Made defragmentation work

This commit is contained in:
Vitalik Buterin 2018-10-06 18:26:41 -04:00
parent 75bc0ab0b2
commit c23dcd4ab8
No known key found for this signature in database
GPG Key ID: A99D082A6179F987

View File

@ -1,6 +1,11 @@
import random, heapq import random, heapq
# Assuming `online` is the set of users that is online, find a path to
# send `amount` coins from `frm` to `to` through `coins` where each
# step along the path is between users that have adjacent fragments.
# A transfer done in this way does not contribute to fragmentation.
def find_path(coins, frm, to, amount, online): def find_path(coins, frm, to, amount, online):
# Determine who is whose neighbor
neighbor_map = {} neighbor_map = {}
for i in range(amount, len(coins) - amount + 1): for i in range(amount, len(coins) - amount + 1):
if coins[i-1] != coins[i]: if coins[i-1] != coins[i]:
@ -9,9 +14,10 @@ def find_path(coins, frm, to, amount, online):
neighbor_map[coins[i-1]] = list(set(neighbor_map.get(coins[i-1], []) + [coins[i]])) neighbor_map[coins[i-1]] = list(set(neighbor_map.get(coins[i-1], []) + [coins[i]]))
if coins[i:i+amount] == [coins[i]] * amount: if coins[i:i+amount] == [coins[i]] * amount:
neighbor_map[coins[i]] = list(set(neighbor_map.get(coins[i], []) + [coins[i-1]])) neighbor_map[coins[i]] = list(set(neighbor_map.get(coins[i], []) + [coins[i-1]]))
# Search for the path
parents = {frm: None} parents = {frm: None}
q = [(0, frm)] q = [(0, frm)]
while len(q) > 0: while q:
dist, sender = heapq.heappop(q) dist, sender = heapq.heappop(q)
neighbors = neighbor_map.get(sender, []) neighbors = neighbor_map.get(sender, [])
for n in neighbors: for n in neighbors:
@ -25,21 +31,7 @@ def find_path(coins, frm, to, amount, online):
return o return o
return False return False
# How many fragments are in this set of coins?
def mk_fragmented_shuffle(coins, owners, shuffs):
L = [(i * owners)//coins for i in range(coins)]
for i in range(shuffs):
x1 = random.randrange(n)
x2 = random.randrange(n)
value = int(min(n - x1, n - x2, abs(x2 - x1)) ** random.random())
L[x1:x1+value], L[x2:x2+value] = L[x2:x2+value], L[x1:x1+value]
return L
def mk_shuffle(n):
L = list(range(1, n+1))
random.shuffle(L)
return ','.join([str(x) for x in L])
def fragments(vals): def fragments(vals):
tot = 1 tot = 1
for i in range(1, len(vals)): for i in range(1, len(vals)):
@ -47,6 +39,8 @@ def fragments(vals):
tot += 1 tot += 1
return tot return tot
# Send `amt` coins from `frm` to `to`. Increases fragmentation by
# maximum 1
def send_coins(coins, frm, to, amt): def send_coins(coins, frm, to, amt):
coins_to_send = amt coins_to_send = amt
for i in range(len(coins)): for i in range(len(coins)):
@ -57,45 +51,96 @@ def send_coins(coins, frm, to, amt):
return True return True
return False return False
def shunt_coins(coins, frm, to, amt): # Get the concrete range to transfer if we are transfering `amt`
# coins from `frm` to `to` (must be neighboring fragments)
def get_coin_shunt(coins, frm, to, amt):
i = 1 i = 1
while i < len(coins): L = len(coins)
while i < len(coins) and not((coins[i-1] == frm and coins[i] == to) or (coins[i-1] == to and coins[i] == frm)): while i < L:
while i < L and coins[i] not in (frm, to):
i += 1 i += 1
if coins[i-amt:i] == [frm] * amt: if not((coins[i-1] == frm and coins[i] == to) or (coins[i-1] == to and coins[i] == frm)):
i += 1
continue
