From a66f3766e7d1bc26d34cf8aaa9b324d222c685dc Mon Sep 17 00:00:00 2001 From: Vitalik Buterin Date: Thu, 6 Jul 2017 21:13:41 -0400 Subject: [PATCH] In progress of updating paper with new variables and terminology --- casper4/papers/discouragement.pdf | Bin 235451 -> 235851 bytes casper4/papers/discouragement.tex | 70 +++++++++++++++++------------- 2 files changed, 39 insertions(+), 31 deletions(-) diff --git a/casper4/papers/discouragement.pdf b/casper4/papers/discouragement.pdf index 10f7b3e87574b68c4ad635ffb5e0eb05f7bb2a90..4499e2a5c3487adcd9e5c5c194a7732a3af6d11f 100644 GIT binary patch delta 69497 zcmV)2K+M0puMW$y4v-`QGBuasAOk3WeOF75+cprs@2?OF6p?|L6qxM8{I2;aVzIpKN!`(0UGEY<{@?6>E;Sp0Kj4G2n zv!YZ*@=zxq)8CqL*Pn-K?_1w(RGv_a+@H-<9hg3F&WGQ8 z8KNi`ZRO-K-j{Oi9pQJYRtpN)%pi(-m*mwnu z_Y-sDK`dg|cYWLJm=BB5cjI~F&DMuQhb>!8=0fLWH7%?uS)HnD#&t+5V%+G_36 z7h1UBM$oTX(7Fh>HRCk$ZvV*Cs=MKK;KmU@MCxv8x;=BY@Gh&C-72+zYx?sTydsOV z!6mildBwxxnY5gr8QwA<;;|pC?vA6bjYVs!CHojIY3H z35&e3YZlqzMe_G zi(Xmk7eNeJaJe<Fm44N3g^-Np+V}Gn6JE)}7`(_xY*L1Oq zy6Z9xG5$i-j&MkmrrQm^8fU==zoy{=+T;y-(EypRAk1V%dK&tFPnk4yvB4cxBnJg( z@&bW@R1xJnF96u^?26n=gk#_Bx5GKEDD-!IOFnXZ`PAU{bs#nj7|H`hw!C>aGU=J} zAWs>7%9RUv6Ox%musDTiBwmIF$g{zsxZ#3qD0lYj!9fT`ia$VW&-1~zcrC{|K-_me zWEo`T50ta&fcKJrO-KwkSRg`hAW8Z%n}rsqYKWl~@(n0ej1oHgOq%xFaq_2?AfZ$} z`90;8qL|I3i&+WK#-Li9laR38j7$m7EC^b|5QPMz5l$XR50s-DI=2ZkupnI z_$l7|xTYJy@<5K805)BklvBVJL_`ZFuZEgE4FW}q<|*5?G%v$zpg784v|wxOACTK3 z>uHXgaE^z|GXV58MUU~#*U&|M(R0eh?6Hp|)<`ck5?s4AO1%?GS`%tFIt7(m^dsmP zwBc(cWJ_g#)8D&|Mu-lfpoF9s`wMPrq$sToO%2pkxlo0>6xZ)E5urNzl5Y1N?)M51u%tpC?9aFAC$A%#JJ<6szbJm{oVLvv= zyDO?jp?c24=q{#yqQE2C@;Fn*<{uw@t(IPr=;t)rvn)2TYo0_~M-5|SA^7H;fk^Q4 zp}9O3N^sJpji|v8@DV7%yx<81!4ZZKjWzFmAQ+BHNTkY0l}d2|FBjeEaK^E zEuG0&t?6!d5>0QNL>iEj!htMghZQ|g`r!zShrzTKlI4MP+2>$DwZ{cgK`}+Z>9GOA$gYAirr9{1%+e`rf?jr7N|} zqNZ{YV?^a!c;}|tGpUK+E~OHDnq0;|8s`MMs>BGF6?2kfwqn6%gwhxAf6B5f^4JAW zjvrY*^8|0)y?eO(`;K6MZ&9L(0vQ$V$(4{$V%Oe%{G25(6+KknYr@AKv^RpNk!ENew3Jrv<4F=a%B=J3ab}T zF)?4RK+xbH3`+JtGE11_0=>{czy}q33f*Mrohc0*c?WF`()7frf`<>)6o0x%P83TF zirC21#Mw4ofStB*JvTpL5ldYD!!_7Q8+_=gQLcH-_^G=6EQxdKjTr9xkQG{*#3D2B z9{>65iwYptvh_UyK7f(Vf2-Ql(f=A4Whn(ZIQ*;ORaY)xNC^5D{t-%2lOzWy0XCNr zKLII!wHaNHDnetqYQ zvMkGY7hL*clEcxE^U0a<_m2;M{?V9~Qfc9wUOhgqln$v5#VU6;)z+^bcdMV1cbW3* zUmkw~WPOFK(qL8@Bb^vS`58uTZAAIodSiosPO`tOH@VM~ZQJxi*{ros2H3Gad8dr6 z0T7a*>Z)F#T{%?Wy@k2=N%fMhH@?V|bF*8kr0N)@Jq`7-Jn#bO?&_g#8$jq8RFzvi zW{-DVZRA!PWm9W&zT1bjvq^cVcjW+|wLsTs{H|+yoaRZ%kPc5B&RxUH_L+CX8y-)8 z>kZt#>Ui~O%`{Sx-j%2~EWV94smZ@t(nYFGei1ZbXua}j;WI@fOq%CvWmBKYVG6Mx zet3NN^+Cax*-EWcZqiKUt6UYS)n>IlKK%Skw%WnwPpd37MOeKO>JbQOgPJ|8{{8T; zhwsspuFo4u>C`CAN9v`kyVM#Wr?en{fq7U{B*VT!DTbu0UQv!^x9b`3E^}E4`iDh9 z5(gnS<0Gn=_y`aV zNhaP6=CnZ7S`eoGg5%v1Rm%>4?_H{L`$u`a%2FUQ39Xq*6!?w{*(|i0q98+L-QenC z7H`=CYE(?_w0Hr2aKS#6D0m8H?OEti;47ln6d?hv4eSHk_P`)eEyr8B>6Lz>160kf zir3W6ByDr}gfk5@hP>`e*^@82t$b0wRPxa?e=>J<+#AaGWHobQNpw#(h7uLg#afHKr%f9~q$g;xU!8nH);QE=Hj{2>+!j*Z2b)cKjU(8-|S zzCBhl6JyxcAVs@Hpt`ny`X#}d43e7Bo&PScq?^22Me0=nho`f^SmcKu?=QmKUm z?%R2UV5O%lqN@~&^{IoITL^;K)v8m^%U!kYs+d6BR5glfUbElvnN0^0T&N zs{z%nzQCaVD*iwW*LtKI$E(jh9WMNy@>bF#-MSg|$XP;$+1hoIFiX<%sbX=-vVc4Z zUUtD)R;+>$sj~2Ym729*qgg>pFAkMEj>TGJ^3Qg_e8UzJxNwF##<8nDkT{5+bJYu8 z%OkuwZu;gRjI$+}>>!b8pnBQy@(C$?lJC2+>G=_2z;jjgVtdM`&K1|D2kKhPdvp$I zz5V?e3aj9?K8Swy?O_)M1gS0v8n0okr zI6n13ufQ5yV7&cpWn_&{1Jo&|06gzLUl|z_W|h(OIBPFwS&s!M86$67)55tiVtm%M&`k~ zaI=KH<-|y*#if|WC)_BgSm@m@FkVW4zYupJ5(k8TjtCR577$xM0LH!IZe;^3gV1bH zx4gr9=;a_C!Ugo9hCp%@Xn%&3$e?547Cl*4$P3@!`XoXlAxe@9CpxAtpQH-hUr1K{ zQu@rH&{)V=PF)39J6_fekBd3IH3l0%#~zDC5ZaIHz%3ajR31+Us+IGMgET-(p*P`# z))LNtVYV&Lckal_G5JzxGC4OAU<4)wPrc!hY9Mo+&i2zSAW88RCO2&eq|8Y&&8km4 zo5WE8+`YHFOC1+xkXkiTqErXEsg}EIR1o*VIQfJP{pRgh*UT%NB?H%aG;mD~IUrXH z?OL95&Ckcx<0Z)f`HqH^7}E$Y>{PV>eN7gB>ZFN)JEfSHv|)TA@aMKWqNAJ-WzUdW z#<+fl*N1Z|v>mIm{33J)Sw7?GV50Y zgvC>R$E#CW@Ax}P8G>V*z{#~ufI^%`FRQmmaWCZM_*1BEDWfAay zbP?}sv~+}1H^)h8NRt*hp@xo|C$@ABH*|u|l1FTG(PbT{xj1gCZYb;K0DGSp(zNnv z*({p$$32+)P)Dsp{*kaW$_|pHs;hr1W6GrYzA$p;Ny$df5YEmtYP^0C>{xr@T+|0M z7SN^Ltf}36!P?zz3Sf}p$YI9x-`v!Ha5S~^!jPzNJU5~(E}yaC^H;3RV+=){8jaLs9Ci`V zV#vYCu0lcgyeN5?7l?R>6oWAB&oQH%eDVypApI@~o!gb#f7$H7Ec@4#!*HA=WVRmjN(yMmFD}H^Ze>`wXy*{SM zqgWa*RJPQ2G8QsOr6vitSrQw6WZYW+PN5Y(x-d&AcaS87S^R+K6Kbw4`i%`xf8khg z)ImUhei}POHFx-tam0}@)4X6rbD8FdMi~!o*FsWA71T1Uwvf`4olqzlC zgGZuQgLwN$kfY1O?ROQn+bGY#f8EZVOekbE*hBO&k-&f5E|+GsXCCQ>)=%!h>w2-F zrB#t;#n=$t-?5eu#-2ef=ZqJT{P<728cR#-V~a`>tc})1T8x>u8(-Chztdc*Z~smE z%Hnfcn&qhr{))NTUvf}?;b&0cD+}y~&lZ6$_4EhPy(&-vcT~3-?43!0_i>>L1h#Vj z#VQa=O4QV)2*i{Nv>j6}lj$+#!nt&U^|Pg-xwN`$4)Gn!P#_Bh^x}WTWLSD)Sda~5AE{f^%l`r~axVQX z3u5%@k8NWVcdbe1_y?b&|M{)Uzom_#bDd^^`gKqQ-R)v%i+xH5cp6UrmL`UFCM_)L z+NHS;Utzxfvt2Roa-4CB-o=7PQYgKapm`LS?kvehK2xao*{+Rrh{?hFBI#=nTZFVY8 zhps#fJ(Gr0*!^+;_a8oMvlQc<@P9>~WW4^VtHSS@G|dw%DpdLi>)Vdkt+&sWP}+{` zJ_5TpY1y>HPNt{O;hs8u*(slvsL5AWqJ13oJ73DKqHW-_9ES3MZ2!VPyc(#@5qD1Z zGIzoi5(Y*X<9N&G>M&Gi;8ZHD+rAGyDxpkT^-MhSNx~67by_t{E+6`~zJCsZsYB?_ z{iogDXq`T`9TUSBI7E5A)L|6)$ZJ`KPWvlqdx{bx@emp~Q%gE$Yh}^+d*kHBNs&5T zS6laNY^9Q16nQ4;s-+d$y2OY)ix(}C?e4GlcmKYVuvwPKL@6hfOdR-yHYPco?|%Cu zOO7xH>Ihx<|Kx4ouk&WzApDJ8RRju8t+T6>;`q04tlq;+iHd8qEchJYcyfK&Eu@eRK^_RcAM@ zfgWIT4|{`AUuZ>ON*QPBvU?&@K9P7&A+3nX@82w;eLe41}QzHseR&`K9-GR?TSO176Y&cu6~8oz^Tv z8W|v@ft}3{pD!q`y#lF@5*~JYJU6d4Vz+k?+4r11ZguZMT@F>-^rz|q%V1qxJ)nXl zJK&|_3~2U&@h#t_>wF z?SNXu)JAhv&$Pb6p#QYB@7@<82S3wNWX{KIxwU%%p*rQopSDCvC5&=6N6>nG1ZAhB z{Ck$^?VY>^&dmEoPIxWJX2n8Mwy6;fXD+EuI0I?TOlhs>xkXN|sRjYx!&nNXoWgO(Z0fDHOjap1}otsg!M+$!OGkytQt26g`(yTL73eSc%O<$jYWxB-mX*>1O6N?{7~ z9XI7fX3Tf(sK77ZMk^DW1V=Lek29LWL9%o2_y*jiv*1-8K+Ezzp~^9upfn+4EJaB3 z&z)CT4z=}Z({f#-k1kwJUD?xAEN?h~^7c@NGk;W^1X^A}RXvKT%jW4?KE*|pN#M7? zUM}@l=6@K=I*yOw43+HDh=+x>#Vdq~*g-qM1z)Ou;91fy_3+raOoj;Neq1R>|V zNCV@Z)0+3?R843XK2HdkNN9WBd{L-86K<|K-Ogrd=tK96>Uj?)0np7v)XEpkQVwA| z6TxBCB&{6S1UmOZfPLUdno1h|P{6@QRks=B6E2U77?kQgD$0nbAdE0o$Z z4WWM&$^*#neQ5e?oIeNNx@@ZcEVi)H{fR0{7GEgv%Px~yxLvsFGeH&nJY2hHx*5C| z0AVljZs#RtbS#)4D*~k}hwz5{3yALk1Y>Cdx%Z zZGVDaYaNh+I?$xy*A&v=p*K{A>QZvuj0=fpj0YSq?1?NZdy*Y8bmM-dq+PzQ^c+1n zW+TGA!l84Qr@uUIBOgeyYJysqH&6jw_@V?D=h6(Zx3llOk!47GQM%(tN@l)7c<`kR=43)qJI~t{MIjEF8T#>waimC{C#ce>Rb){LeA3$ zRlc5gGm7tcf-(W{uVD`16#Ir@RQ;Oe%Wu(Ys(r>ncMX9&I8=*c)lb{MHwx<0JpFORJL5YcYkeQ zh0j;o8y%w-B!7pd$8dmr#(fm{e5oL!=;R91=55OatAXT58%p*Qrobz%#~2;Pa{;Y= z+(LZ-a*X^I>{A+XG&~t{Bb@#Q>~puJ-7Y&3qa+8%k^Wsv8ta#x2*GdTsd~ea&MhJ6 zW2pH%LU2P695T^O3koNC{ykB-e1B#`!}qnR;Ncs(GD?b11MW9aO&voQZrEbzTCl{J zuG$Dm!>}1TN?1R=a8GZ*bA%}q)U?_3vH-dBg97x0Ng2a}>kGvP_sAgIT>DdqIpoOd zH**ZJmZKM{MP7?|2~OvnSv%Qe@JzG8^JwsFd`iIt!x<({iJCvjgd`&*p<@6Hk4K-oNxl2S8MTk7*ro?Q!dJ z;5i1EeZOGC9*W8NMOV1=DKzLgSU{wWO%k3Nj}Z<76Gl{5L=0Kvb9)9qUaDgp9jhKY zszXKBS-jPVAxWpWrXyIkcz;U5DQxD~#dTd!u%#7?yaB{WZ8;zvD=tT2%qmEnL1rF7 zCiT(c(umG-KL%H{!<*vjz$|s_tnuDO47jo$PMZj3h(MyjY>wCh;=H_+4^>?aF=&uR zMHhZ!YYHw1yJUn-sKbkM&FIcdWfT)%@+5Z&VH86cKSLN*6tNuzynl#9_gngcn>T^l zV3sSkve+17NWck-rmmOBatc+)TyU<6fW^Gjr4P}g2;Cx~upQyh#|nX3 zSwql6%|pHOZ1PfE$zGb1mu?*3%%ufWhR@jv{Nw~o#KZGw_GXX%SRSkT>&(L;@1yhk zS9U-W+Ch7l+Ux@p2!E~kd^8LWqhT=OFmZq>_S;~WP?RgUX*}-l_^E)u^ZuUp2NLZM zzdrjApHZi>JH}@g1WixyYLek!oneyU)54B2I6J}={zrwMVNstAy-91hq>`)(gO$2| zRu`sdEBKXJ_5t#e1ql1M&>Xf~Mbbf`_fw&vx2Q`0w3YRg27kQaW~@e=^dX#k9@Z82 ztS7J19vj>3_36Y6Qy#=I`v;r=Lke=-SWdkcI?p%IzvjMje0U?qedq^@;lnUiuc`h$ zRa3!1d>r~~J;Z_-{|Dsa8?dX|Yn+LX!fWU!P`p*Vv2$jN*83_To z5p4s3YK}XAD~ur6nb-r-=~xsV@xNK!`8E#ijIT44)W23bBb12>OnUPxo_^czNRSgB z?JfUu&jtn*vACRnxSECXGC$FPN@#T2X0Zpn+2bBuo!G{*kV1pnfI#5+D{tC@{{@Ij zn8*rcZj)dgBmy%smk~b!DSw?;OK;mo5WeeI@KTgQ&Go(?DT)F?8X!ecG^lQI4zxta ztSM3Eqly20XLgq~DN}OW6PLr;d4BuN^6h4I{hpbGG2)cs$>t80lvpJbtt8>nB%59G zDQ)}q=XItjOE+uF(|Vl=cog6AeR(LtOLy-VENzQzeb@!zHgAh7SbsW|eqD2u7K8W@ zbhq{Xm^Y^uj!lv6%641#P5!0W7YE$htv_#mO=yxaNu<;vuG~A~Iz6s4ZXqskzs?va zvvkRX*Db?K(LkhKSs&UUuJ7<^Vi+K3`{S{C3hU^|q`P82I^Fio-#)9B_~4i!O1XK2 ze=O(1QYedrT)j6b-G7Uyq7;IYil(=aA2{kz2P$dP0xW^g>-U0ByT_FxN-(IC_x==g zPCHDT=7Y*lL51_g5N9a!8jcw45=jh=0AQ%K`en0vT%mEAutYLWD7ezx5+P->-LF1< zrpXRILZ66mHu>sR_vle^+*c)ku0F2bBI>xBIDEFn2#1Wk&wqC@GMy+;G#V8RVOAuZ z@EF%|F+oZk1kM1*;u$AP)dGkM@!yLzw*u{Uqmd!