fixed one error
This commit is contained in:
parent
53b440f195
commit
ba69c84934
Binary file not shown.
|
@ -301,7 +301,7 @@ Hence, both first-price and second-price auctions are unsatisfactory. However, n
|
|||
|
||||
\section{Improving the Second Best}
|
||||
|
||||
So far the evidence suggests that hard quantity limits are overused and price floors are underused. But how do we even start trying to set the price floor? What we will show in this section is that in cases where a price floor is better, it is possible to improve upon a hard quantity limit in a way that specifically alleviates the problem of deadweight losses from \emph{short-term transaction fee volatility}, without having to set a specific price as a protocol parameter. Clearly, large deadweight losses from short-term transaction fee volatility exist: Ethereum transaction fees are sometimes 2 gwei and sometimes 100 gwei, but it is definitely not true that the marginal social cost of a block containing 8000001 gwei rather than 8000000 is 50 times higher in the case where the latter is true.
|
||||
So far the evidence suggests that hard quantity limits are overused and price floors are underused. But how do we even start trying to set the price floor? What we will show in this section is that in cases where a price floor is better, it is possible to improve upon a hard quantity limit in a way that specifically alleviates the problem of deadweight losses from \emph{short-term transaction fee volatility}, without having to set a specific price as a protocol parameter. Clearly, large deadweight losses from short-term transaction fee volatility exist: Ethereum transaction fees are sometimes 2 gwei and sometimes 100 gwei, but it is definitely not true that the marginal social cost of a block containing 8000001 gas rather than 8000000 is 50 times higher in the case where the latter is true.
|
||||
|
||||
Suppose that we start with an existing policy which sets a weight limit $w_{max}$. We normalize weight units so that the \emph{optimal} weight limit and transaction fee level are both 1. For simplicity, we assume linearity of the marginal social cost and demand function: $C'(1 + x) = 1 + C'' * x$ and $D'(1 + x) = 1 - D'' * x$, where $D''$ can also be viewed as the demand elasticity. Suppose that $w_{max}$ is set incorrectly, to $1 + r$ for some $r$ (in reality, $w_{max}$ will of course inevitably be set incorrectly, though we likely won't know the value of $r$ or even if it is positive or negative). We can draw a deadweight loss triangle to calculate the size of the economic inefficiency:
|
||||
|
||||
|
|
Loading…
Reference in New Issue