)
class Galois:
val = 0
def __init__(self, val):
self.val = val.val if isinstance(self.val, Galois) else val
def __add__(self, other):
return Galois(self.val ^ other.val)
def __mul__(self, other):
if self.val == 0 or other.val == 0:
return Galois(0)
return Galois(gexptable[(glogtable[self.val] +
glogtable[other.val]) % 255])
def __sub__(self, other):
return Galois(self.val ^ other.val)
def __div__(self, other):
if other.val == 0:
raise ZeroDivisionError
if self.val == 0:
return Galois(0)
return Galois(gexptable[(glogtable[self.val] -
glogtable[other.val]) % 255])
def __int__(self):
return self.val
def __repr__(self):
return repr(self.val)
# Modular division class
def mkModuloClass(n):
if pow(2, n, n) != 2:
raise Exception("n must be prime!")
class Mod:
val = 0
def __init__(self, val):
self.val = val.val if isinstance(
self.val, self.__class__) else val
def __add__(self, other):
return self.__class__((self.val + other.val) % n)
def __mul__(self, other):
return self.__class__((self.val * other.val) % n)
def __sub__(self, other):
return self.__class__((self.val - other.val) % n)
def __div__(self, other):
return self.__class__((self.val * other.val ** (n-2)) % n)
def __int__(self):
return self.val
def __repr__(self):
return repr(self.val)
return Mod
# Evaluates a polynomial in little-endian form, eg. x^2 + 3x + 2 = [2, 3, 1]
# (normally I hate little-endian, but in this case dealing with polynomials
# it's justified, since you get the nice property that p[n] is the nth degree
# term of p) at coordinate x, eg. eval_poly_at([2, 3, 1], 5) = 42 if you are
# using float as your arithmetic
def eval_poly_at(p, x):
arithmetic = p[0].__class__
y = arithmetic(0)
x_to_the_i = arithmetic(1)
for i in range(len(p)):
y += x_to_the_i * p[i]
x_to_the_i *= x
return y
# Given p+1 y values and x values with no errors, recovers the original
# p+1 degree polynomial. For example,
# lagrange_interp([51.0, 59.0, 66.0], [1, 3, 4]) = [50.0, 0, 1.0]
# if you are using float as your arithmetic
def lagrange_interp(pieces, xs):
arithmetic = pieces[0].__class__
zero, one = arithmetic(0), arithmetic(1)
# Generate master numerator polynomial
root = [one]
for i in range(len(xs)):
root.insert(0, zero)
for j in range(len(root)-1):
root[j] = root[j] - root[j+1] * xs[i]
# Generate per-value numerator polynomials by dividing the master
# polynomial back by each x coordinate
nums = []
for i in range(len(xs)):
output = []
last = one
for j in range(2, len(root)+1):
output.insert(0, last)
if j != len(root):
last = root[-j] + last * xs[i]
nums.append(output)
# Generate denominators by evaluating numerator polys at their x
denoms = []
for i in range(len(xs)):
denom = zero
x_to_the_j = one
for j in range(len(nums[i])):
denom += x_to_the_j * nums[i][j]
x_to_the_j *= xs[i]
denoms.append(denom)
# Generate output polynomial
b = [zero for i in range(len(pieces))]
for i in range(len(xs)):
yslice = pieces[int(i)] / denoms[int(i)]
for j in range(len(pieces)):
b[j] += nums[i][j] * yslice
return b
# Compresses two linear equations of length n into one
# equation of length n-1
# Format:
# 3x + 4y = 80 (ie. 3x + 4y - 80 = 0) -> a = [3,4,-80]
# 5x + 2y = 70 (ie. 5x + 2y - 70 = 0) -> b = [5,2,-70]
def elim(a, b):
aprime = [x*b[0] for x in a]
bprime = [x*a[0] for x in b]
c = [aprime[i] - bprime[i] for i in range(1, len(a))]
return c
# Linear equation solver
# Format:
# 3x + 4y = 80, y = 5 (ie. 3x + 4y - 80z = 0, y = 5, z = 1)
# -> coeffs = [3,4,-80], vals = [5,1]
def evaluate(coeffs, vals):
arithmetic = coeffs[0].__class__
tot = arithmetic(0)
for i in range(len(vals)):
tot -= coeffs[i+1] * vals[i]
if int(coeffs[0]) == 0:
raise ZeroDivisionError
return tot / coeffs[0]