#X?73~g#t+;gbiA|C07#S)k!u{ z3$TJSp$K<;4y=ubsk3Q+C?9*jc4=EzeE<)BLGYk-TLIpRys4fR!&i=2ZHENDovDHp z?zsw?q!cjWt$&}Xt+a#*ez~^LCoWH|5+EAI)8FeZCfMEQU2qkUACt;smig|lz76b< zaRI>7VqU3m#5BkA+7yTF6TUI5TNmX1K;t56!l^9xanG|>TSp}*rjKZ{g99(z<$V>U z1*kmsWmVobWxo$Hq!)a$B_4}j>=26;DW->lkr#?Ks(&;&Rt8tzCOjFX--TVrz!Oc7 z4{v4d7t!*4UG3T**O}5Zy@z@rL&NcmxuDs7*|vzHX{0Jd>RHl+s!!QAzpaY!1=zps z@(?uw&=}0Ye+twJf{|L$lBZKMp;k2FsWmhkUhnE=j|TfHk0y5^rJ@ZAhk9{7wE4Cv zZzz-7$bacyibK)lRq2WJ31=A@m~G%S27D%&NMI5XP8IUncAp)(zvWtTRBd*)-becd_ufk|5<9v&=0%mK` zzFA^-!W{4naJ+C6b_XpxrDUMS@oe5uN*9Pt6Mtp(pmYCnL@@4%rY;dMl?3G%M}#71 z^!$imf)NcH1QLs5|6)XF_sWa_OiyOSGPiRgxq6k{l_z&MBlo$XObTKlu8ecSq?p+| ziA(^6=?N=x!1oPRGSXeBlZW;*P<)N}!Z{Iu!QUXHeehCt`Ta~2sCcLeJX3!s2o(U{!v+=*wJ`GNGm zPdq<=;wQE*oOmV;ktXK(8(jA?nEPqphUcNiUqJl_#?iF0Xdi8AOk6XtyoKsWs=Frb0!|8G66~( zBZD--9Owi8jY@`pl{!jWdPy1(=fEHZFMhv^mKU(hxFYdvxyKr&f0L<{V_Fw0Tit|K z6r~kY)+MbB-%=gSE{or-`szTKN%=o+Xl|I9FBhXp6gSa-#2JUYVzv~-_1E2A7H(GFf4$p-#q#=L z>qsM@7R*|I4X;!eq1Dwbsj{q;f~?VURw^Dkojfd*$*XCq4m(-oAMl?ai277F4X$in zHBY!v?WD_}N1`?T=xNpVo!^Q4dFMpVcKZS(-=FG{gtQgD`AnRnN5+;+QW|I>3QVKH zqJ}g(^p_6#CqL93o;F?Tss0qS`ZLJTI>*EInuFwj`tcNa@log1_yMmaLGM!)X<*gB zN*9I2u^!=wp?dVKC;3EQ7$7{KFXPFNK~Ekvw4`Bwfmf7s`Pk!c0T=Az4UyWzQ3Gv! z+8NNQsgKpv4g>JM|c4cIoB#3fW_LCh`gGu%YR> z8t^QCQ|3LGL0KLJ0D%@j887E^^Gw9UWgx+{bsz@^_MS-p@k9Uj-QFk-4vuVfd&UBk z_rp{ri_%$j_jvm{1(!b)75uxQbX#{vaHG;ZKlLas1fGvKjyu6HYPKeAEUxUHThT> zR0$h<+Vy;(|n36;I)Q@#nHJHMG z%H@~taH_gTzcV~PCffO_8Ule{8JqqbVoXbsA3fw@+`vHgTfUYqwUcl-IM!N|f9nqw zSl|-M8Kkz1)vs^0x;~ItNKW^36$yMGQGLc z8U&Vb)HTUEg~pJI2U4nL?1^($5UpME{M~LZ^37~j(8BE%9}Z-y%^oYEorz^TBYzbo z(~!(-6Lib!XZcnF0~O2NxD~KM3dY@hn*S68La%H45RRLnW?)JJcrk~0wN@g3CNw6q zEh)oL2{2V$*0E^&&u8!&7%(b7#hZVAZ zCB_TpO7|wB0~<;4ML>rW>TgPb732x#P|_}(Jx0RdY0=#@1K>FH;{&GaritqK^ z=)3U}#k4+X4p~)?Es>r8ccqTHR4-cLDIptY^FtK@6-pfZmY<4(sq2)z4ZLA&)aHwR zQa8Yx6sRH^q<~yfBE+*>H3~KF$%8}Rj6`X`Q!}*eh-Ua7h!k)i5F!%YNAqyOlw1Lh z*i_JMN)fhI*aZk`$vpjkRt;41BgTai=p3Xi;3zynAAPtqw1#SNX|Qf!f*6_qi!wEy z()cO8LcjiV1^CaC@Cc(MxNG!V&29GhizHLbD7EM#2$%l0*+;+<+Ad}_NaG^^9tW8| zymxascnVk>Rw^~)iy!H^-$tOIi#2ZoP{S;r(>Q2CKt=v5+RuLxCgiO6YnMhJs8z9TvlNBE?5S zaWK&yMMq0=~ z`1PNmmu=d^O2&;@)*r23sXuZ#j|dX{2!I2<6M6$Y;~3iYQ&cI;ymW1+p^n=X0t}Em zVLDiZ>*C^n8jaNudimG%O(tTi7pPZrkUF=(bAY=2Is6}{x`$Z}-xr9R15AYQ$IS}% zwm&e!EUt<-OChw>tKA5u#;a^7s14&{Mp8?op;iyz%6{{ZFxEM}$`A?#k&+n(mpHux zDYnmx$LX8VUFrJ=Y;|FKWHzR}IsgQnQ?=^o;pGP?P0WN%_>3NtVu zFd%QU3%3|p12Qx)m*F4-D1X&kOLOG55x(nJ%q>*eLlbWxv6G6EY#z6iRh5I+2ks0d zu{;`XIFz?Gzdm0BAcv$tj=WMf_C>;wm`0-?UpKlj-`-q(^@f=ZW4Tj`Z*FceEOM*l zMk|?fX*M_e&G*@^IbL&&ZPUVr>Zf2uY-J$0p@ z{Daf7ykC<7gth;8Jr-kv`g30#O(Fd9B%2V|v4P92A!uvyW zybCY!1cbkOBlu(|!sXnEO%axOALoei9G5ev`x$QwF2kgmNO-Q9>u0gZ#<2;DKVZ*( zqhRU2x#l+e5I@v+_kT&gn9hwE=(VXO!MW@w)Tg*&kTUIeCgtDw{cq@9uC<=tyIs3_(Y6<^#} zZIu!LH!cT>RRP%C@nOa{Db+zMlB+>0NyYhLKP7G?GR`4IY=3@1kficLUKS+RD*NC? z#qGmW6;Lw$^oADT9fPKSmV_;C0b zK5yxt%1&W{YJXRgckapq-dhgQrqs-AuFo3!b5cVhH{8zj48@z=nS#X`&Wer9O<_i= zzWU3})xWP8zFBP8MkoVEW*g;9ZXMt39H`RIL9TV!e0TNF zt8WPaC+nR_6}hotMV_`$E*Qu$F2bxY(%dsx`UUQd&3_gA{WZ8BNIl_x>OD`me_IqH zz0DC;y)9J1lFle{jvWruiXw@89MWL@tozh*fJR|Q%f;2erNSnS_GAhK5ChJv5Q{>U zLgWIbr3>JMS(7R8ZrDtydbD0oiu5ChOr#8hT^N6Ml%MI9E zbyVT)c*&-Sl+$ojtr2P1NLjNbxx;(s=fOi)?SGi^s@alif<+K6*{iZ1X2z&I69og} z@|qJr5EVGQ9oAJ+}CJQwI!4-M_&(_ieX)NuRZl(&I^v#)qGi&4z|qjB{-wh{6!IQpe4v6#H&Wc$<`?#N(zVt zf3kl)S%)Avg-3#4Gc3VSS` zgIUZWYp`o8Y5={`tH2;|7DF&Y9Cl8xU{Rb`IEvRVf})-hP_kFh{}_r8fYqz;K2S>V zZr6BUK_d14L?S&!A{?CQ6f*Y2d4RS)%~Qx!Rq?Xqe4s^o>Gih+MeIe{`Bozr6MujY zxQx?kdS)Fj#W@lz15r4`RtySmg>#Cta98^>gNl@JOtH^#1@#@aNbjT z%6U2@t6y+Peu}S!puKS~(wE{Z9!Lx9m#gUNXNkNp@}=lXlngek^yjcBrE;rZh4n}& z#rm($q&^W_sV*w5$=5UHXF+Qq6@RK&uL`ZR%nZ;frICU=z1~JkT|Im zZ?BMQNSwe;UoHDAsm5zC-;+u)|Le;&(kU!$j{JBnX;!iNbXm(R*XD8xD|L~-l3f9@ zxZ|G%WqV_IG4DO46z_J8_g`oVJ4^IbIQ&tG%k~cO4RtO_xqR(soQ1yL<6$3KV%$Of(oXk% ztb8|En5?62sIcc27(I;bB!7&k#Z`B8bEH-kJ!p<${;Z)CUSi8KZaGZ8O>Z4$DlQe& ztr_f!q^oWAFOqH*mfw}f$ZGlH^_lU|BP6~LW&IEZpj?gv%Txf=kAonkv{`*i%8QLX z8r-#YMVq27HGRGOUU$)Kc8{4}EhzwQD-p>wiIwe|?iIqa$z& zGirQ#26Na~s&*gBCdEp_fX?+rqIf@R??~S?opCm$1S7O#2OQ8~QmNJ1UU)bnf6aU7j6JC@3_8lHSr8yox z4zE&{2t?55yzl2UeWn#}3)QF#JyOZxeK0}c5W6m=wd_fcbgZ3$6w+GJA3GQPh>C6F zE@|H14^W8RVu}R=t{4$<#c;X+V6*#b(21d&6ZI*KsFzQ(1ApA$K@1+ig0f9|KeHP7 z@p=o@7vV;CC$>0TLZo5Exbkgthzsm3QHl>WQ<@ z&tzCl%8k%47k{>TzJ)&nec`_l$;3ASIzi^|E#iduG3eJ+EP7R-y-#A%BTFV;61>z)Y+fU(f?MXD48m zEW~h=ipCzl=yH|+6mC<6QJfGicRf^X8FDo|BD9u;%nsG*G<@$EMok-#5Ge!X>wIU) z^<9_h-;X}sRW9JC>aXxAo9(M(^H3jY6#`%(vOk6}o&tU3_?FpApl{B0OP~*u{;Hzx z(^)J(Tz_2~Hb_rT^~3vv&%b@bJz_U~*T+zbBrf;}bVBzPaPIEKktkMCg~K6*psOop zy(igw@M2USNEP|HfRs+X5dW1*T-|zdTdClBy(1tj&$XVNihKq&ItnPSZIXIWcz6aG zCoio6-knRpnVOx1dF%u(bBBydZ?>aZur$NnihreH@j}W=nJWZig&x@&Vq5S!>CSuZ zLZU$VOiX9n_{RH1_b8?fT9Jmd+ww!jjh0e3l-%hG#DsZWTxj%KU>HI zfh?oD13Zlx49ny6s>I04y_kbo_!!fdgnu%-vWH|B>BdZ@$xvvJ7OJNy?UWwv)jk_K zrZ*+#X}C@SJYPzJ*aH55zwKx(syV?)yy!R`Cu*vjC3d24PMA3&w{pP|#khXKh;md4 zEfJkejh&1p_%c_2_M!(f9HB>qBQ$4ssLGaLgdX0tRoPW-+{&qm&WR(Cb}DKz#($qh zoXK4w=DRbCyMr;0b|<*)P0k|!sPF1fRKus+wxm1fRA&nh;x%tRuFK&=L_$xfj8mJV zuRh8m`;$Me+U&>L|Gt9g27|U)kq#OfzCD1&*R+`;^YzaK=oEm?bD@aEGc|?M+3i&i z(lGeioqY`Ix>C&ACA?ajuwudVvPV0(QAT!|3`cr<;1~&4o*M*n3J;ra$3pkW9cm z&f=no0=k5}7CNX8-gjf&M*9xeM0wG=HAUL+izPEr7`+M#>n*@hC7pbo)1AV&y6$E2 zU-!EeEthK@0VV`8H8wbx;UEJjf0Y^Aj_bDZeZRseP(%jSib(2OpapW89yCRPAjkrJ z$jJj&rfv1e;#QQhJ^A|1O|sDA!F6E_IQ{iURRA+_m1P?FI?UvGtjmna z|LS_TKctz7UiZ3)1a`mdvox~pXa~Uz7XePrhUU3xn*r&+Fw&oRv~&Z&f2Pg)AX_)X zMF?a!oTdZ)Aq?(?u`jLdf8zb2R9W<~>BI0ymrQmCmBwkBGsFGZ0d-Q)Rxlh_0@Wo7 zl%{X2(D&eZd>O-qArE)z8HDR*aNXu;2Tx4n^f&-BImr7*SNrbx2xz_9cY`|?Q<6rV zo9Zfd$vs%2Kf*|&vf*0MR=s`FN_IS+qTSRx@J@69dVhLf6>!)bRc%+kZo>7 z`5?F!2o31kH7pGSdU!@NLsP&B%fqKcrJW_Mm#B5b^8!k;?h(|cR zb+&K6F!Jc_bGuiOfBOT-%79>HpL-*gr97QQ=e}_##*tl@XJ}>OV zf7)_Nt>YAYQ7Dx#4qSN#$z1X72a_hTsmiqoz&L;|%_n0xP`vq&k9t z0A}WT2!L0{%qwo%0Yd@Nf!&jKVXC%!Hkp)dxa3>uXmQQH_E*`7qY~}eG2O*?4(`9f z@U`iDKZiV1s>p^gUS9^Ve7tm(MXwhMr8pP(41nI~0#{CCuT9%hP&cLKtK-_iE>1bR z@X`!I|Bf59e{-DET9Mvx#310WP0e3TS4(shp8=*d+}L8EAcBEMGIIoM8$3g^pVIbk zM2T1yCC!gRXpVwD`p%++!dCF13nyjtNtu)d|2sykgE4AZSCAiR4qUoFGDzuTmKDv} zfuTl5_E`XKp$0xY%3*B{xF*PWLVYTY`jpiHBXSvCf3}2ACqT+xrW*sP9Msqkf#(Lv z-3UXDt5NvIP%=bRYx}d~RUO6uE1o6>+%pY%qgjX-sbMd^J`n~+4(|FwxAnd48;Erq zO#jn2sO79;w?g19wIB*o3tCB`A;-4kz~#qsjoi7s1xlLsJc`WQDZe2uOMZ_)DR#%3 z_3l};e~5@H3u`-QP$bg%TH5g4bPf`farI>0F>L^0ILoT_E)p(G62UoWN?=?p-DG(o z`kp9{4eXxRBZQZBU=&#|jO=DG(bN!&zcBKaiTGPYQCkd$bmAy64<>8Zb2WF^Vt24j z$BMlLoWSP8ArWS34%&cf#0Y+My~nJU7GTd}e{9n>Z?hY2F-_OKJ2uaJ5nR;y5kiNU z7CP9LCtn;Y&tOPJ5w-jwiIVZ#iL%P$Dlh-%JekgU5)E@sGnh4V0ifiH3&N zW}+uI0%Y&P*iNeiH}s=p2rkEZPgmN^0Z!(!$97*fb#CGk_!OeEy~>_*rk%2C9ppZ=T1&E*jE}07X0Nl`FtE)iIPg$H3o~$?l3hz??lN zZ~)Pe3dlF_XPAFb9g;%vE-m$j17r}+^laMoK1)zJ+dcp#$V7PbyfLa9$7P~PspCNd zh0cVXg-AOdIl=dhAH#w8S?9I^4kL(082zq%t6QBjQC1ldQvulCuo? zq^NEc!-mV`abac(D(02+f5~r}3qI`ZhN*+#3KO4|Mko0s&ErztwcWjA@9B?H; znrp1FCeHJiAS#`L12N0dsyT}+O^%M-L`oC(?8~TDdUQ#3YE6rJ`F(OaY#!iwe14#Z z7?V-S!xr`t+v-%QlD($FPRocS;FWKc$OIWvS{b%h!aLMo?i)aNc{LJFLM*(4cyz|O zQ3mnId7~pXJEXOR?v8a_5p84Qwtpt93Zo0brbE{?PyCguc<@?yY<+RO8k-1)A#hJ!F}C@ zvFtQ(8S~Wc4O(~%3iRj(HC1O1X}ASe&IcygCYX0Dld#9|=VItP!6b}vTum6Urbjrg z7{toXocy2Vm%w`t=mw3qrvU6v0e*Mg9SqD^XyGTLFp z6qR|L@wLXxbQ~($|JkPV@AaeipJ_dztP;9^Ie9Ww-!`xZ4^9Kg#m@b|iQ=W6eBAyp+JAJ487fv-!`Ta(Oc=k2KwM{3DCABN+67kr$3S{+6dXU z_TJ-_X6q(hEu$^A^lO0$d4)ok=L2CRZp4LC6jC^B>~6j^i7u1N)NdF)u71WMUdz-y zTX@;Y9XM%=*7=TWsp@gS56=--E-&jj@A_pYTjJy8dHGZ{WQ;Z zV%11)bQ%=4+-Kf_JssD755#f`B0D}x>qB51lZB8WPQLof6wo$jXA4&<<7~X^WE?;8 z%2zXi63(!CaW@o^MJyFg!Lxi8GMi&eHFMx}mB9Ct`_*P5apvw6i6gE197kcZ0P6@w zzv?