if coins[i-amt:i] == [frm] * amt and coins[i] == to:
coins[i-amt:i] = [to] * amt coins[i-amt:i] = [to] * amt
return True return (i-amt, i, to)
if coins[i:i+amt] == [frm] * amt: if coins[i:i+amt] == [frm] * amt and coins[i-1] == to:
coins[i:i+amt] = [to] * amt coins[i:i+amt] = [to] * amt
return True return (i, i+amt, to)
i += 1 i += 1
return False return False
userz = 100 # Find the largest slice controlled by `acct`
def maxslice(coins, acct):
maxsz = 0
sz = 0
for i in range(len(coins)):
if coins[i] == acct:
sz += 1
maxsz = max(sz, maxsz)
else:
sz = 0
return maxsz
# Count the number of coins and the number of fragments
# held by each user
def count_coins_and_fragments(coins):
user_count = max(coins) + 1
coin_count = [0] * user_count
frag_count = [0] * user_count
for i in range(len(coins)):
coin_count[coins[i]] += 1
if i > 0 and coins[i] != coins[i-1]:
frag_count[coins[i]] += 1
return coin_count, frag_count
userz = 25
coinz = 50000 coinz = 50000
part_online = 0.2 part_online = 0.1
c = [(i*userz)//coinz for i in range(coinz)] initial_fragments_per_user = 100
for i in range(25000): ordering = list(range(userz)) * initial_fragments_per_user
if i%10 == 0: random.shuffle(ordering)
print(fragments(c)) c = [ordering[i * len(ordering) //coinz] for i in range(coinz)]
balances = count_coins_and_fragments(c)[0]
for i in range(250000):
if i%100 == 0:
print(i, fragments(c))
# if i%2000 == 0:
# coin_count, frag_count = count_coins_and_fragments(c)
# print(sorted(zip(coin_count, frag_count)))
# Randomly select sender, recipient and amount
frm = random.randrange(userz) frm = random.randrange(userz)
to = random.randrange(userz) to = random.randrange(userz)
# amount = int(c.count(frm) ** random.random()) if frm == to:
amount = random.randrange(1, 11)
if frm == to or amount == 0:
continue continue
path = find_path(c, frm, to, amount+1, [i for i in range(userz) if random.random() < part_online or i in (frm, to)]) pre_balance = balances[frm]
#pre_balance = (c.count(frm), c.count(to)) amount = random.randrange(1, 1 + int(pre_balance ** random.random())) if pre_balance >= 2 else pre_balance
if path: full_amount = amount
print(path) # print("Paying %d coins from %d to %d" % (amount, frm, to))
assert path[0] == frm # Randomly select the users that are online
assert path[-1] == to online = [i for i in range(userz) if random.random() < part_online or i in (frm, to)]
for i in range(1, len(path)): while amount > 0:
assert shunt_coins(c, path[i-1], path[i], amount) maxpay = maxslice(c, frm)
else: pay_this_round = min(amount, maxpay)
print('no path') path = find_path(c, frm, to, pay_this_round, online)
assert amount <= c.count(frm) if path:
assert send_coins(c, frm, to, amount) #print("Found path for %d coins (%d hops)" % (pay_this_round, len(path)-1))
#post_balance = (c.count(frm), c.count(to)) assert path[0] == frm
#assert pre_balance[0] - post_balance[0] == amount assert path[-1] == to
#assert post_balance[1] - pre_balance[1] == amount shunts = []
for i in range(1, len(path)):
shunts.append(get_coin_shunt(c, path[i-1], path[i], pay_this_round))
assert shunts[-1]
for shunt in shunts:
start, end, to = shunt
c[start:end] = [to] * (end-start)
amount -= pay_this_round
else:
# print('No path, paying remaining amount %d via fragmentation' % amount)
# print('%d fragments' % fragments(c))
assert send_coins(c, frm, to, amount)
break
balances[frm] -= full_amount
balances[to] += full_amount