# Linear equation system solver
# Format:
# ax + by + c = 0, dx + ey + f = 0
# -> [[a, b, c], [d, e, f]]
# eg.
# [[3.0, 5.0, -13.0], [9.0, 1.0, -11.0]] -> [1.0, 2.0]
def sys_solve(eqs):
arithmetic = eqs[0][0].__class__
one = arithmetic(1)
back_eqs = [eqs[0]]
while len(eqs) > 1:
neweqs = []
for i in range(len(eqs)-1):
neweqs.append(elim(eqs[i], eqs[i+1]))
eqs = neweqs
i = 0
while i < len(eqs) - 1 and int(eqs[i][0]) == 0:
i += 1
back_eqs.insert(0, eqs[i])
kvals = [one]
for i in range(len(back_eqs)):
kvals.insert(0, evaluate(back_eqs[i], kvals))
return kvals[:-1]
def polydiv(Q, E):
qpoly = copy.deepcopy(Q)
epoly = copy.deepcopy(E)
div = []
while len(qpoly) >= len(epoly):
div.insert(0, qpoly[-1] / epoly[-1])
for i in range(2, len(epoly)+1):
qpoly[-i] -= div[0] * epoly[-i]
qpoly.pop()
return div
# Given a set of y coordinates and x coordinates, and the degree of the
# original polynomial, determines the original polynomial even if some of
# the y coordinates are wrong. If m is the minimal number of pieces (ie.
# degree + 1), t is the total number of pieces provided, then the algo can
# handle up to (t-m)/2 errors. See:
# http://en.wikipedia.org/wiki/Berlekamp%E2%80%93Welch_algorithm#Example
# (just skip to my example, the rest of the article sucks imo)
def berlekamp_welch_attempt(pieces, xs, master_degree):
error_locator_degree = (len(pieces) - master_degree - 1) / 2
arithmetic = pieces[0].__class__
zero, one = arithmetic(0), arithmetic(1)
# Set up the equations for y[i]E(x[i]) = Q(x[i])
# degree(E) = error_locator_degree
# degree(Q) = master_degree + error_locator_degree - 1
eqs = []
for i in range(2 * error_locator_degree + master_degree + 1):
eqs.append([])
for i in range(2 * error_locator_degree + master_degree + 1):
neg_x_to_the_j = zero - one
for j in range(error_locator_degree + master_degree + 1):
eqs[i].append(neg_x_to_the_j)
neg_x_to_the_j *= xs[i]
x_to_the_j = one
for j in range(error_locator_degree + 1):
eqs[i].append(x_to_the_j * pieces[i])
x_to_the_j *= xs[i]
# Solve 'em
# Assume the top error polynomial term to be one
errors = error_locator_degree
ones = 1
while errors >= 0:
try:
polys = sys_solve(eqs) + [one] * ones
qpoly = polys[:errors + master_degree + 1]
epoly = polys[errors + master_degree + 1:]
break
except ZeroDivisionError:
for eq in eqs:
eq[-2] += eq[-1]
eq.pop()
eqs.pop()
errors -= 1
ones += 1
if errors < 0:
raise Exception("Not enough data!")
# Divide the polynomials
qpoly = polys[:error_locator_degree + master_degree + 1]
epoly = polys[error_locator_degree + master_degree + 1:]
div = []
while len(qpoly) >= len(epoly):
div.insert(0, qpoly[-1] / epoly[-1])
for i in range(2, len(epoly)+1):
qpoly[-i] -= div[0] * epoly[-i]
qpoly.pop()
# Check
corrects = 0
for i, x in enumerate(xs):
if int(eval_poly_at(div, x)) == int(pieces[i]):
corrects += 1
if corrects < master_degree + errors:
raise Exception("Answer doesn't match (too many errors)!")
return div
# Extends a list of integers in [0 ... 255] (if using Galois arithmetic) by
# adding n redundant error-correction values
def extend(data, n, arithmetic=Galois):
data2 = map(arithmetic, data)
data3 = data[:]
poly = berlekamp_welch_attempt(data2,
map(arithmetic, range(len(data))),
len(data) - 1)
for i in range(n):
data3.append(int(eval_poly_at(poly, arithmetic(len(data) + i))))
return data3
# Repairs a list of integers in [0 ... 255]. Some integers can be erroneous,
# and you can put None in place of an integer if you know that a certain
# value is defective or missing. Uses the Berlekamp-Welch algorithm to
# do error-correction
def repair(data, datasize, arithmetic=Galois):
vs, xs = [], []
for i, v in enumerate(data):
if v is not None:
vs.append(arithmetic(v))
xs.append(arithmetic(i))
poly = berlekamp_welch_attempt(vs, xs, datasize - 1)
return [int(eval_poly_at(poly, arithmetic(i))) for i in range(len(data))]
# Extends a list of bytearrays
# eg. extend_chunks([map(ord, 'hello'), map(ord, 'world')], 2)
# n is the number of redundant error-correction chunks to add
def extend_chunks(data, n, arithmetic=Galois):
o = []
for i in range(len(data[0])):
o.append(extend(map(lambda x: x[i], data), n, arithmetic))
return map(list, zip(*o))