~Yq~l`y;)z1hckljjGYF>1pl>(k-)igmU@5QNzB#|_DPL$YmqSeQ5k1lpb)5p< ztTpp9vW>q;4X}``C?;rl_#@w9n^KC*sSDQ^7|yervHl(wYjda;sJuE+(uSy?zDV>; z^k2SzlVVeaTvxMQ`LNz=a-oQW!RRRw<_dwZrWGod=wT##TmZE!S%%1Z9L6u#X}n|!)yBrK zEO5>!BmL(bie^G#K2u$xiLi~>(Xij$mh|a?I1=}c9M#iBdNL(pk-5|FE$2O*?;eYU zWMZT02n6un8DxWAA3kVgrZRtdTyuI&Qy%HhYkVNmt-Ks?hWmcq`ifg1(iXMt!uzQ6 zRpqgo*#O|bLfanNFWrrbB{_>n>SU0x$rwdZ3$u;*F(H@DyIh_%iXv1LV!g(s1*0Sf z@oc>r6`}PD4%Yu8{f~FZf-53LRA`8 zCj=PIu`_DpF9~svyxnzgiSmF085pG@%c(a5qB)=ms6#<6m85*ZkD9G%G|IlDdc~_?!^5iM1d;rj*ds&^}}XW?=@Fm@*LshbU!vg%LGesuB_` z?-7!awRY1JSO@2p!Gpbk-CzAs}9@P|b;TBRUEr6%r1v(gMj5Xd>dF8=BAGrKUP5r}3k zdu1}eudLB+oQ~Y0Sr|P~8lb*WX)wzikbQZ%vT3V%>=f_+9EVqW?k*SFJ?O36WcE7$ zPT=pu_qx%>2rF|p4SP-U;-fc*#KYH}gWB_am9alo2 z1eZfe?0^Dcc>h%jLgb83*vpKB-<2ghoCdT!v?O8R>&u0pcn9#Pjsz`9fM8tya zi_WfaK|gZg`20P%f`|!hqM!Ach8D?a7PJdzvXJ??*j}IWw3a%rH;IG_P=&1W2<>I# zZ`(=&XN`xNJx_HPB1RLwZ{l5i-pWa7#_^~!P%v~|W<2d8c)8@KN1~}Xv<2(=pJ(ay zht21Kt9ttTre`!5KQv*tFP|QV43e@d^4GcdRla2ugJE7woR);j3I{ssDLUHYTde?1 zqR4ENx2$5q$9_$KSH?I4kct_}gfNFw@>^F9>O!vq#)x#In%ZcP@@CgswP!LJTOa6M z7%F4TxMjlYdK`I_{GxgH0Dtf?1Y>btC!SXU`x5$7ZFtqPDBWT2z1w0Ge{HjWnswlt z{Act(D|*I#oRe?HC4(;I;}KVba;lv5m+|85!fkjQ$~}@|ohaY~v^n+pR7(qC%UvI3 z5w+%y9=B`HJ;=A)y9)j{e3g?0dEbqX=3a4HXw~8d5jGSViwT30M#JqdH$Q%F3Nknd zKi(g^v7rzv9|dpq?O!#)A98sDu^&;ct|ner|0I2`)mQ zJNZBQ38J)a80yjZPVZ0z0^*DIm(?%Ye78uUwCjFEx_!+7;R>#E8?ZPQ#g2qq5#J^9 za&q*LFu=fT<(MVFtqgzdEe!2KJyxQY_Sf_jJqt_c$uwqxF>?z8X|jT}jO05dmUByl z`MQ=iCS)Wl8g7zW-fAj1Qe6nj=2F!*TzipqCV<0VOc_FbeAdG;GM2}qJ8J|VnC}xb z4$X1YKYWgWxG5o3Vnq~TY7&>Lbd1wkOXy+^;pX;aGNMYv=!brNW!vH*#P|v^CdS)W zq(0i~D#yRY($ECsi;LXdtXa5;?-I_9mKZ^{Z0-z6!NLO4e;YWtPmf&*!#TQC?r#rzfK_)mY3h(S9?mrUgsR$FU@aYdesX@1j9OycxRZGq-$kQM#> zWA$jq?Je_#jGkf0$*n&lT}9peW+vhs-CMH65#Z5o>KfW2#_HbaVD&A|w5ldYWcI7>JdXDj-Z5^4^S!V(PZYg%lBSnnWy7Q4R}rnW*)jJ#JAq5D zv|5qzU9+obK`i_ogjJ0bgU;yengp2#|hmX)p^l{)3PkrV24lTjEI#q*OLM11Xt zhtA135fZ8qe8uD;f9&Lk41>_#ONtxE1W-$B#7!nFc^rPk!c9Rxf!#3%YHPnMB^t4{ zz}b`d{Oy9Ovg8ZZTCYGbHtL#VVIi?41bLNJJowu&dC5#P5Zi>Pg#DuzJXuGatTtnQ zTQ&P3SutX@+I2X?850revun+)Myc3JcK?(SeGXqP84zH_ZUPyRTX!3smJenh3+#UP zbAyu+0Pz)xG@#b9R!U2B=oAEpi+(zm-v2@=ExBh_o=wA$KS9lsRlyL1lfu4|`?T@% zH}dfxuy^9=Rcn4Y>V-*{eAzcOs=rGOZ{LLN9BD1NIFhRDdbMEQI~gHAO^g%PPg^F3 zoBnajA^b0`yPE~5dHjF0xMdn!-4{Z?Yf~jzaazx}Zk>ZAs5H zpEF1IJVnH#5F{j(dCPJu8;{?@4{wyI zZ=@A-J)S;ypA-wz;Z5l5dY;IdNpoU)PKyr6M8ak6hXY1LmT(leEVZf&07xsIT^IsL zYuu>QPq`U2TFs^o?+SCZ)Te|MX;d}gt5x(P)}J$P1LB8W^aE!%FX0Ui9?E@qKN5@a zU5!zK(AqthX%M@g!Zmdo`fxH_j+MV?C2mYiumyg#(gz-w$9O`D4;qAceE24>FZ&^j z|4B9_R90*&f3(`dnEQ;l1%@S{tt3MgG)Kg<4$GXJt(BQTt>L;oPeDo0vTdd}_yVXN zhsUg^fg~|7@4E;05IrHNLh2UM<=Uz@-2=m?DJ^I1Kec1kQ#!fC-y}*7wT@Cu3o^B0 z@uTm{r7&GaL0jSdqc{KjW`f-{d^S&Mv?NGL8;F0hhRoTGk9ZjVG4kq^a*<#(iz*R6 zxOz~`xt^A8D+*O45*Y2v=%h?fOZdSzo%7vtupEX2OCe)PxYm{dn^m;`3&vP=Tfju% zavHZPHwJ0*;yVr}u|{&iaKn^}S2%G|^kFaXUt3*dDV3b}f93)_Z2#BBo~?X(u798>clTl_eu4kK3d zkdNPx_x;_?xE>WUIa2Y=?e3u$DmenjHw>b1b|n;+!`)@l06%Q8vmHev|Ejh5{YE)= zR*!c*x9@Ld60B>VFAG|a!1MF^I1u2?p!OHRwVEn226>tt-l9Zj=k3(R+wZr{3=(#a zEcP!ejyYNsVXYyGB8|!3dz6G&?IN`w31WjLRTvQ-EVu<8)z5YUDUPgg8(E!GZx!xqQk05CCljLh=?S*d&??S3&izgJ)@h01M3We4HQ|N4umYQziJ-OlFe( zvpU86ByUF0QLdOHkf9JJR#9zZIQ97YOc+f|t8fnMMrK7DL~_jFoGdV8eM_-1>z#1u z%@ZT8u@p?N$epLwZV)2aDt*U7MsosT9gTslgx zVwz&N(BEV`e&(v7R8mu$v!`{j94%00AAZI`v>|Ll76}OeWBm$KP{!^K1eI>~!Obqh zQ~1X^ZeA%OXc@P7Zv{UXzh~3_xp;U-G;mAouXUcCYWAKYI|H>b7h2YFArhq>3E>)j zn-7d_{`AD%@lr`Gg_HA)>7tV= z@pHz0sJzz#FirM5g}$n~qK@PRx63!1-2i%J?Y^2X&YLFwyIT8>Q@5krF<5K9T#amPaz?#0g$msEA=k3@4J-5fTNWM3TVzcDjUT|7b)5;;eS zvshnvYMlI>M){6RlR{SIx%AK&wneIOM*d^}6`K@bgy#+;QX*yRvQF{AJMG|6UvRv)M15G{Fh}a|Hhk1z z)TPIuA~6pC1S!blG)q}lALYx(`*~kfB;kYoRF#VIG$?d~LZ4mJgh0wt0pgxV86A-O=Imq2Ow>@Xc-63%yJaPrPQ zwFCH72Il67pds@LLs@$G0;N5WrUdm5S7kC_N=cEl$!(({`o*!L!l{H*k!01l`)=~hJ z-tszsuijCA&qyA5GsPy7h42xTOX^=c#Wrw)$8!vY;0W$@j8`Aj##zG=C~)+YgI4-u zIu&_VIgm0tWWE18&;zPb~n9$)lJ1miJjPfq?%=QU|-$E=X6aHsGwPQ8kxR z_f^~0IsBTE>pQZEY_ejHrWP^yzhE`20HwpAfRCg7Nm-`yVhk%@)^9P+S_AA(OeOAN3sqi6-ILtgB{%GZ z1)c1Ajz11yAERE!zCHY6h|C8};p}`j4v3j0e4NuZO^lxX+xq%ibx@Uwp&{!Z_c_eD z^l_)dq%$ZWFugc?kS56YR{0_t+>vz;u5bK*7>wkbUK6If#yTnQr;aGVEFc{vg7y43 zx1O-jJwhOg>*ewZ))W`#$vPH2#7kG4iqFn~%P7!uy4fK531{t+KjIFg6MXh9_uKb* zN<%Djdtf%4Ib`m?DxA@@CSX|;PUReJp+|^0&%_9J<7!uyF}Ip8%OOl&RwnJf$T~Mg z&-eaIveBO|YuMT6bTI#siYPOu#M&`O-jK(Zd&DejKK>m#EVIsH4mRI(t^1^M+*)|) zkwz{Q&Pr_#n1Y;}K}rRP6SZmu+2>cdc+Kkvx3Uidu4RfQj+Zk84RSM2+#LSHh={GG z{d*u`$5UNqGm}Ce8!N5Y7-71c(JIAoXf$WPt zg~Zb-%aKFIsG2~5Eg@#GlnrXQX2zMWFG`@QiriP0Zw~L}I35Qk--s5}L;}We>@SV3 zK4)jAAc>wvYF)oJyoVBWn&`328Nmpx7AHgrGF(=4_Tv^g79Tc;J#!?SG{`V2qlQeR zC|RuCJ1Dz_-G%T!E&m`V_+qSy5$6XU3?{-~1GuDGDSianOt#`F%Ydu-o?=QMJTqw) zbqo%>f!9!vpgEvU8h5Z_n9P@6LDZep!Yfp~HL2#(IO-!ejtPeFxI!`i!lOrwlV%$h ziU3rd_o!JTGRxZxOY$K#J+C&_Mhh$j${_xb4;Nt98q&2aGPO>((pbTZv9 zq?wZSru-R3{da48oq3yKiB2oaS#;nT10$otJ&tS;^aw16CR`}>bTMtLPai{1%oIci ztbvQ_qA_pHqRzfX#^OlZF;W&SwS`Gk@MW%J;MUeFh(6Zh;>G6t)PC49+7$k)E$-(v zK7|Nk!TsdB%Qi8w{UP9`ab#7+Koq;M#ur%4r$>%c*IW%L*J~;73SJJUVi{CkX3ZI~ zIA<{0>jo$_jc)Wu@ol;--m%L=4|avT$nBk#qx%G`qkr4YN{0UH=Bp~RM9ReFat(}*R-P6*8E)3ASGDg^6Ug;@VkI302+5<6-?L)m8N zl^bN$=4-R+Z;MBtZBHFD{fAOp-N9xRMZw|s)&zVE{=WU2_?=srmLWne3O-dW?ml>3 zPQ`u|{#yR_l}r8X{Yqy#;T`(U2!d4h;Fcd7?`b_c^=(o-LQ0-!R4ey8JLkAO%H>mT zSvHpgQ{NomHF;LlI!!;+HIBP^fN5@}5$=xe5wPnu!n#fdSHz*o;o zTY39DB!-8ABkZLO_-YF5oZ|BJQ9=r& zYS4)gjI#-;)+HKRHbRJD26R~_l_KiB`l2S!#$El<*Wc%Wd2s^6{fK_BRKeLHXGzR9 zxLF#=>>`t*&ajvFq8kv%K^yV^SMGDM|BrJ2KMB8}AOeemg@cuwH7PqQE9w7^G7RE` z90y2I!#uwbq~dK82g2=_@;A_jZ7(VN+ z-jrJ82kTv$^ho+dS2($`FLJ>>~3Bb%h%7qCA};&n3(RLLI~@0&hCASN)^ zlMBcH-KhKhryt*RFFBx?yps&9_v`-7iEq`bL3o7yJ~jseb-3hINv z{&Ox2?n?#E_s7Z{e4Uw=hwcA6KN~38!I;}dum=UI3_e38#ga!YW)rb zEzkt5p0$e3^sR4m6F+qaIdBJcBUoT_rj-+$v=!R(PhOu8FFY{>RH{^P2L>T=db$9| z)907&HPe!9w?T8Il18>cc#f`Ol4AedEFtar37E;g=`kjZ3?0L`t1~1opZ5wMUz_Ub zX>%{Czz%Rx_RlepxyD!;b{AkP(*J204_IY3;T@!xU7UcaI5k2#-Ga3~hqgh5@bQ6f zWMzqck@2^~K^9GJ^!*02@c0>22swk5VmLNCIu31Tf#fZG49W$gMzjP=jgJRAC)ovq z_sv6G>7M}4vxBLJSp(%-n^?lmxHW-6k{N!b1j!EKLpY-!?cChl81poGT6ntE13r@z z2sdEjRp9s{T6xg|Gw3%R7C)oXg>Gt>R#Z>Hb(f5nK|~p`q!Hoih^RMqb&z^sMEben z8-$F3%s-Fk!87jUz%*#`26D}dLGV>Sd%_@hOpjj$HjQR`Fan7_;kX;?oSHn@U2h-+ zw82G;1xQ6SG$V=j;7y>@__RN%fsEBQe&LbKw#>lGiHTfzAlU&XK1BsKO~~_E3#h?n zHl~SS=wMj6@{A+wnHP-H8SYaXo82Nl0dto8Fv#UxfwsOC^kj+cVP0P9n;qzT1HnOg z)IohX49rbNim!uTT)-r!en#KhiG7S%LWh7o^Fl*=LA`*BSb@#V_h;+_PvE+SO1+>g z{hrBbp=TcfK7MeKX?rmLKGL0gkh-H5hbJl6-X6@qhtEIzJ!teeIKAk0;NWSH)xF4N zU*-Teq$sd={N@Sn3-OIN_izMy=l$d9DRs87pOJ{@qVqHV%Xx?peGWZC?Um)r_QkQZ zsHl*pH!~(2v3GcK1bzqDJ2--c69k?=J&CzEZj9WWJ~0@s!Cd@epBuN1ML$X{pL!&E z|1F2HLVgOQN9{Md1%j3Q7o@+VBR0410}o$SPav_+FY`}<@h^?jFTI4S%05o>=XY*ktr=j+B3c12J32x5{1_CJc6RxUyY?Puw9Cy!TehhE zn6VuwwAyt|TjkTq{IK7}fN&B7VLpCo2Ru!gys-R*+^KsdxN`*+ZnIq6AHIuw3(vih zjJbAhUdw*Co;42b8r|@P&-d)O{_9C}1|n938eSN>x5XMyhz&ylS7I4j{tE{E)H{jMt^yZ3Q7P(T zV_0Fmv~t zSYdAP`1c<-boU$?U12i20KV~c$DXc%vT}EOm7Rc_Q`C(su8zOSB>d5$Duyn4X{5d2 z-^BHYC;X&LW)nT4KetD=;LbP002b!xaA=w}jc7uxiU=zuqg@?ctB5*oFH_-Ltj*ME zE=wal{)l&Mp-;eU7-qP6i%1Yn@$H^w@e5Dc zW&-h(RRZJVfy?Q2(EhJe;Q4!Apy;ctd9&49);SPZ`VNmQQ1cQ zb;|ASs7j#sqTX)A=;{sI;(JHAqy9vlAtRvL+>fY5iydUvAY^Q4{_UW|HLZs&1_sbc zn>}y~P(EsAeI%8{PPB1@)*m&txsD^7ev{PdIhhfZVbVgllJhRt6u*G5w@^gSCh!!tAo~8x zW2&((YfhtbX|=Ian{NgW3%)I%%~Gqb)18HvI0g3)?jkh>5~WJ*9eTV$S)vDayj;YQOcR(mVu=%3sNFZ?0 zFazg3G)(@X;d5Ld$@-N{3Hdx<@$RZak|5^#nKNN!RD`5P3P~ftzT}V0Jid*qBX#Ta zBSH~fMQ$E9^hCnV{Ih4U2KP`^5g&LELFQ)1ho>d9!d^GD`=gE1&&1hLrLEg+(}PA; zZR~qouW?m|2twzp<&OKwZVP~+(vIwa;Of-*3U0zUds_DBajdY)DM;tv;zgg~>GS9K zzA4vr3EfcisZ+b8TQT}0cJLI~!5LjBGd+K{izVF;TuQw=fe1IVP=$m|NY2&#)?%)S zxT3h?nVWz3;?L}qOdra}@aF>O=53zYPotOLRHVmCmapay_YMmvUFm^-q3|Y}TFtB5 zfrKM$rem}Dl$zysSGG`8tV>8K6~TigS>&dYcs+RzS|#(?1Juzl83rTfvBRuKpw^_bd-yq;6b_+q+6p4c%1(W6Xupy#6d+b&qF2B3w1WA-wz`MWV38 zCo*$-U3cndsCNOj)7UW-2K~G3i=M=BS|Gbw837vQvC@mG&|2KPp-AGHhYw3dVd3q8 z>g0N5>@S0wwgf*cw;_kX#_z3GhO0(#WfRy*qq1b3i`cVpwm%DeZQgG zmOJFUV@jq+QTZk^B%;ro>#G-*w&0jPENx7K3to8tw`}@VVL4P#>rGpQfa4nA>^mBzn^|w^oNfcn%yotGq(K(%u`5q29KkGts z@SUH`jO!DqpdoN===44O$7D4WvCMD-hrCBWI&`QNrdXUIv;>)rZHbuaIQGv=3t-38+qe3G1r$NGJbpZL6Pcz@B1 zau+*M1^RKY?Aqz5`fsq!=(`4#jBiM>0H=z7ZC7+p(+mbDT1={yxsGm&9Pe{;a>cgk z3i^idx780R=5^&wo~E22IAw_j*6CVO?K2)j;J@UFE!$36jG!(L49%D4lBF~tVPc_ls4g_VSyooD>Buok$|eqDE!Im8@=7VEK}ci zkihTkcj^9^gSF!fmPZ3xwHkc?x^9No4ihbG391(~Ui0y_OPf+pj=hkf*3(>6i^~8P z{S}}zZ=b>BhKZENWA^D6HVt}&e%00b-(o>JI{L-URwKrf7b%qGH?6U)(fD5zC#Q;q zSx?;-58!da4hk^H)}n29@3NCkOdAX*J7Ge>vDtsnS5OqoZ4U~4o93@t#On0W($U?5 zzx~UO_FGB`iH1ejrEko{>xvF;CQmxRs!a##)P*ou`>UTNIW|?a(f%Mh9Dkr(EOPM< zy)6$;He-(3Ud-wJ5$m4zlk29rZ+ENu6NDvPp3K*BlvS>i;yn23^tYYmCZ@f&D5WjR zbqo1Ssc@1gxP_+f)tWeDGJx*=Gb>$jwPF3xLjd`qQe$**H5$(hrlw?4%tnxfyto4x zO${L-oQl%kd2vC~QXzejUWkfJ_2TGTT@P)my8V}JL9+w1=u=L~Ng-r7`> z`5&J?uA%HUz!ri+2I|oH$MmmuFMD5Jz3TjOBD=sF&Azorg>mqJadb<7 z_+5_Iu2fwhxQ28$Ay&H6yA@*48+fc^G>!fx=sH*euhJ((nrUczx3e z71M8RM1o#oEnBXPZOB9c-S*NfEJ;B;Lh|?cM#!R6mUWHG2qvh<%tz5lcK>lw zvsfW5Y`A=M!?5_mWjq+8(5PaWxwlX=M7IOUM#^om`R|^Y8ZQeY>y{D=x2s{>AuFBW zxAlEdx@|v|l36O>`$+ztIeY3CvK)E8K`2{W9qeYv+B9Gb;1Q1~WTQO*3aODoJ}i;F z`S$(IUhX^V46rUEYZXcSbPsv))^Q8u|5&)H%>(2?Lfu%S(sgH!sGgqoVx-1Os^qXH zoAuc)_^uQ~gl}ip7?m>-`_8B9FO#~{5aA@Q0@6xhF@gH~HOR6;221)2@K@&Eq2nEX zp%=F)&WxFn(4}FJ;cz)XlD)?(+&SJe<#2%u#N&tl(YQDYVZdN6$!#rXp+ze|_B)@68>`9W#89|+ z;R_d!vLycrN#H&b^!A2quQ+j9Yq0b^b~)6g5m!o!*ROfEx>kWkv#SotnI+UC1Y^vj zV>&kaG)#KMNouHc+6?_f-y_!X$8y;G+!*$BY%>as(nw#WhNlAa$E&CA zr+`tiK{A#8=AMG&Oibk%t%!!Z_^sD0BEI8aoS^}v_sn0wFMPr62B^^A$YyQ>By%AF zy>Pnd!YTVG1?nU^{{NoYs|SQ4i&>&{QT|Oe{ncgu(7wC+loKzm2U}jl1fed4Gn%9m zT%LuhX`8HuCWh1F)sLhe{fE1u$&TDGp7-gTIWZQ+vHPZHMERXNr2(;H`H3Py(%czt zJ>;Iwd1=NAfSw{xQC+NB>o(!l_Q6QYi{BcdG+&LoPOY^&+T)2)uG5H^;s!rV&eMx? zKToH;vV-C`$gwKi`Rsv>;B(xLd4B?Cu)G6^0oqIS4D}|ROVJBlSGaJxbDnHVWs#Vdch0EHxj{gUCyp! z%2{mCdEPJItDq}d#Mm6;UVg=uMH{CUHPPs*&?}&}+o1nFB6T1nKFWlUO9!Re2i(*{ z{qp)Y$-|D-nUqH;>#$6cGTL);f5Aavv5}W7yl$h}utIAOKjW->%QV1!m1v!v{jF7K zbhL~Gpq};04s$s{SS`J%duEp%R9pXcm+?xeqmC>1ld-;o4tIpYL?p@7B5A?mQkmUx z5mAvzpQPj8yEQiT$+)Q&%E~Tmc)f=?Lg{*?wzG(Gs%FM{tl1TfGW8lFhUYYRox*`m@t=DD)~%u*A~pH8VWxdR2)x6_m8@S>JSQiOAmwqT zOBb;Y&^IW;Zp#Y2;nwqCadD`l)MUwZ7?2o9lC;y#B(7V@d5*P*v?9nrOA2=Z6A)vU zah`V6*&*{p_q)6E972Hq9Zi5Zc*7P@o`JCC7);R+h_`k5$;w1!ou*cZ6we@A?Qro} zzB`4T;Qq-9e}MKmX5kFe7`aklrXJ>?@7=&~ZPb9I=fkSsA>-A39_%M>c@$+7WeK|7 zYVJtB}y$a5LZJhyl zU;ZOE8inC3z-t{A(Ma15H;!S~wY8eX-Ngz^^4~m>U2?70;#1Se473Wcw(PvR@U50u z%V+pZ|Bn@3X|d5qmf$#8_)>d{eTTw;V4cA%4D`HOF#i-R28$>u?Ooesgoko&)`mc~_Cw15{FR#!se$&@`|U`Tm0z6T2@PcH{|+5BZIY z&NGeoUr=dv-sw&|R@#n$0uPuYOmR&Z-5%Zua)$Ag$j5l{sm+P4?EKCaM5ROF9gL5K zJWUG7=Ao5kT;4VBUjgWNI)Z;q{HZ*OMy>n%HMc%mj5pD~YC{b2pu&#cbF?XnoVHOv zpS_5>CkAVhGWC#4!%<+nByHV(IC5mGy|rBRd=<&P=o=u9+P+g_KPR^>H%YaBk1LzV6@!7)#9!XX#2=j9 zd*pVX_k+furLKladavmjn8;*|9B_HdNXfP!mKSW;B%*F)8B^zeD{^&VSe_T8Wg?a=xDU}GRg3xC zUN#`se%AVMxLBp2ctJ}-Jyb8xbn%vKBCFyYwpA>`_?pZO#1!s}3X5n9s8j=4H+jb} z(pzOx-==kbUPV!tfBkG{emR9bd5vny^S7ao_s4b90g z&g>hS655AXH{@$&E%2HQAc)N=W3V9zAC`Zeh2ng8p8JtnkUtY6)!U)au~h{;9YZGvrN^#=>?RfI>yY;5kTW!G_Db}I~=w`cey?u-em2P$mgH4kd_Qe zm0YS9$R6>RJnukPsQ0t`jbO;bP_Ir>e3lDz*@2w<3W?G6#*=K7gsh!FrEhL&nV#{O zD~iq%?*;_aTLiP6W1~qik;Pv~59^gfVB^$h)L&Y_?@sTtAr*h0uY6_M0u*eIm122B z2ztKBV0mTjc#WRgq9^jBIw;TEiQeFeu}tNKH1C^yx;;hXa-sDn7z*UIQ(UNz7q?Td z$=I3@VWd*5Y#+kl_`g$-vHxj5lOR+J{s=phoa&ydhtN1bDGOIhsXK0mo3wjwy!$N> z>QdhV)F2~c*EEaRE4!Dp&V;$^`4k8tju?1#odJdbyj+E(jjPXxMc1l# zwU$rqDXlyzVSct>Yd;@!y74UF9o{w5S#%)){dSg?3uO7#1l1{%$qYKm0!m9{Ud#r+ zkLkiT{}c z7dc=HuO@kzH@3zn0x`y&*t7#!e)-*j#`)IR-ZG+0vzn0dXm4qUK3&PY=7U|Am9p$4 zIzu6fOafzyv4di+91IWRJZ0RV8qRm>P{z$J=5<%!boluv&x*)`u#3O>(KBa(p(SFfTl6vJfl%r zK3MC$e*1WHhpj4ARzkG|zr-0@@?7sJDNmNSGXxH5aGW@LvRv?Kb@i2ZiwXt{P@tbxUgGO7R6fJbtlkH1mQM&R%7%>P)vC+c7 zc&ayfXeL#n6ko{dXv3`!;OAZA%0Gv<%k*+@gw?R*1I_ksM-)D|ZA?h~aoM9aNkun& zy$4V;=GWk{nd%!*w*^KXeykVR_zd~Fw=l*MD3T`q{qlAQ+V{jE-0E$BCg3DY=Org$@h zAUWXNx6K_JKBIr+XQr>)N&%$Xw(&X`Z< zi^}Rg6oBbSapN|)pA2xXJdafuG{YgHwM88Lx9#=8?7p(nUHKozD+)Z0 zpeyt`h5Iix1>RAFg>pl9Ws0oQB*CoaGyltZF5F5!0^Li;yi@=RW>tyD(_nRR85Dfn zpp(pEvuU2kBn9qc73vRNK88n+lGND#IJ(ZTu1$1Z?XoMk%pKr&=duYCIZ17`I&N0G zXDp|If8z_f6Jh#5A1KLwub=%@TPP>AHc}b%tjLF!o>=TinT_3f*U=$E7aLB&DDS0t zaNn9{xK$&{9R&N*w5y&*ah%ZYe%;Q3Bj zysB)rr?!0gqfQ=4_Ql+)Y8%iWFF$7P+L4{G81v{VW(Od44R^bZOMAEzVK`&LpEtND zSPVEM>#1sIFZjkzo;KY}eNCH=O19?{wpayPg z;~bM{_Ec;VO$K-V+Z21$2(f)Y83A`k%stY=4d42;D`s2#3 z;{PoRWd}0oi|`w`@?BXr@DKBGrI*oghnNwyNGqAJ*U@x5wq`IEQ&@4kTii^JXPL+` zF<_UZn^r;TUG|1;sv5WM-YR9KEngaaI>zEASEE(sT}wo%od=Xwcq~aPVYMq^q3!s; zo6*KFga!6J-XjarRGJm?!u#5H?F9T{J__)+x`46Nb-uJdeh(Cl$QjnFmD+~jXC*c7 z8~m=$aLm~{7xNv3yZ51usd;of?5@9Bi4gusjcvc(G1Q(HE-|$$|JGr>%C`w*#>C{9 zFRe@{NYFTZVk4&qj5NlgWGc7yNvB9W7bXHDqAyKRu#OHXRO-zO~lz%2G`0Bhh#7r&q zHcUIRvkalsBRRKuD^}u7>q(Q$NA4`VNCQ%8C%h21Dcaa?HRcI5_j|%p)_g}Nqt_TGwwWh==oNlY(KX48dV6L=!P&<>HhCp zg@w_O`;pLoL}I7F(_;-BO^i)WCoO7?3Fn}jHb*fUPJ_z=J8wmj-I?>p6Bh;rV{CI} zWfstp(k&)i1*Ss5mPS;3o4roqG;ply7*H!GUHZc#IeQcIo!UuUYGCZaj!XbARHZ_x z=z;>o?szzNN8y&&^~-R>-?4b{o-6o*LJslzKz2Bu!|ZZ6#mJz6N0<%X8j>kUnv<4B z6#it@ZGgcC(uG@e@x@2cpi4wvrZeaDHhU&Kkeo!QDkAJCd*R4WapSvSBOofH1U4@l zeW?0if@DdB-ZC{cr);-Csa~l1OnTY+RA==}Z)<{~vmuU@Jxr<41f!5cON&H;4%zbC z!!>bPYin`gh6hn8xERgvGTpLM+B|=7HkH%ab>Lcc_u7*Pw+h)QV2mxhCdqp`Pu8X# zkdi;X(tg4LcV=0NYV0O$0vz>MDyRI%bC&ukBU3(u6|>Hr-=jU#!|U0_X}A~2e#ff5b7gi8guE&&Og+fyJ=h$%pE4)9`& z%q^D8_A+%;qON674i#;kY5uxhvwIknr=H)F4w!9n=CPOK;L~7JR(i!%JY78FEns6uJE2G&mc}a z$0+-N?<5A}=ytLY$VJor(#TzsBT$^%$4Q6tGzBy(X>{=NhMN3v(%cNpC6S4S^<`-; zw^LmkT3(E*gQ1aj2*sV>5o?T9fe#G>fcUX z6sNv%ztgjVis8nnb^|wk|1RBql9n1y3kG-@eolHW;0s#>ywsx0Y^Wf~()t%d@DS@t zJlVfLL_Fd{@^IrDV29Z+=7wxLo3v@;NX6hU!yj_%_RDMs(31Bc~LSpZ593Rz%V?C4%II5f5l z7ag6qe0!n(_v1F$5MBI~Llbg|Q7*Rr@Xm5rL}tqTXU6A)Jp*$Kdl5QE3OMzyXS9Ew zp*RlQ)+ajY2MzdB$#5uYQZh?3a_qv`k!e zGw7Lup^G>y@7a3ckV^p+Q%%=c z2hDA2>f{hJ8m9`Iok!P?bcna1m)}k&sf6w!KrTY4ANCPl>+w@ZfDDyhZ$}3Aog}Oc z$wJ_*)<(RFd?cjg$1aA{76yH}eL`fNHMDI&o`eU&%`EY^<}1E$9&90q1X_-xZO0Fc za~RQdIW~)3iIC~Utqggisc^kM+Z-m$%9O0#M}q>g0Sil0YoFatYYK#(|L%I|S5+?* zAaXVK)N&w22+O55`dQNATNq7}4f$i-%xgOZvAE;@P+ii*I~<}(T7egchy-R*2ypS~ zWogl`2Xy24nCb|IXb&)VLP*MnEtK`cvyM*9|7(={%}2Fe26W^ATiTX!U`o;l`QX`1$}+$C zt#H9eMD3vlY=3jJCaP*eYftz=fcX$=wqEOn$G3ee2|ammSGp>}tr(!;MUX-XYf}=R zp6RwB_kFHjd|kbRO&L$|-_WaB)NC!^ArFOSwnSq9CO_HeV{{URQ=$gj-ao{QT)bBJ#=f z1ql`1-o9yv{%4R@JJ1D|zpazNG1T4<#JIq)Qm2HC3D=!QNin$8J9JAF#;A7mRbNlq z592Hq139nAvdBNCAJD>VVbKTA#l5=)4uo{PF6V}iHJE@T6 zzzOsyT;?nV>qD^l9gaY7gou}s=)U2j>M%)KjwKa1e>3W^uL#4(9EQ6E)S1OQAFzB( zj?HO*wq|dtFH+H#$Gn6G`r8Hp=0VBtdkRq?jPbqGxNM3~)xY#Nq=;=74o~<83o=*& zy|Cm~aiE&qJ#2pHdH;<*)govyaTZ+7JD8i9-`u#EQm*DUy%KZSRrL3z$X+R*z1mJa zSLQmzf~E&r-I%drn?cY3zt&Wyp`aZnqinZh?|e@D`%wCU$=Lc=312*9@+_<{~HuwaYXgZLwe~-#|${nY3h@%TAQs?nK1hr}% zDgu=amJM(h*fcc9tML>GIJDe8qXE8L3T8x~(t~rDXO!Oyfng>q* zv>LxpE=M!Xud0PWzLlu!3s=oQa;OXC;S21Hz{BuY(`=yu`lj9V%hn#5XC4S?43s0T za$F7LEsVCwHK)*`we9*JdFFb1Mj(-t_AvR1@WbDc)k$px3ouL3kQ%z#by|d(6;v*;we#N3ckNOk!8&EUb{s1v6~rO zT1ejCwAq~i#cDZuMwg0;dSf}a>-<7^KW zMElK&(N~efu5|U2)+e?98ey^tzez5rKj8_KX>(MfRfY&6UeIn4t6RxKX`4374|4thoc!76TJ(GCowp`kiwwk2El8P6x-1> zXFZl3axAh4VSTogH|{|F(W_?}B?#T+xQxYAT!oD zDjsUuF$zSg?(A%I#I1hDqgG#~Ep3%3ber5v?9LtEXv{)Hf#9=}uKLrvcz!AT8t8V0 z3{J^+zjNd(gwid>|7Mv|{d_}x>VmRNTuM3t7#6xp;s~Y?;90GR4exNB8+e!M38{Cq za}MCZIu(7esnu868oWn~T%oEpE9p{{7xk@5+u~UiJ4gJz!pL zSrzlF@Z~g@d`5zdK($$st-`yu-gqfs7tIqJAZIJxQVO~qQP`UKBXsJ_xMgpYfu7eZ zGT6k{W??Ug>J$wPF^(3B9eoR`;w6dN=0VCCd+W?@^&!(vj%LORtu`aSy0^jxpoI;Q zOG~5sIFNi+HVA2^In~@KzgAWq{Hb$HjA6z|!kUsKqiGIe^e<}d!1>Ikma3QW{db%k zf{Tmgzu}Tp|4EbUSfkSYB=Ug9(ZO-ISl@uTM8?Ch_=9V?9_alqQBHx(D;T?d`Jb5i zk7jKTvZu-Qw3n}jP3?