# Repairs a list of bytearrays. Use None in place of a missing array.
# Individual arrays can contain some missing or erroneous data.
def repair_chunks(data, datasize, arithmetic=Galois):
first_nonzero = 0
while not data[first_nonzero]:
first_nonzero += 1
for i in range(len(data)):
if data[i] is None:
data[i] = [None] * len(data[first_nonzero])
o = []
for i in range(len(data[0])):
o.append(repair(map(lambda x: x[i], data), datasize, arithmetic))
return map(list, zip(*o))
# Extends either a bytearray or a list of bytearrays or a list of lists...
# Used in the cubify method to expand a cube in all dimensions
def deep_extend_chunks(data, n, arithmetic=Galois):
if not isinstance(data[0], list):
return extend(data, n, arithmetic)
else:
o = []
for i in range(len(data[0])):
o.append(
deep_extend_chunks(map(lambda x: x[i], data), n, arithmetic))
return map(list, zip(*o))
# ISO/IEC 7816-4 padding
def pad(data, size):
data = data[:]
data.append(128)
while len(data) % size != 0:
data.append(0)
return data
# Removes ISO/IEC 7816-4 padding
def unpad(data):
data = data[:]
while data[-1] != 128:
data.pop()
data.pop()
return data
# Splits a bytearray into a given number of chunks with some
# redundant chunks
def split(data, numchunks, redund):
chunksize = len(data) / numchunks + 1
data = pad(data, chunksize)
chunks = []
for i in range(0, len(data), chunksize):
chunks.append(data[i: i+chunksize])
o = extend_chunks(chunks, redund)
return o
# Recombines chunks into the original bytearray
def recombine(chunks, datalength):
datasize = datalength / len(chunks[0]) + 1
c = repair_chunks(chunks, datasize)
return unpad(sum(c[:datasize], []))
h = '0123456789abcdef'
hexfy = lambda x: h[x//16]+h[x % 16]
unhexfy = lambda x: h.find(x[0]) * 16 + h.find(x[1])
split2 = lambda x: map(lambda a: ''.join(a), zip(x[::2], x[1::2]))
# Canonical serialization. First argument is a bytearray, remaining
# arguments are strings to prepend
def serialize_chunk(*args):
chunk = args[0]
if not chunk or chunk[0] is None:
return None
metadata = args[1:]
return '-'.join(map(str, metadata) + [''.join(map(hexfy, chunk))])
def deserialize_chunk(chunk):
data = chunk.split('-')
metadata, main = data[:-1], data[-1]
return metadata, map(unhexfy, split2(main))
# Splits a string into a given number of chunks with some redundant chunks
def split_file(f, numchunks=5, redund=5):
f = map(ord, f)
ec = split(f, numchunks, redund)
o = []
for i, c in enumerate(ec):
o.append(
serialize_chunk(c, *[i, numchunks, numchunks + redund, len(f)]))
return o
def recombine_file(chunks):
chunks2 = map(deserialize_chunk, chunks)
metadata = map(int, chunks2[0][0])
o = [None] * metadata[2]
for chunk in chunks2:
o[int(chunk[0][0])] = chunk[1]
return ''.join(map(chr, recombine(o, metadata[3])))
outersplitn = lambda x, k: map(lambda i: x[i:i+k], range(len(x)))
# Splits a bytearray into a hypercube with `dim` dimensions with the original
# data being in a sub-cube of width `width` and the expanded cube being of
# width `width+redund`. The cube is self-healing; if any edge in any dimension
# has missing or erroneous pieces, we can use the Berlekamp-Welch algorithm
# to fix this
def cubify(f, width, dim, redund):
chunksize = len(f) / width**dim + 1
data = pad(f, width**dim)
chunks = []
for i in range(0, len(data), chunksize * width):
for j in range(width):
chunks.append(data[i+j*chunksize: i+j*chunksize+chunksize])
for i in range(dim):
o = []
for j in range(0, len(chunks), width):
e = chunks[j: j + width]
o.append(
deep_extend_chunks(e, redund))
chunks = o
return chunks[0]
# `pos` is an array of coordinates. Go deep into a nested list
def descend(obj, pos):