}wle#jug_2VHB?+05!Vzji7`AUC!o-Yfi0rvUg3_9r0fZnB zPBowbnHKf+S_Y|n$M!5Z6^O$tknkbUpWlQ=u}z==?^>yho@|d%1!%#U1%mD#$n9;6 z{cSV|FwjiF-0rU53g$xo^=Y`vsJY`%3c3KH_>)eQ*eCoErHkc=9PV4M&T z&l;b>;AD7$lLl}s(1I)QX5da9ulXTqe1d3Jpin)$Uo?F2lH|e zognhRCZziBAH&$!_m2LBfvAEDC=f3Z<@Z$;S_?r6Hjo`m!q;2dF=lifqv7Z^YCcI`29lv1lOshK7BgJRQkE z5$SPE!d}x$3Anz!L@{aiX$ed$!!qps{jb9dqeCdL?o3^w&dslrXZzs69?)tC?QW1m zB5Ov7i=15dSXV%a6q?KII3x(bWsm$J9%0nWdGbl{M4X z!cCWNe7pjZKL-s3hksJSH|Xu{Z4fZvIa|-?izg}_`}vC5|Er%`usqkF;xor7=kUHN ze&bUOq;G4j2m1NSgnF7{B@hJut9TuG7`)!Y%i&$X`a^#BE2keYf9WcD2jJpe8=AiM z%%1nYzM3cSx*xLvv}~0#SnpL3)8jb;!OxUZxL0fIB%x#j^_PyT(Z?S% zHAFjhq9=W~>Im9paFY_KP|fA{ziI!f#$E0c1n{6GLb}~u3@JsFMAv|iJe--~lS@D| zFU%c7O4`_5W6vkvo;|$RYSCAv2$T_M!+VEECT}|ki@7nv>%KOfAnk&KEt`G`;eoid0HmP&AZ;sMGYPdT z6X*E0pEc0XAj@>0Hv$iXb}xjnxZQSlgx6GQ8vvO%iO46o6WB8T7dZa__dgjXWOd(X zK&E^R0k91q4E8Rpy!;y)@84M){=vAH(4hB0YXvhhLbaeF*VMjo0Q%}uvCVaMerV#n z(jAL?CLd}Bkzi+W*c_TsOYgBH@7P$flnAz3#?|~I+b>{WGx19&PbU!n&@ggrKx{iW60?Wk$hd3Yyx@k^=fEy zj3n!%t-Vzp3sLz?0RPD;HUy0V&#p!CDK28)$8?c@LGgM+(Qs+*1?!zf+GGt` zo=?bgyV~et5V5B23FCBy?~RcP0wt^*PJbtbH^<)2Nt!-f@a&zrbf|n}4|JpvgzNoE z+WQAdh5Nj%O!(Hup)(-reTB!9+wU)gagWy$ap|)si9Qq00jW~PGf8`y9Wl+Qriv&Q z!=OC~b?4tSLAZ~{7sj&iY4iN-rUONvej=#pij5^0m{8?5tz5a5>+5!SQo2wbBXI&_1~#56O#H>d+gw}d+FLp2ie3~yj&sh z(#Oiweun28188EeR($8}5Wjehys{)?<;+6;v;y-eBZ1E4Hl-i89r{xdQu`53PQ0M7 zDJdkkn#m?|n}^oB=x3a-_H{d0~H(SVKMa^twaDB}#aeGCeZ7)g`)Z{#`Zb$?Ebv?kc)W0p5Tqso}o$QK52qOlW}8H#_|H3$SiqFBYMHv#>P)Y zOAu-lzy?D1jr5_4^b;kJC^`IvM?q#Y8jr@`Fg?)52AigIsOi&NJbK zMB61tqk%OeaBi71po`nU>~w*VSzTRS^OHJLzJBCAdrPS=L0y%Igjc049nHDqzFZI- zsMjZiSNwTcW|FQhb&6Oa7v#;fP_5`*@@>IT?&6^`A5+jQT`0n)Cy2`K)Q}#*47bZ1 z$ewEU;8*7@cXaMV{8YhG@jj_;X(~P&5RW(Skg~)jy~*TUGB=vP$P$EweruUKm^P{^ zI>#-VZp9;cht5MR5gkD-Uoe-u+C8yLx4__4UQrHq2#(74*K zn7Goh#hOOgd8jZm;blQg+VT%|x6_#f(39ZizBp3Xui{Vi-Xbe?s#BCyP4*>)@2^!( zE}iCsTHxI7kh7fGMYfVw!DH>@y!6K<769lPaJd2)wK<3RAS<9&5xF~Sj zWOtVeXBZiJ)os{5zh43$RvWZ4F#SGNYXG#E=8@t*n$&YByMLP8e4K5>krAx{{XUX* z9X$&wiC?Hv5HW6Tv<^>pyc#a@nnBwGb=c!fh~hFu*gu+bg)}MBf*B$VW=M!A%W4c^(@|}cS4-A zLNjc4Wp=!@=9n~v9Qbl=_gaAfIaz1h`{=vt75;nGoF@?9jIkKU5LJ63gliiaIeT*w z5$Z~b5*}+9HkHHYx=v#2J8J2>5K2ZVZ`mq%5p|}@Yx9UDxALW87UHiA2lB8kYuV!# z?oeHpn{hf@tqY=k?*b&NH<4uft2GXt_Kfo9+mWzQ&^&=klZ7mcn#U~QNb?f>LIdY- zlWLegNDxm=W0jLV;}sulC7BowvLFAIL6><+I6V^gADtgCi2=^PNGb3BRq%u*$LQ4r zHZV+k?tHrURBkYL-hTI{E(XQw=Og1c?p%07shE;gLGs9kUYm0u#D%|XaYZ)Ra*VqR z3bkhjn2aX{8X=f}Px{aSTw-v`hnVTSiq7rR32!&JncGhX^mFRPwH2?}_?}5~7#Q1z z2VoH2z#{a^%++yF8|n734NT(|5M^F29Om>oK5E{7i?xzOJa|y3f8xs=WIM-b@GukU z5h)PcDLK8-VIy5pJ-q6!pf>cNBH?5B9v}GpWpI=H<+_q_VcV4gfR?ezTHiuPc797o z6Po+>ErBfir)P&W$PVH}K#iXgq4-=A-=kBRR~-j9?m|jY!-`EO{`qFVIHcp;V=#tm zF~n9xb;-5m{D#ROg^QM?y4OS9z%NAZohDzYG)qW3a)SDrfFjY3F`1ZA%wk>Z4cQ(# zyg{TS2D54kIvJ@40LJ$?2-Pl7I^=5Vp{DM}v|0r&_=kpNw))Tv60NwqK?%+-)>geV zwItsb^nKN>W6Ys`#mr=?#S|CKH1ZeiBzf9}_Io>HItK$KQLHngK8;30^AVO5k>UqT z=!{x>v~*5CR95dkV-eKQ$_B01_?~7Ey(E`^!-Eg^ zC3~3pM`IA179E_qfKtjQhtdfwPG9gtTtm?PoL61)mIuvoLX^B%!S7jgUjz%?ku6EK$o2x45~LuY7{2=gm=6F7K-`H!paB7*+~(<%$PAUD}deTG=hn7 ziHK3oInj*?@a$9}8^9b1l8{%|=Vr10md5;^FO*8W4aI6ZH-L*4_cc(+Ut}j9GTJ}9vnOnQ)nDE!$oxR#k?2APOgTAxfI04gg8ue0KqK7L;o1pyK>Cs_p6O{evYoESqQsC*Fg*88Hx z@HU4Ee2oM6C_FCT`VDU33r_2+MI|Xv8aG=e6Xoumdtw#5N!R4;yb*XZwSUHd6g8KF z^=*8k^*&4^QjI^>o$bV6kR)JgW0c}+}Dh@IR7Wveadz3LIn3zr1Db>ZW~$zMlgooDmqR? z005;^ih;PS13{&&rt$%i~7W<_+!g4yVD(M}oT3vLW1dFktz< z4ZYsl9oSD0ehACo?Nm@O(DDB%y+U8Q1Ue11qtHwWNT}iLN~!JzNu%mnEcm|KnPp_) zep!>86>IzWf7VTt26CHSIR_x3aX?$H+9&Z1t|e3Y}QG+q3*cPV4~@=Rn@m$N)!(MJDD4HD|D z84*bp?O-Td>ZKAtZ$F5OjUAdBE#fM?&w>SgFH{a0k^p8KD?+%vt0x*^eN6P`VJUrS zKVKX-wezu}Gmb}TLYdY`M#`rJ02LSm8JcH|fFI*Z<=+uUxf8;RL9lbL_lsuT1Ai*> z<Mtco#>i6Wa!{4YuXNfVdY}KOH}y{O$?&AgPP^Y!|9Dm>tP^RZ4e3t2SGk-n z+6zZeiTv)}-_GtcDu0*pn$Culhl~;28`XVW(O_bQ=#Im_sRbDWZxd|j41_oJ1&Yjq z*KGv}gt1=D2$b#-zQZ>NrkTw$*W4ZHgkGpl1eIF&zS|xI!4>mv1s(d+UU_z&VH)bx zAY^S=AOX!$6Yyx!Og=9+Y)^7i{=HP2EcksM7e1l_T}mC2fkSA1qtP;zsh5F|Ww-B? zpj7Isaso+Bx*x9ar#vcpKw^_xS&DT?)H40&>;-Iv=pG@+JY9$s#rg6N=O8pFPkLn~ zi{vW$VqAM(^4hSJ#GyrPwB^9yQ?%3%g$q3cPc<*wQa7OQ{ju+Y#UZQjbkHDN)oonV z_Q2J!-+$KH--9U1jUryBfaJg^nOXQvb$l@*FhvZ4MhvU+UcZYANL=Szs}EhO`eC}} zia)GQ?ncV;`}4VO+A3AUFhfQrRWgD7dQ%C{cOoLV_HVHsRNa* zFyD)t^Uw8)28Qs#IH%f7L6%rTFP>~s?J+8|MjM_U?he>13X6o)WWPS9K<%jyFUlM_ zueFDZ7^zyeeKHRcU_$Z(qa5QW?p0cOtm0~;a?F#sklj^UFq+V+lH4xej7!^@l8yU4 z@mc>MyM(uDJ>z*me|RfT+c>+;@Ge6Xu6KT z>17r}i;uy={$it0M}A9^==Us+TW#lS4?X1se$k@76Hk$Cz+n>huO71EIqq@K@SV?- zcY+9rYRU8H;J*UKRVr8bI+vmM-efv+j)Wd#pK7&F4=8yIbfWLil(FvN+z9i4` z4J@pv^R{FD%}s1leuRGbDf8>~Hm-!Xk8gAW$VCm;K=9))FXPA><3S7iChOb?MWZNk zcPMWJm>!*S>kRZ;y9sO#XLKdj?7|-HB4dfUD-6+>A<($TSqz%6Jxf75HH0Tf9E136 z@X2$%qp}!A-v8)EqLV%KCxJ;v(S$D9_TV zrG^gy;2P4dLcjO*Bv_xCKec9%o9F>Ya(y{Yej24_HWnObNC?;rnNl8`(Ezyx{gCb;_??3) zb@Zg0t)iLz<&m4FnJSwVE8wbTWo4e5sZ1wjfbsU-&2m`X_&@(=`dVT-0dt@(c$1Fi zNR>3hfztB^r_5UMgvb4Kqr_YDQBd6^WF?&{RDTOIJfw@EX3a^`oR+lu^5;-};5Xdo zJ?!AR7vlskXfUkha`Bo?7jh15y#7OXTF_3$^?j%oLdly572^aNa_XNjrTW{6q0u zY<+F6XiY9P@+-^i^NV1+$cF_b7i%dSAiaD8%_XR)-dImM;2LHvcI772nO&M{QU})G!vVFqWDoJb98D=Rj6PVM z-Sn0|b3OjZxLIVMsKO%nT+vbvWLq`$&C0RRqMB81t3Kq6wx5cWe$JWEZ~9vO%N@#+SiIB} za#nV&3HwK3F4Iee-O61_n2A0``ME(y;RteumhJ=@`B*YCd%u1S$?3STSLE~sB`K=tYVLH}4yu^EX=>=Zgxb5T_P<~#<^Z$2v;6qMEde?BYi z0>~+g^04QuBwmQ!%eU@80=wK!fhpHTS+6A^BbsVnz)wVS`mdJ-nhxciB{p7GhxKpS{$SD*6i@~>zGU$a z%hVqGOszjnK_2&fgJQz!RoRA$U-d`fuT9+98#zD7k)mC2c(YK_!{-M5@9l9D9wv{Z zylk~ASw!PJuaX&=fxRVxeI~P=dvd458cEC>e4|lFKrJi&vM&+T#;?x$gWW`fr5tBg z-=$O@ozBk|TuK(zgqv!$GzwiEOGX~{HJ@CB@lMt(v-7sWkNZ zk#_&*inuNxvG=-&C+iQ{Rog`ij#eu3!`nuqcjJ>%BN*iZU{QHVc>*auHVv)1 z5(eqgKns;AZ{-Z7Vi$FnB^~>evAJ5Dy}v_5P|$vqsg*wvJHPL7jUMH>S+PucgYDGL zXMI^$qlzvo#rJn_cs3^rEorWKi{W4TnHT{IdweKF~n8 zdI(}s`sRP?LnQkhJ!RbG^mNv?YAADbEz?TY`5X69 z9V1P2;Uq<1#srl&^`6BcwkkT@(u{-08&jaMYVha2?>N^mH_tr-4BxKgzUMi`I4ipE zgX8XOVYpYsUfa1tq+xQ2XbZkmPGPET(7V=cIZ@pq0C(agL~8aTTtPqp);>vDrhbLs zY6OY!tzwM9|3d;JXAvX}c5i`EzrIqd*d+!3uw<-&@@^l5-?Qod9Q>=7ZmQNk{=@2C zD3?6qSuvYfd+4v;g}_|g~x3D;03cVdkJkoJ%iz}*79kDhQeW3cpVK- zmdiXsfn*U#cB2~!`QrVlZP~?*eTJoqU3uQV_vu$k-Lrcid0>5YpJ;d+7(bCZc5^(l z)a*4-wKW-^tr{$yp?r=kL(HKCD^NdnP0G3iARYwE_t)Wbml(dlj9%&vNU(crQu%SU zKOu^`WKHL_(D@Mb%)4-qdExA_c5KdkXf0>hi#fdLyhsYNpi_vZtuI8lDcP1v%g+e< z{-mq^{-OSyxjK`jMZ&QKw{*Zuh&G89DYP4>Rw*0IasWee7F^fQWMXHJ?QXWVs$pmY zFp+7?$*~YaMX_Jh>SxsF&#v5$JB*bU8#tta$@y51acJXy+74`b=jKiDTy6E4_KgS)o3x!G!7@1+QAALp69#d@hee1FuByaNv~3nihd5vp zCS~5iXrbjzk+_%ps@eMeLV@;lQ_sHuW-n>oOgK7*(vdi@O~d~bJ`2&bFG=N9j{fql zq>NAm&rfS$@SpQ}Mjh1*6oFuK4|7zdIXwLOclS}M(hm~eM@;T_H z935%ks@Oo9zLND(Ys~jN<}=jO9Qimi69*PgI>77_bsL zX^ic^y7K3CKwH~nfFnY4Vcw(RQK;id|9#Gr`l*Qbg3DXOG61EK5GIZbq zr=AMX4$W`+9?cgKSv#B`09BJPOEaW)BwsC^^F}DGUG}0grL)0~1tcPzrnDd9IKBl+ zEWbeEQNyKF|M8tk<9Boy9U=nBYqy=PxiomRS4(xJT*J5 z_*eYZS2?J|&h;~dfm5FLuj7qCWVGS+`d)zKh_X*!C|}`C3*1=qUXQKQ_nT3`H#OMH zvh&%Uv#uHnr%&4y#kcvL;KvfdPC{B7%BQDPOIDx_xs`l%4_$w-l? z4~4Qj({^Zp%NL7WExrAK{gpiE7zSf!FfY0;BG>eRyw|~tdr~LKIztwO9)%y@l-?AO zUh{AJOBQb54MY@ro}vF4K#0qm9`^g2OY@bap(o`*>bmt!GR$<)cz0bIhx0LTLN%RV z4nHZe$hds8m>Lby5iqvxnv@iiqAC!9DN$d&EmZ6hO422&U165`!;;VMsQ9k}MMD zcyzWZkB=faf8{ue4{Wl0t@jC@pTw73;#;SRI&S4ah9oOe%f4=0CC|b5$E8#`fpDen zRNd=k0wSIpH172AG?qH@v>HYe#!b&3UTtjlX!~h|=KH|NMw?FDEIuT`wpHhJqGpiy z;=4z~C;;uy^xCc8xc0#z;L0pZ1p@{7OqY~TATQj8HTQ??^__`GN%W9#v_KDBw9m+v zPuD@bsf{Mbnti0W6<*xmDS@~ZU*?I3H8*UHz*$>%&Do4cIBd0q3&{8OMUB0V;Zw9v zwLkA^dTTxafL zY1?;vjN2jkpMCZu&DVQaF?n9NCZ$C(809bq;8SLJTa}!oPk} z)x`VOcf9j>)EY;jKW+p*yAy#8Y5a&k|8 zw$@E%K}U4-)^Z&^hcV%!!jRnU2bN`aTjseA z*(aKMv`-u~i-X}|%3lh^Xs<9^XEbkBnZ@E!2j5^r;FjQK2|oXA-+e*)vjB^C6RY(4 zELkXCs>fyd3e04gzPEW?&RESF&n3(d#mShzAoxS(`b%NTFU+Hr`sP--9v|-qZv>U> zfm29+m9feRxvziP*p55{7O5|@kj8JvqIaSv^0^fX;1T3~=fj-qR@xd1ScXx9$LHPI z=9-;-Jr%t+$2V~uuJB_P7JCSk9%9JM)@(zN0ovb{w=w!BT$t@hO9d*Pr?Lk&?FR zNG|QF&=Wp=f#_c>bJRA`5M+@feM;&Jre7_RKu>=Sx$hxu0xY0ef zI}kL!xb5m$LeQj|9+sCprL8>4`2Rg)U&02b&W`O0Unx+zbFPLka{dyL<$C4SQ0pVJ z4JaE7=en0p)*pH>f4K#L4b?nSkE_MndFD)FvHa;s`m&VV5JGG2DzOSB%)NvFw!Z8! zas>OC0H$9E{s(4*6wn?WVz&{W}4zfpf&C>!d=}Av&BqqtfCsb zR~}lxKhw*exvCqTBi(bfQz8w`I)JCkZO{0TqloXN@D(Iy%%aZ4ONJF|?b!P06ujt=W9FS-{2cAsy_`t!Kj{+Wla`>88wj&kUGN)=% zyluAAG~_j{3s2z1chp1fR#kN-q+*>%#ls`*EzW;(*~YjXr8&x9IQOhJ8ahG*+jh|O%5r5s6nZ~_j}%_OzD(9E)}Iz<@fx={*i z2>Yro;fH4U3nU=hj|d~+`Piws=gwnET9mx*X<}v+ob$Jq<{RVP`ej*s;fq388FM5P z3}^P8eenTKN3r?_v~G0gv=Hv)M8TqvE|WFWVvR`gnpuW0z-#NLcqLX}g}dXv3s3jq z^eQJecot|{ZgBqmZcWGD7&v&lSw?fAc@Q~`Wam5{APIy#Hu88G-eoto$uQp?sJp2ok)WE5Md*y zZ-A8sYxc4N^1}!n+Zg?OwX5g_!9T_rc7f#HuekrPp6>C|EAV*a5UA!g0Tqy!?+&* z1e22k<78^$%m9NT2W9yW<{R_k5~mxUnXCs+^@8rDmASS zH>RT9hw8Q(poYuMhiUBLnnH`a4Jq|N`D4ih71spOLBL>c0t5p^1#?l*4*#8~%GqC9qk?}E6IPX3%* z>lWZ{VBdRfbCDB|x`Z7hd2$t?rTqMmkdXMR>u3n^EE&c|0Pt)7d^`{+WOe9Sd?UDL zReHg1=kPDO-w9EW4fa7?KfrN&FBAw2$RHfRIfZPA7?*Irair2gz%;ku8WdMTPKyZ| z0Fe!!->*SFtq=tL<+raK0M9R2h>#CAsI}$pEEI!O3Uo81>L6|*kXC9fA4=BnZy=#7 zpUedK+mN?G1~I$;I{j&fq!^AKZuX=mi|J^Dp4MEB25m>{E2$Vdspu|t0uNt z8MM1wXtzS8XxFWBAPF%$hwjt<7oVEM_jT~Yk0YCJAuFpN)IEy`J@)WHt<6I7NuRaN z0lzOR z$Mu)&-4^{9huc^9?HAEAa8$5+xPPxbb|dovSoBOPP)v2*bNIN5Y&huS`qhC}f3dTL zylbl4{-&FscPk}W43oAq7E6Rci%2-?d?nG?EI=Un9UuDDDx*08DkV9iz4rkQVl`HXgJ--a-Z z;te?wrqOparJvpOX~*AhWxnZX{P+$;R&^4;GK#P9Xf^-PUviGQrmu=yPoMf55hImL z>c(RB3yN`SKsHmQ%Kx;#KpR7MNtyeL-^NT8sE}4kc+PhTUf$CS1=> zQO1SdP_7?sa#Md=L%a;YvTk%cn2`m%Wz^v4=V71p~RiIsWk;R#!8pE+oer?He+NNk~)`MKxrS=H+} zrN5Kq0m6H6($7?{Lzrilo|q7(J70>DE4-5DFx#n`?@Ex8H1T3SF=9f0vtT$Md@zY_ zCY@{)L^shI-Cn8|ftiEwtGJX;wJy5BDVjckrEk~ud;ipVjy>Gz-itI~*G@yGf5)Y~ z-!(ZlRsl>o@Uz8kyIAv<@Q6DCiq}%+g5}8>)7K;`qqtgsQFOrQYb^&l)kz|4_x`Cb zl=rlH2JfR?Cap}HRCErb&Y>oj7h@i2$bFbG7twZ>AxzOBJu|)$y2lq@x+WX%7@hB1cT*-7RfmL$=S-frEtF3D38V!yQb|p z^2;36%L#k)scbYXC*ag?=iqhGV--7wqp!0r(3?(nm0e#hcCmnrG(;ESrm~x}X@FQS z4>-Xi??*ZY=!nE0ha+rF+Z(TcBtV*OmVsaM%TGAp_xfZh@hpok1g>v?B@)`=49hZ3 zyl~=c7*j&sHbr|us#+hiXze7b83}nVn?r~{ATjq7P{1@$a^(C>zO;Rl*hnzwyJUTn zW3xT8JP9_66pR1Y-W}ebH8n#V6<1cYh634=_aA{=rFG*{FwwVoNyP5h{mDh55mfKG zNx}Nt?|v^`H97sHnLzpcFGDey0Os=vl~V0;&*k*FrG(0!w9sdqJg-B&)}PurDCxXW za%K~x)j3wD)?RU)@zIG9ty%pw-|Rl-tY=JShC;$3tJ)->T?vtf>}U^9^_faoT z71Qf0?eT!&v;|56)fFVaN6k;B<|$pw4cs}tKbZ4Ykhqz5ebD2-Z~tx?x9VNTFpHWZ zmYNBm(R8uptw>W~5-;1O=;o!~fx;^Nb;NY=Mn?DX*5bVND?M0jiaAkj>|3G+g@Znl zrG6(j9;IgfRoFhVx=!!K9zzmAjiBx0cq!M%YnlecPyUKqsvaaxfY{!D4+<+y(^(L5 z-q}8OmoCV><3V%ufa%QWnPsZtY6|#$=J6vJZq^a+lW(7R$hSTCvGX4W)tvQaHl|3+ zCFrlpd=1-y@Qivf+R>XNYCoQ# zI#3V%G@J1qacq(iA6ZXUzBGdQ9R$lMcVObnmGZrWFNK`Jnfl*$KVD8yV4@~)JkO>g zWA>lt9l$Np?3&mFo3OD?jI{R|Ew(r^E`K5jIY(}y;?ZfKMulKWzbZz{8Ay6@8NB|n zD^k&h2qgrh7kPwlAsLv-c^rSIYgmZBON<9R^pzo;3cPYBiAVe9CrZ!8>W{UZS3^b9 zpz<{m_{Z8}M$;h(LA1lDwY=E5a&D|~$T;5K1WnwIemTn2+>ur=RR~w&3WlB$2bGY} zO$moU@Vjs#x^P8}Lp|U;^BT+n#ocQxZZ@3d~$wQgn1or~8 ziuE3TndlyNtUQ-Z$w@1bW6Y~``Fa`Bwqi$&KP>{O?ZP?@GpMLFBf_huoqeWR&R+)a zxP>|EL!@z@hIVH^74jn@^QmzSzTB)5GB0%05$p=KcKqA@J3V4~tEQa(G<2g?g{K#N z_kVq!f7yj&fx89k>KXSM>G1bf(qsR=CkEGNb!)1lMJ_F zrgqc*S*IQ@y{nDw*VmKtvz*j&htt9j>S`#bR8oVcHl7+Gnr?0epSif-FZBW6v-vW5 zrC5&&k0`|7$wb_`t7MVjv%aq*q;dbQK&Dce+!nr;0Z``#IuSA(>TF{cLR)*}aNE>oEJWJN%nA*3UqJ9BGz29+>0~N$)q;I+5T! zj=zO-pQ{ioH8IzZ)L6t1O36U8SM*_V)PUk*BmJD1o7A#NdsUU<>A(HnfHQU2d7CsE z98$JxJ_qU6^MNRPsF!^mYXZS`O|bArYpfyhge7hs{^ zxtF#(Fq!S)8kDic z#Ubu@^8EEm{~Pu?b}-5a*SDdI`LHbA&gQQ4rK2v~E}A0oo3>q%Z_FAc$J&PQ&*hNh zILJ@j3R2>ere{gq&`7 z^QjYlDVaxM*$0r^N2rDscn>t*UaHLA%d1nb1z9$M zu@}*ZC83;!tsMmd{R6V3 zgr5<)B5bpn4=XjarSPHzj@*#toZb6>$&`6jG!1n!vg%@uJNa$k*O?0?wavocAM))? z3V17#cRowWon}>Nc7B112#_vj{pC4c7g2U=P4e~j91jLC*lnKVQkaM^Rpa3+bg-EO zrxI323ruVZ{_u6bX?n8c%dlE|`n-j!z?BK|Jj` zJE+J|(`5~0k_sck!xSH1b@=?)QVV%un@Wj4%HQWX;?R!J-D=?%Fa9c(E`eyz_=}Nj;=>9YnANxM6DwYAG+L3LWLyYfIQRLo@8LhI3Ul zd_2_Mn73zM(a?K@l?IS<-up#p(@J~QH0DP;dJUkBtR1tui;KXFFvgcAh5yD%f5I>Z zT!Eyu1^kxnF)07-3R{LVN&Dr$42lq)P{#Q5QE^J?i~`;jm1z%M;UpY!+9lb@GsgR9 ztmD(*WJkbixT!{x`f@dAz7Q?p=Z}@oxk5bCh&D^rSn~_CdAO^yfc)92*QuBnd2jku z!|3tut1=##y;dC7_$9!v%+;T>{+Ku$uqD|AjoGW`VhKj9UBfJO>rWUrUebr9@pW|0 zRAr!j!dI@Ylp?3;b{iiuoCALCV)$3nM(J$0DFBO}IV9Ko0+iS2{i`9|agyGH5Q&;u zwV9g)Rqr!1*nC1Lm|ETv8M=*&^V-tjocG4ixQ41S?#Ie`e%9T*6m@ET*2yFrKzB)Q z^A_jaZc1DCb<*V=E(Jw=)?BvPcao90N-y-`L~1d$)V1(5Z4!tXASwa3X>;v#nKJ*K z21=XMZmztDcX%Xq~!u$ZhjQ>RqWP-xZ)N2HKXHh_T8JqnAWEz|nDg`#lx zVq*b$Z*8Ha&;9iq_Y7p4u zVmKwQRepBSYMJ2CR48(qB2G0v&f6nM4m>hKyW_(RTUAhWSo?zNz!b#=Y0vdycQZiF zW{qt)A4?K$2Wr~W%qu36zW!h}q>X+=B zmlDr_rbDCofhwcDQmNqs(42I~;I9(uGVazfIU`}vZslER;KW8}~ zBw^fSB@sP0|F|d+7S8{TL^?N9--v6c9EBz91imF}PM878YrZiGhZn(gZ8G4;*j_!6 z08()E$uNR4W9$fG$!3(XR}%>wlnYwZ2l_(p%QANi?i)v`lr{cQr~V~r9wZW=R_Wi= z_}s8#P~*CI=dc_AP?S9h^aP{NxM=`C7?|<^dtYqQGp#YBr7Y7akcw`8jwO3Kd=z4m zfD%^q_(%Z)M_$JTuF(5k5ei(9C1i4!-mzZAe;c_-<#;>iwyl?0dq9qM=OELrmMd8W z`$nU^cZPK&ce2aBnGxsSUmAh!co85w<6Mn+Z$bZR;HxtXki+CqEu9d+kE~Ut(sJgz zKOga7U9f#CODC&*ev(0|RyS`oV`7Kb${rq!9|h?VyFZoa0OOzW@K$p_{rea%$!-08 zc9K#&X?7JE;4`t0Qr#V}hK{UHLG(wV#F?m4;v_bAE!mu~@K1C6WI#gF5R@Ig14hpz z$m+r!S9_KNAO`w#?V1oCZ++5eOF$4|AI@^l`*)gb4$woncf$&9B4Z%8Im^~Lrac?~ zq9Zn^Yrnm;O7VSIkhkf9>SQQ(-JKLTF%p zU}=GKM69gXiuJJ*wD{4-ZwZ{X8{@8IYy*5;c?2gPY@B6eGt#AiT*YmPugRmdf%7F( z<>o^<>YXf-6FWrOf;SGr0T7%EY88asXtQ^=?^k zgkoq70JBqCR%DV*bUKb72DeTx$VtGt?<`s=$)QD-qscZW3j5%bc zK&rbqMk~&Ah;-4g@0@Z$n0TMOCSVCM+0Tjk{coQ2dT2?nZn4LV8!=6!B;#Ke>WPQ& zQ(`6F>f)vXj!Tk5r4kOlxOHqgn?#!0<-gYMfV|mW8|qkjf_7CyOX$X%Morf7kDR8Y zjoWdw6D>7vq1uYKx@qMf-FZ5vY|FMJ9=e7V{_85qIxY?xiwGa%-$~_4IyMxLTs24} zcM6436%n!q=_co_H7_bu3#TWBxXsT1Y)dp`!+uh50cDyJYv1JY@CaP#XB{g&3RtL1jNNsf3xyVLaU(VxjFZfIOnVH-EtM=iUlS&`!JX z+in8X7MQh1MO{emb0kPve`p6FboA*1sJ__%mj10|Y2msY)W1+%~} zNB_f`l~9k4yQt-hh__>+zi3B>h(wNwc-{hjB;g$4`z$&{D&9NiNxh;l*N4}KM++w~bSAh% zV1$y;_U>=+y^KL+YDc$bIqUKUY>|l+Z14fvQf-$IQK-9Ek(tUGr(`u8quUMz8U_(H zsRt!kF+@neEPs!;wB6(n6KL{s_Ag5jlnx@Tx@*!XtJP_;t&$yaQT$j+C?IuJl zVq(kvs?8`z+!-k_bAL*7+3&Q=4uIF@2w80Dg|U1#*nI}NAgq|`bHF0zs{3hWEKNmu;eq}Sb z34kb!jR-ZW75$h7t$VFqb-UnGuOZp5fl8e&Rb8e&GRn~H?m0fHeGaH(R4!8`Hi{3S z{~j@@h2srW%3bR-{~LDb9O;SK)*tV6wvW5yH)DJ1p#kgQTt*Dj&n)>U2%AgNi2TEACoVuq0Y z%(Aa2?<*RQULbJ+fzP- zJ@T7q%nVY1IKfJT86PW%j;)zsg zf#dL_rk9-A$_cUokdh0T4t%52`orBVcVl09Sv2Bew~l&IC&o&>vs3iAn+CClU+&e@ zu#~VOdHF>C*fiV?vj%^l?jb<5V`6!g!h66s`&&cpv_1{ho{of z`#$^pYAhND_w|Yth-QF~BXIAy-rwu~io9!SeZzqPS$JIKj(3ZwVlnOZyBn5jxtgq- zEub8{v|Tm>xN(-rLt1>zvk@Wc$v@r3cwwD5(K)~wv&$Aud;yJFdq3a-w=eA6d81)s zw)%y=ZKs^vI;d6b-(B_Xu_s4nos`+?OyZ3%9I7XRinns+2Z|+m3$Ko(2D~~hK}&+} zMSlD#=867gCp4?hACOf{wuojE#utNAVk=zFXW!inNW3C7jr_}l9ll(?l*h~Y_mr|C zY8@qwr=4mwE%3_8yr9B5@fN5mk$E=1GBt_(7To=0dZ^#$bU1jIvq~(A!}{i}WJh2S zfPseRM_W3bB;rvB-0LbRf?D2Vf5SZ&W%(-c*7c1U4(}mE-2!0#qLxscb>xvuI_LpT z%Xh!IHaf?Yl9l;7Uf;9tJ<3QQtWu-QuTLlYrRz~N@Xu(!KUdxM;Jm1g=z8f_^fUt5 z;v6>E{_pDXxmMb;_`WbbWV>VIk@vSG2LT zM2jZMXU1H_p67ogi~>=9Vy_Gzn4Dy3ccd%}M6s{MnDcHw7AD@Fl)tUEkr4?SZz>~N zbSbt{H_{3Ch3>a-8KDnP(-X2xGAUVik<_^e*B0Ir9@ zEAy`!2b^r=VOXjsq;Fe)rrJ;wCE-KHZA#v)V@VdbB={7~oFJW`>v8mK@b#;# z*e;}~bL}L<`VbAy-$B_=Q1*Lf00QHa>W6cCA@xT3ywJBy@sEL|3|Jt_tDIQ7T-3=0 z;d^Y(HBNh6M_T4Zonc4RlEYz|^*IUyUu{uc}2kTd`Pa5C%+?Efd;W@KPyVE-RIDKjVgf9XkEz!WmAS6E?DsjpGx z9Vo7^(KdA>KqdS^-CEG-ua$Hnlqu|nwzi5i94OWJJf}Uj7f!x@(r+>+Ni@A`Y*(6| zv!SM}RpHDWU`jD1z@Z(?%*+i@fF!6af30x>+1O;!*x2Auu&`tpm}}1hE-6^n3B<`6 zP>F6Kgy)e=&OZS*iA*lOWK@ELKpyDYK-}bh+2VfL>VDC1y?w*OKlnt8ia-RW=g`eS z6m>v{`G|2S(9tA|+XF~8rdOXjC;a-rkH@e;uD-r{#XbGN`>q7ywQZE3c_!yJaP?l* z7Iy!Falec}!D+mIc2d33^|duUzvQK2R=f3sOLT@4x7pTN`9iP>w)cJq~R5 zWfaI%nR}MMpe}C~h^4Ae4#3TlmojZv97E9C(1&INAHcyI+A2UJ5aV}p4g{A+Brt>r z`j%Pw%I*(!JF^G0s=4|@zQz9^J1HRmEHfih`07%Y5YHg&_dl^G%&*c>ih7O?Zf0N^ zLbRUnVnDOp?1{Uwx^it**&6d+&9W>o)4mnZ!U@z*`pnoSlFiNK;67;c7ccR}4a>|3 z4P0GZ(E6G`!L%Gj&qv}f?tsbMnXSO5+=(WCfh_{PpMSKJu;8N`MjD+<%_af^2y{e+ zbNuNBs3ZN%-=mnlQ^UiJS2GowETNpXJdAf0KP9zc^go0mYY zt^hVUAbNJ}-jkk((u{zgv%sqz4T3>r=-r==trMqr`HAWu3%~DNFhihEH#*bP21h}l zcR;Y+=5&OHx;O=$&_C;W$U-XP18kz(OCnt!