for p in pos:
obj = obj[p]
return obj
# Go deep into a nested list and modify the value
def descend_and_set(obj, pos, val):
immed = descend(obj, pos[:-1])
immed[pos[-1]] = val
# Use the Berlekamp-Welch algorithm to try to "heal" a particular missing
# or damaged coordinate
def heal_cube(cube, width, dim, pos, datalen):
for d in range(len(pos)):
o = []
for i in range(len(cube)):
o.append(descend(cube, pos[:d] + [i] + pos[d+1:]))
try:
o = repair_chunks(o, width)
for i in range(len(cube)):
path = pos[:d] + [i] + pos[d+1:]
descend_and_set(cube, path, o[i])
except:
pass
def pack_metadata(meta):
return map(str, meta['coords']) + [
str(meta['base_width']),
str(meta['extended_width']),
str(meta['filesize'])
]
def unpack_metadata(meta):
return {
'coords': map(int, meta[:-3]),
'base_width': int(meta[-3]),
'extended_width': int(meta[-2]),
'filesize': int(meta[-1])
}
# Helper to serialize the contents of a cube of byte arrays
def _ser(chunk, meta):
if chunk is None or (not isinstance(chunk[0], list) and
chunk[0] is not None):
u = serialize_chunk(chunk, *pack_metadata(meta))
return u
else:
o = []
for i, c in enumerate(chunk):
meta2 = copy.deepcopy(meta)
meta2['coords'] += [i]
o.append(_ser(c, meta2))
return o
# Converts a deep list into a shallow list
def flatten(chunks):
if not isinstance(chunks, list):
return [chunks]
else:
o = []
for c in chunks:
o.extend(flatten(c))
return o
# Converts a file into a multidimensional set of chunks with
# the desired parameters
def serialize_cubify(f, width, dim, redund):
f = map(ord, f)
cube = cubify(f, width, dim, redund)
metadata = {
'base_width': width,
'extended_width': width + redund,
'coords': [],
'filesize': len(f)
}
cube_of_serialized_chunks = _ser(cube, metadata)
return flatten(cube_of_serialized_chunks)
# Converts a set of serialized chunks into a partially filled cube
def construct_cube(pieces):
pieces = map(deserialize_chunk, pieces)
metadata = unpack_metadata(pieces[0][0])
dim = len(metadata['coords'])
cube = None
for i in range(dim):
cube = [copy.deepcopy(cube) for i in range(metadata['extended_width'])]
for p in pieces:
descend_and_set(cube, unpack_metadata(p[0])['coords'], p[1])
return cube
# Tries to recreate the chunk at a particular coordinate given a set of
# other chunks
def heal_set(pieces, coords):
c = construct_cube(pieces)
metadata, piecezzz = deserialize_chunk(pieces[0])
metadata = unpack_metadata(metadata)
heal_cube(c,
metadata['base_width'],
len(metadata['coords']),
coords,
metadata['filesize'])
metadata2 = copy.deepcopy(metadata)
metadata2["coords"] = []
return filter(lambda x: x, flatten(_ser(c, metadata2)))
def number_to_coords(n, w, dim):
c = [0] * dim
for i in range(dim):
c[i] = n / w**(dim - i - 1)
n %= w**(dim - i - 1)
return c
def full_heal_set(pieces):
c = construct_cube(pieces)
metadata, piecezzz = deserialize_chunk(pieces[0])
metadata = unpack_metadata(metadata)
while 1:
done = True
unfilled = False
i = 0
while i < metadata['extended_width'] ** len(metadata['coords']):
coords = number_to_coords(i,
metadata['extended_width'],
len(metadata['coords']))
v = descend(c, coords)
heal_cube(c,
metadata['base_width'],
len(metadata['coords']),
coords,
metadata['filesize'])
v2 = descend(c, coords)
if v != v2:
done = False
if v is None and v2 is None:
unfilled = True
i += 1
if done and not unfilled:
break
elif done and unfilled:
raise Exception("not enough data or too much corrupted data")
o = []
for i in range(metadata['base_width'] ** len(metadata['coords'])):
coords = number_to_coords(i,
metadata['base_width'],
len(metadata['coords']))
o.extend(descend(c, coords))
return ''.join(map(chr, unpad(o)))