#4^ezT(xt@XH<3qx6R_Hh zZ?>=KSD;F>A0l6%inkvEx@z;sPS2luz{`Zy9fS!)ZNRr54v^XeV9y@(dtd^}py?fi z&%EUyM+QXWhlKyd^aH}%Zt_}x^m`Nh5aD$b{1M?*XZ8EvF?#o(;|yUG#K7engfBN{ z0{^xRZiRo>3EK_;`>L}7IG}&kXE(XtKYjgdeYZ}|skz~QtuZHtJcMTw*Gvn}fC2BR zfU{-H1=fQcf~!4D|jvI6HE1* z8g`%JW)<=?$gc+Lo41J^^TH8-y`Ghv3pQ5I@6!FDB_HgM*gdQOc=l`*t)hYuCJwAk z%M5o{B3`XTWIA4;khH%Oqp`Hkl|mM(dwXYD{OPOO$E^B|ytJ>pU@Kr%;#4<>e`mt< z(Ne}MjI){96N5D4Pz6+96I5}(vXhi4Sra^OdqaYc8g{(^r7La!YFaype2 z!Wz_FUNKTjG5nzkV8L&FvjgD=U!QQe?+X9S@kV=DAg~xyadcuSiOx^h_*M$@xkn3~ zChj(4QrACw>Jx2WqLfMRw@GF-vJxBED_-DJ22utt*xX++FwL2NT;9c2I~rDzX1*g&O-=;w@Oe)i(>8?gzS6&)bb_ib^0l~S=8h6ShJ79g5Mo#<+sSA z`FLehCm;Xt5={vZKp7U(T0sdeq)?heC=-nn>YMp+<7|+LB2yx0R5MaqW$%OLYNaH( zW7nGVw)arHGPTGlS3gOBNoG=euUU`FUApXf=XgUt`EvlpE9rvDN&Rtyado>1MswT~ z>BOH#mlBZzWKsFA2);-hlUU^@OW=Z@f+Uftnqgvfmc@trj7e>V>x(~!KeQ9HFTAj( zg5a|TAeeMH`HRqp#nUeq8_S7}J{d`M1UJMr)V)%!bddG=n@?P#@@tc-#Ut~v^4BJW z=d=wBu>!xf9zNr~>_VrC&&;Q8nf9lB85k6JL$Znh0Gj@6E>+le&6DuMXGv#D9- zu$7-kC$yr@cWI;J>VuQvs{-PMSa4&FOU8}?5e209f9*I!N*l~36?PvH>B7|Ck^MU? z(xv&dX%lmwvyF&eGf^>fAdX3=Jw{r>j^5BEgQo^`*j%{GrcAp~_1^|pfSXBbci$NAWq!UmYU)8_Sg4-M>O6qW_-5smvFzRk}`FFkm2U%uD92UJ?*I= zWD{;;u|Fa=ih3FGhJryCiBLule{CYq{)YSP!ker!y0Z*~J~4l(gzjy> zqsWSEAA2pqM~CawUA7^EaZRDApK5J!F^(6h6s~s=brn%Q+wFZuG=c;p2nLD*9N)nh zdBX9I<0Go@-w(1JK_!L_1R+rm}9Bxc&&$+XE_UHh8$|2w+J#Np%HZ_ImYO_Po z$OR4vaHFKW{(=-%*9L*DIkt8{*}J77Yer>}0R{bdYnKqgU>DNLkReNe9!>u*LzrYf zvHd&7z7IFJBQ1l*-2R&y{0B|YUu@=EI!JOk?h1QBzxrcH$%p>H4b+|uYx^Ya2w@OESA})~q{3x(NBF(~H0mhB3RK*a zWt4owmUJW*!gat5-gz=NytelP;$``V2vh0)_8}|ryR=X93vN(oZ$^vMSr%O?_^+gi zr3vLe9@o;Fv*C_+rn$Ei`0>fI2W=sDIo}q$VPLLu(Oxj0Zh%9JFPMAfN)VRCX?dbi zWaUc4ibk$BWGh!LO!o}Hicodcx2y1<*$hT=(u0FJn`uNQ;9a3+N&l+3fHgkf?3;;* zzv>&`x~f>HvI_ecF!#CDYIolr2z=QTv<(wi)WKohpZ1{;2#&`#Vu7)G%Z8WVT(Bq? zR?~8bgObZuHSb_AG1+8hm3k6uZp4Um9Oz8o*1|SraPYEtuffFt?e94^75>(3pvcvf z&j|#=m4r>sl15o~rY$jd> zeDzig$1ciCvZ_`bv+GM|s!qtuWbu_!t(=J{4vF6P)iM+iTe&>$pr>|}ZBjoi!YNd` zy6XhIE4*DhlBu`>`OX>;CuwO9CI^rk^NFc7ayATSZeR zK##OO<3jf`dn8?Grr|FmK&y14o0nCm5^B8_vGh0q1trk{W-NP>&rMQTP~s@nw`dr? ztq{#P;-+I*bRv7wiFuZ4Llv+%*=;S8WI|b5i}rDX<*@p9(I4LRPjT2sQIR5|F#@HC zx~iPP8)@QvDD@`tLoM-_XHIRFx-Q{TSvFi|y`tMVq)7y?ar)Cr$jYj0AW^>Y zLCHJ*Dm)ATU~ieL#bgE(t*#p&-tS_dk1w{OD9X@3=bHTGC*P-)cf-osa5-eFtkA^T zmf+)tB&2Bc^EP&)dU_z0LIsymdiZ+F>I;1){r$T~&f!YhYvwXC8dx*SE{{LDyV@g| zXWX!jINgi>`mQTE=e`6&e1gk~ecyKH@P3&fTuBjN5-vX!*4Q|W0``D-P-D7=^qlAx z>eBkA#E=%t)YyBr=k$WaG^>j>70>zouaA2HYRX&~<@Jk?Vo&9itcjXRJwX<^<=XM(L5p+I?cm|N1v9&$c%HE=ad&MXNUOw*|4 zZHB6V&36S7?xgjS3Mn2*uD`@Q1))d4>t&IEma@GYmtTq>jRy)d^dXS8d>eDsp*QdB z5;md{N3XFlMX|Hf=TSq*4UYNem=&Ai&c;o-f4hQvn~oxF1Q!zvW&dd)c1LSXV(cCX zn&QC4vAnh^2OkDabJehJ;AzWBuRcFO#lJ9@eTwUM?WjPHgj`#zOxvo9Fj8I;=A5Je zH-xZnE7l|Q0q%QNi|+c`-8~d8I1+W~4IE8{3g7NLUaLOJ_U<6KMsoXWb`bDr`buRT zm`c5p&qeq)Tv?ln8a7$mJ3&nEOi7s8rz0wTw<9Z7!%s=m^w7TJDdU>*4q9j=K0ABh*iuY&iR`cM+a{|{Gvb- zMyO|hVnhwS+WjCdO~Ad5XLkv_gStf4*Jo=isVU5hTbAZ1=z0XzAZ8NZL7^!D? zyZmwW+>8Pt$I;X>&aauYJHK>J@N#?`csSvbDZ~0K9HcMj8zJC6wMMnb*s450#adCd zwZ`3OhZLm0Wgj_``>s!Y{(Iy+eW1sgk9SLaDkw&}_0e708J%U{g^u&|6%sD6Ulo=W z1cT{)*V0m>b1(tpA8(&lzRd33GG^m~7Mwu($!&-$;i**vH(TmJ#-ankyTjPN4k&Xt z6dhYRFi`7nk?|3RGt^RGsD%IN`{;>(yl7w+6O-t;SI;E~3Fa!Mee7aWq?N+MA z$Gy`$bWA%Higkz~f=s~G*vTBuF=W;@q@%)gX3NXPQe+{@yeid$F{dfuS<^6f5>@ul zn)>m&H>7hg9AG|=2?DdQK>Ovy2u*FmM@l}I{!V?dxCpGbQ@3xl*@(%FTnzAWT6U@a zx4)!?>vyQi(N=o0GfiP1UeTJKv4{YNksrqNMv>Tj5M_v0x|ZoW zCfi;t?~W6=2I5qvoFE6B-(ZodOZ zrqA+5?c~fbJK9l_vIO=9mqBh_b9$&D_ZdI0CRpGPUCt`r`8H3}fI&kK+YYo{-Xt|J z9yB4vHJ9mZ}LP7Sor`8mAj|&vBa|V|=)bY^uC1>nv z1hOQ!!i|vn+Fd$WRlKB|=xVm>OpAECoZraWG+JNPLxCD}G&%{bgiOYue$tQAIA(6( zC;27ij3@JP_<`CgCse`wzAh$d*%v9QGywz>=(WMn;nX28YoBaL1p@m%4_5k z>Ab;~n33PF$E7{2$SGBEWao~W0}$o+Z$6CWkRNZL3=cwokS#{p+XuOC`y3b&E%5f< zr8(aaxw{7ZB@)=D*x;RB^b@IKwfw%bl}!uSfH6sUH+fJRgm8ljg7Hxly&cd? zlf9^lpgWIMsO2lp*<`!#zQlDpMmqZ_)^A$1CiU&WfvtLbxwPk{?$%{^eCkGSldVM^ z8Wr9E?HWNQTjVz8ZH02>&Y>?jx8_LC5OC#gzeA6r3*#F(Cmx!C^&`3~U6bN=aC$9S zx5orD0)&|P^ZA&BDWa8d%dWylPi&mpkNCArbHDe5eXa%C^0_eC+C!7=Qe@zLm>(Pt zQ)Nt|5~&{+Q&#;6SLT)5>a(dp>aSl)FR1pLk~dv@%=mMWP;lt1OPgSkxB#7n@pM}d zUI04#{qOuYr$Z%RWhgx=ur&#K>M}@5d6Ok0PY<;%-uLmJrSK@3G*+J#rO2jk=jhkKl zcYnIVE_H?7b8^-VExmLC2ar`oxJdY>0LfE`q<;;4=jp~Tvl+w(iRXdqif#jsR1mFJxe{DM4qRH64qln8P#9v%EcMqgIFLYUd) z8ms>w3Fj86e&%i4b=Z=IL}y+K=3YMTch?$*X1MwIK|KG$Y4y{-yTdcJ4!pIUBE&!g zltoR$$bNq$3_g?H%+6qbN?N;;76<^lqCHqSaWEbsQ#u4{$B2f{^Yoa5DWT-^jK%gn zLWIlFfOXjT{p52qoqg^2dcG}L*r+=@W?4b7K$(d+gA^h1?=K>#EF>=TAc-(!l?yA( zzA||1Yzg1U)Rq_ZRLsrsB@8y@KGA+U9-61A$F2K1amek<_8UI<^GxZ-*TEjIb{7Bz4}zt)eX@gk<-%evoLo^LG1b~t0l6|QxY0h18+H{ zNezs6SsIMJd_T>fTKd?T77JA?X!5phd#t`G+xzQoyRs|ka0*w-1R8Lp$d)Ytq$5P- z5K6qd3h2MU4NjVk$n!DK^^s^fsd3u}QK`EYRSkgf+CC~tQ?VcLJT2F4X68SPkj^C< zEnbc@6I5t(0uGKpWo)?I zvSHceeH|4~qp9#u9|B;mq$~2FqMYHoR&~A)38j`zM+QmLgsD{o6&1$f?xe6uH>m=< zSUxvoq;BDC4R}4|-ufqtV6)K44aNku@)*misG`^0H8_EoH|i*AJf{y4Ww;29PK#L; z(&A)988pEpRxM3v($K1v7v!tOWL=9iOUEN1vAe;|iNk}+@dBPMCRB>?K5E0=igxiI zbViq4?IM)?j~YE|2NraUxG(3n$nBzdsd`e#H@xD~f-<)o4QN~1V8Jc+s{dn@3wF}z z5Ht9I*3>wjC^Jz2iC#}(RVq%l%!>M8(0S^99QU~{3Bt|?dinR8>w~J=zh56RI&gU` z;}4QC=mQY=0!HF?ES$DvS^wGarsn7$n`%{L9Nfda=%v;(^_l*Z1rsElVdbPc@lRBK zDyirB|LS6XkD3H!EK1}_kO7JmoaiT;QP8+vz^ld{blz z+|qP(*_-nBO!_u&>6i%Pc~09eAY#hZ$$3>8%|4&B3Bc}|C|w$1)j4Ot`0%hF+GJ=P z%tx;om{`GLj3XAg=johpaGuPC^5!MR{Za9JNtjns5IyN zk5PTRsIazKpuDCsOvutYQP=og$@nK&m`wC3Dt5RtgVy_8rd@f$0X8sP z36?wgs?j;Ltf?7yCcbh1whz%44*HIi^~GK~GJ{Qs@Wr!kiu>@X@Q_*NR|X3DU{l>{ zP{sg96+yn+%aNRmwaT33E5IbQWcLCA_UcU6Y)RWhzK{J0wR^;? zw(m1`@I(B`vP1Q^l;Coq{aeOiQ|4$zP1uT%OJ)OV|N zGeFxqLtiu$jrW-R<|3HggpIGq1ZnF-pz6Vsh&);O$41l>tn|REJEo`P`Qq_f+g6Mj zF@ye+$k1XPf#3Czc0OQO@%7$OlPv9;>Q$xW-b0ZizaBBjovq$+!HR`it$~ zGdm?{rS=#Fua|vI8H{gROB-pDzSzO*aads4LQnAsqnuq5CIwpfP8x zeHHn=mMcIZTP~d5EvQEsB~r579yz-um}}4WLad zK4p6tn~Uo5y<6{fl`$V-*cMjeB)--A;97Oq2AQlrhK`S<#k6$?DY$*oZ0CS&rerkl zyWX`&KkRh05^cpjAfP5Vi$5|JfSbt-9!P5D4RkJ1dGQ5BA^%8OBG!v^nP|BdpZLJq zm%SDRuey}q%X%+*xQ<~-hQ2$10XXIx2;UK7u|j?9P&sq~77nu7b+aL}ZZW>!*TzEH z03Y*&@$p>fn#)La7<1WZEDsAxfcDtCh_|_OVK6?qW;{VFD>r4Se0All5!}vikEYbK z#^W@y-?7k%kS=O0NcQf7*3(XoeOiYKaGp7Pbm9J0oVB8?5rW&#d1FOjwb3^DHbhK38@`(9R%Qn1-5!J~w?O$iyR`&d zxeh41UfrsreGsG9E+RFgp0!|XcfX?^M^c_x+8EI!bbY)`+SDsg?RnR!wpv*E`&va7yD%{VZW+(cG?%RZOSHE%z ztDe8gvO6^6iBa)~$1|5Rq-eByya&E>8bFQenB3~AiV*te!eFdGYDt?wy5XLxXSA2X z?+SE8XVpzPar4$k$08v*s85u^LUz!?Ff<%I3`qab4q?a`+xAyI1Kg#Q`6Syz`EP&b zH@Ya~NCr~Ekw;lV)|jV@Z!qJ*m!O{#FZ;a4-bt9R#Gi~oxl;5Pa8ka#Po4u)OT=lm zA07DVw`LoI9M`nG=jW0{Zy_wLUV8n;B7vu*6Y5#qJ$RHw1~?3$iTC=@V*hNW?VJqZ zls7bm-c?xtsp-iDpc_1*;PFrWj(=Be`~_Q+DM)~FwpugC*GElTqXGNlxEO3Ot7>$Y zMbuqq`1mOz$0c0Sndkf@mxbt@Y%`fyAB7WHu!1vtTrz&3Gr{o?(y}wC{0;^5lBCkH z?j7DgBF%lj4`^_#^6B;`atSqfT;eJpr}I8*xhIHgYpP)tT3w0DSSRm%W_&Vj+jbB8n#=sJpi-`oc)Us<`3 z%zo~ruvOI#{*yfSi>qjyt!X_Y7>4u&Q)ad!bpWoG9l)D3JjePPmb$rLL+vw~<5*|y^o0?gPkws!9|b!SW$KYlPn)bP zk{H36A>^mh%ALD|Wy|bUI9STqFHHb}@?~xz~_-@_mBs zOobaeJ^;^fIgBt_F|z`l{tl=bsw~+Wy}UY9sg;_Wiwz08Ob<&jGBBo%X8kfj(S=cY zeqLZ%=b4d*J-gF^l~(m`GGa^S!=bW!!%s1BGld~Cn>W)&(a*&skBKTbk z_URRP5ee2NCSC68Ir+#j-2ZTmP`gm&en%Z z3}DIR2za5U$Vgqy`tB*#d-5!qYOOG&a(hf$44z5U4Xhgmg*AaK#mGp$mpJPn(Wc1jPy4)=}4RyM{%H+r0>3&im)A;5$TjS^-5&IrumV0y84Xb*9zi@iQ$ z((`IsWprxEt@U#1&Dxg>+Qr|~-*%dJ4WO@oi@2^t=4f=Ji(HW!8d|Js(85tVG&ZSW zW^Yi~s*3ybN-@ic-TxC-wVQ{;ye?a-XM<T0z@4l2Po%TyM_5HvPk<{|7+8##KTn=RvSkOo;r?bvVXY5vl*@JMgc{u`s;|?OUAac zSRCFQJoM}Ach)VDYqL?cU#dJGF&Om{_yT|5RZ+ZDnaItX3cD2iLQI5hEcx=pIEu)8 zj|RmjqB?(V|LlX)AQ_3tf%1gr8$e1F#wbDV;}?DeWG;99(0KH^kH)bbb5T6u9H0G( zbXM(!dj8Gm&a773F^OFO@M+R>9*FA|})%V1(SB zV&!qlhopFIR$#fFao^kKhOGq$ho9y%pqx+1Y!39r_%xLi)EOs6E(=NvazK3b=;5Ya zM5t0R10|@H)I4P6Hh1ENiO}uQguhS$hl*TU{pAbL_YEpwLnESp!7e_oFe*lS_b`Xw zihjebh{^e_?dcY5t8NjA3j$Pr-JlQR4z9eU=qNQ4G3EQ}yAhqk`rlDgY}BL-Q3XX| zZrN;7&?Gi(s9!;;uzDVI|5JUq$+#kVvb<_|>oSCH>GG)XA?%i!Spu+0ODO1sWD)*u zQXFhB`N+0l=#j|_kjKP)mCL;Ooyu*@C|^Jy@6)7iA~>%p*=v__qy zJ9-mMfOf}?VL`m~o?cZ2msTc_GwO11in^E`g?Pjk<(-jePwNqL|LUj{HFyO;aSsS> zlOe{Ennp$_Xo_)8mzoT#G z!C=*8rur%60aNLI8xS4)`a(j5p-7iuzttT`?rRx`O2GBTJq2=v5dER*IcDmpV8Do0 zi)-bTz0cTqS0|oFAikbzTwu=^z6)4Q5hPk3C}>P&zwb8VO#wK&Sxov{MQ}H^C7d(X z3i|8DYM*>dl7d?nnBNxH*Jw$A?{>H)`PQn_v^Vs$g?7e~-#Z*5!+*CK1u&1|sYm@G zV&Qt#>Ju_NgwZ5aw|1dF4m*nA%Z=Rb0?Orr#;NH5TXMfd-zycXQda)P$ror_FY*a|W2$7_*r>3$ol`v4A~_22b;m z_W}>L937GLCnfCAs-p`OGEne^*IN6UAq>B4B`qy3o{I?JQAw(BO^d9g#@wa9GHI~a z=1C53uj!bgw+=qm@fxH$Ht4d%Vt>(Q!a!PfH$A)huveH3ymvp)>f9KTvo^FfO;r`z z(RJaJD+1hn2-vP#P;vU$>w0D>@UGOUAuaBACB1`CF&8dJhO1RdZTH}c*aD+6IKf96 zt(#VLlLbI#gK0^#(kX{~UjcJTsao))F;(IAH1^bzS@`=oM8 zIVdnUGw=s<-l%81JrJmPx}rf!Ly$l)#`^cr%CBo`@zilo>Nmk1sHZrE9Hp$mG4Gxm zNS#9-(d!>vPG-SYc+U!a2UlVo>#!L$GXDJ%+Usa1DSuc9AJSnEV1(xa@P7XK=JH+!C4G_jQ zNvE^&YgV^-MJC8ypTO?@1#89TziG&xz9MfP;r!xzxb^p3TCtH1p<;TI8on=JG0ATA z`E$S3Z%F_F1h43ohGQ=pN$K78p!V#B*0SmRPU{}ZC04JRwpji_ocV>|ZR)r@ zQI)>P)433~^sNwd4Awol2Q?oq8LK%nIY{bkhwRQ<2lIJJre)=e2(1t$LL3F+{JupRp3`BgNnXHPxOJqqPj^|2kFALBcfV<4{hr?s9tg<&5kww1&Pr>z ziB1Q@1{|g`V*QH?Se81xZwYaB5CGvJSB0eK8`3MCkkk5#t$n9cp(|U4I%i6=Iob_8 z&m%{QnG#3p@I{j`Z>BWoEh{XwoJW$P5Qf?;8M79Ew`Z67ma)m7?B97-hpWZ$3OuJ$ zVWi3Pv72u0G^O!TpJV)#W}?N!(@VRecnn}lTyCaJzWqmF6Hy9E5M}!$5P<1!W5qgv zWj8l9@(wK*Bc`s6-}y;-{DU6|A+(i{ZRa{>qba3)tdg$CoygMCtOJ2D|3;-4s*afW1ZhhuFid zIk+2t4KhzD5%_dbYplG|JAl-)s`#__yoUu8%;gWCo9FIt=L`F6HEhXQbP^J2-f> zkd4YUgn;x-wM>S^XqMvB*V0F*cG1p>!{fG1>07LeBBx21MQ1r4{Z;>V(3mPac<{g( zr7Y}{tI~OvSou=&yAOM+-*FDBL-d(C2_bqEhq(FRu+!0;69z)q&H$dfK(}09Ez<;* z8G{F>S~QD?)b)PT4DUf1k@k(FKuW@)U_|LWl$Bi)SDMw^A)Q$`;zB2C7@0#e4s;Ub zDgIw>K8H2G;NV5^f(;O5Jk?C>b{8}lt*xcZ`rWELstuJa;-RZNo$SXeFV@F&J%+@w z9Mxr?8NpNCyt+6yE@W~LvywKB22$+TAQ7>>8|x` z8bWgm#jRDn^CIbuwic^o79|;)S71G!IQTJ2ak*#Jt|;|uY(OB;b#E!A<8RAkT156C zWinMBM~g@HDtjgf_>Pi;YxU#SJ}BD9L#7FjG4_)vmN0t!rwRqp%{UP~!i1exD({Yd zJ8$*`GOkrf``k#7LCq2SPWbB{A6RPW_U-{-_)>8GR#Dy`>_377`Prg)!%KS;n6DAl z$WM2CYrte!*?>b7+Dsr-m*ivy>3Xr%5rUgkjYwY#PCocQP$+*{1O1wE1o(}pb<8rb zK><2Kp1DK1K>@leMu;msbzO01rwZ8NKeu)?E8aO|@o6ikrWqR8k{jY+C5A+(5I1?= zl;VcVKt_!Q_VIE`s1A7f^@MYro`tk7##0t4VBw)ucmS(<=3RfDwPu<1_HN#T)@D&|E1O}qf$hn zvh^wQHkGMtthT95R!e^9p09&eQsq)1#PrlJ5?D|vGFb#Epe};t4VA)7raGspP%%C0 zaw@9_h-`3sx()_fXla*8h|oI3BYU5+uSFDFRQ30cNnxi`nV+s)jB9=lk8>i=&NGiC zhK0ig;$}D%2@`B)NC+BY5!Pjbb73j#LncOMQ-LB@ON_(IMg*77g&(|&t!PIE zgbplt61a|}HoQBsRl#yjb@;oh%a5!iCVEQY4T3;CrOy2^|Ll6FukrK-7ICOE?CS{!_x5%@9hiy3%)_mYI zaL5Hk3{AWnQ{=7SLvHQ*lEPWpF<&YHwAolIRAvzYJB%^w(X+{lAj3>agprg0Xf19b!k_h#9MM_0ol@FfEsu1PK4zH-MBB4PWiA}X~Ade&h_KqH* zBjtQmj9w%zmv+R+pE}IBNsL%CbyldYuAtDn;eA zi>1EQEIu`hDeYd;NjPIyr8H4`_KMQHR3{YD+`mZFzyH?nhOx2`&q}2A+?h=%1&6Zb z%@^}C142FEkx%q|jWhYxqtcC*bbn;-Ah@dYFdKLN{^Avr2xbh-F{k7OyaWb5-}9i% zawRiTR37>s-tj=FeEl-reVHXxUb*U2sUA}rMaw)Jjp1vw(%oRM_sN-Qi2h%NoOv`9 zj<>)?5wZ_izKpUAX$CVBCQD@OTPkGVDSJkSEE8W_mXd843>qW}8CkNHWh~i}(MYmS zmW(l$Eb;T+`}4hX-kL{d+EJWF0y zZmEo+G>;m4ERuWoK1+^~P`Y9Ilc{&SxG4Y(M$}`w18fYMujkBd^Dlv$z<=XH`GTuT zr&r?{P4TN^g9~HnfW6Q3f625`KJ~(ISJK& zm66@5;4S^faSf$;L5ZCN{}J^tlgr~{h$6{_oK6?%kEP1W4#A6yaPk-ob0n{Q?FHSC z>{=hqX%JnLYr%Al1$Soef&_;tE;|QS5_3k%NLxy@PJU@N1)!MB#lk=es7df&xK}@D zhe{?~>ikLc7?#N$@KF(?BKs6rs4hvqVD)SE-4RL+P=XN?Fw)KWTug!~6Z_;n5hpMC z9sMnYMf8~(H)pBcMSC~~+iI_CMIOJhWo{iYU0H8DkfPf!lyi)KmzquNYmPVF>s?-I5Hm(-)`!sbzCzrJTMrUvx}$1%v-&~0{_1{Febnv*$<@y@?L^Gk*b zH{bL_FT`*ipRqY-MhNaKEg&eFxArY3aF%p#vmD-uC0|ICD~&sp;yjnrYdQLIdO*}^ zOruTyMHaaa#f5Pl-D5B#V-x%f7OX$nk+scrw+*AyHi^=RjoUB4sd}fLYLJJ#A%L$b zS0I1?o3L%fS6%*hIAw-D^`2C7*cR*SL6cu!ZyOU3XRfF5A3xs_$#2|z2jE4$0dL6c z2S6{&XtoxPa~23O?orUmoT^(TE_3L+GbI|<;fi_zN|=IZ3QRD>KW!e)=08?VYPnMF z&Ih{`{OP^nG+yAUOu+hj)_PF*=l)Yie?$ZvJkRFe{hVP)((3%ztowT%c*i5#W27PS zs^n`p76=Wd43kre?`!%Nfm6ji6(~ftr)zO?Nf6pw1Yy~f)hZt@Na=$n)n5K1$7X z`R!ha7e8w&YPaKYY5j4l`!ah4rB6^J^!@bnggsb6d>HZR%$9~yIoL+^$Mk`)(CvRM zUZ?T%1>bdh>0mjB^+mWNB*L}ysei)Z9~;7@F?pk(?^Boe$PdfwrUSj{EmbAcRH4MK zK0!On^C->9`sPotW)4S`lI{;OInA>_l`4G=gzlNMDlnOfg%Te`ELGK=eWd3)LgS#T zAdFT8<)Kz$@W5TYp%GBKgB_!SI-Axyfx_waB}P{7IPhOoE7>l^#fE70`iiYO?0RA1 zRkt0jLH?zjy8%xAjoK}3H_w??z0)64tRfLiR3^Y_y?}u5P`s;}b8h!`olbJ2h&EBN zxCin}fZEVkR=)Vfnm&gkzSP$;;%{L-E*bE8r1ZBtJIVXmUH*B{wMHKHlL6M)>5)B= z=8WD4h&oNEd)bzyqRB^pmq2)=+a^Zu=R@+%n($D@){iB|?Txk0hkHO@Uyr_zbe)NLc(ZO)w1}C(oufwm*);CTLyUC%s)3qO*!$4e z^4R$CJ2nWdVV1l*C9))Occb_SG6{KJ=RR^OZTmhyecY(QoTZhg=fsoqZ!%`jMN57e zRr{{h{)I}}TsF=<=}4V^1@;PSqf-C=Gj$!|{~1~_RpzWw+^KLzac>Hg-oJc5qD(}2 z3Mb@gxaeJhx4G)IghomI(R(o3J~+P|9gqj)_|%PM8Qv1qacP`|nh~^hndG!q@~(`) zMNwN1LGT!zjVFL^ny!`-9kW^vv{XVs44{b#pvL~CwI`ux%g&cU2ffg0ELFRMFH9-M zkdl;k?q{kWLd}UP&rw2sQgSn2BmIpssl{@7hE(1LMqW{}f~&*K#>9AL|1TdE{NmvB zWEbaS#_pc;%y01{?>!f4TgLW$WZ3n$e)xA?=q`(b8vLy6^UAaB7~>;2@Aq+mY2NX< zhmxU*HY00eDayY14hl8%$C4{y!r|72ZTdef!a(a~QU!gH179tSX>loTT~&Q%-Q zUHwf!Q8dgM32slW!4LwsVeR;&I}djkR;$_pQuG@SA&~Ae;S{=O;f|!2cjgBnVn^@1 z-O;@-##2az?-Ab(S~@bVxt+Ej^i=eIyM1V1?-uZ7K;WC&T2ISOuzt1=Mc{BgPYpnt zZxhBl7jpIV|Cx6)Ttx`J%6zQ$1~hM4FgY$SznGjwj}nQ#g~{(csXf{HwZoP`n|x`5 z+MKF1U?@nX@y>!epFMQ~{7%TQ%{x5fV1OE-$y@q*Vg1nw+@Y zfmghsWKsWC@c7=hxnQK%Jz(%STvrJAM|EHq_$<^}+}&RNU=+LY zs1h$dawuBqIa&E+`(a1a(14T7g;z<`l@mw;5k}v~xkbzBW1S7K1PTwtI+*{1uw#a- zY?mS-b8esiXefg*oKjTO;rT}sV&06PBw+$=_uc0BI@N!0;w`}?6gg1aNi8a56F;`y z3_Ir++?192M|EXexM3SjT;gb`w}e~|+dB$6^!^k&?d){8U!sd6U8y-_jNu-8bgR$a zw~TfGTk)A(L#`U#>Hc%TNChez{)0{!$93@7AD3h%C zoW_pC8nBgvI9Z|E%k1M6g*=7XOQJ0qS9FE8U0bYTU|BdYb6(A+;HIVwMFr+?G1*)qG*U>>BkT9gG zG6JEbq=ryNBB4rJlK+3nX&2Me!MsE6OF~uEB>#uyWkv^~ES7-yxwc_Gol@PFl%}|* z6cdo)V(djFuVjNwj;xHBm@87OrfFONfq|4;P9L+XviogLW`0DOTjl5dMG%>~U2>pg z70Tr`k4(Sxq%5OsfYF)b`8!1uPeI&57QT(TKGOPAF0Oh!#n zBQHWRg{3JWop@1JX*)%9=2_nQXO-zsq+>#KS{%RV-qx-zaWs4!^GnD5#tMs%jVN26 zq{!tikGRwfxQLVp)LgbtI`6V=@o@#AJZAi*4{H;<6=GJi26uXjtx!Szxjqsb#ie#n zT3YUcKSepb$(e1p>+len0lu-GC4wq7B6pl_yyw82+QU*29>C+Hp4q^`T^`!7?6d#9 cKU9coa7b9Nrxynlb`1uFa>&T&S?F{82mEk?mjD0& delta 69049 zcmYJ(Q*?zY>%6-`IvivqVm- zHpTq_HdMG@vuc#6U+2b#7)vK|md)JH`(g0QlV@?=^uTAm$2RYX_zUqr3Sj9j2gpA7 zb4eK7a@nujuGr3l-OkwPsw+0KOA#BQjGEY5gE?(m=pSilq+m$L^=tY)McYC+MfLD+ zG&i3xH~&}+VF-|0@`U^ZupSqMUmza%0N5;&ug}UtK8ukr_U-Pxm9fnDJBC?$y2=9VPg~W5lDg3^&8d?KG6zGdY~5^@F+C_ zNdgdeZeeF_Z zDAIinn%mt@a7JUCq@yW-%|eMWfX`7syxIv7csOxosDXF&2eBv|(wNw`dcEYL!iWE! zZ7pyt)M<)tx%vV-1zvxSKOAyyqc6?_Tv3>rBbNBb=xOGNhFfX}NcB8G(o4qJvDDG< z#-$OpU9dvml8?qgujgw(k%RI+sSLmzo)BspqNWnAC?OKmbK}uGp(tgFf?WgI%-k2< zf@4UJDJqfq9T<7&Yd4xDLSYht2^6IQgXq!Q&4t^??$3BUeDc+sf_Vj@gWya60RcZk z{9D9`&RX>Z!(eErSt7jwg^@voSE#vrQywBNV7q2?e^K%)eTZJiCW6dcXq-(RCj<

JtEa9zgTOKpm`%63)^a*VT zf=mA1F-9A1Qrxj2?%9yxWZuOB`~(sC|Ma7HI_5U1feG;gEmUiue-ASew+&({b`p9K zmbssuet;-Tq*RM(Zbhdz$$WZ%9VO_AVL_~EhCvDTQpgXTd+&7>d&y|F82#Z_zPwBe zIAYAE3WiOPqm3^53=kpLEJ{08b1+<+hfEfdv@Wj~#x2MWF$3R(wtce$Kno^Lo&cV3 z;ok_6p=1Ip-uGg~BR91!Jo?>^gDa;y7!*9Io$(W?mJI9f$Lb}mZzK? zmCc4buPP$(LJ$%vBn2RWuqX#OTusS7OFqOs7n#cvGdA`FGx!laW zWG1GZjNSr)T%{q{o>!0soQFX*bS&9X{{**d)6e#01x5|W;QyRaZ)1062Faf0o-DT6WAV^tbO zaJD12)9NqX+G#YT-wsUeztVrGgVW2a zbCHJ}YO8^yWdF+ALN(oJkzgyXm^0Mqf&FHns}vQZDE+SPg?X(+NK5eGd4L;1+XxUJ zDHv~ZC|kW7E3Ak7DH2{);6n^yqdZ8XOtMh&vllbuE7xIOXJAt4i&qN%^iTw z;oGm>MNtz2o@pk5fu(5O4Nusz>}&;tx_#C!7Ms#9T zNY`fKUO52U7H`b@=P3wcDeTpO^vQHjR?hA3&uu;}Arty)9gU_9UL>oaP|O(eu6-YC zGXnO0f*hSX_9!JO3FtG4Cwg44i>yAfGJDvq{!0LWjDfUu|F*ovXyw+6%vRz?^LIAJ<|mBcy6ik_NBWtjN8l}kMtULwdY{tY zLlxII#d^)PMCNOMVd35Y6ATyz-|xJq$>r_mNE@Ud*6o7f_~#mrkSy)lb)}H)=raCh z(Dq+IV2G^B`vw>NHTG<(Kl%hp_ZpIl|KZ7umnQH^OGmDotuxCmo1CJ^k=dwpml%rt zxuey&LplO(7?L~E-`6&izD%GAZ+3&2qm#(pceL20xVm-U4Uz177SPNw(l@hKDK>nbn zM;B~e(w&7?1$HqwOpz_fUn2u*tfq>QLSf)LKsk0nv^v`%4ovx?Ol+k-)on?h2EUP~ zdm~R>*<*}TuVA5I=qbDE7Mo47xCygIX{ms#>tlvE=+@3<)9}L3SF&a|8U8-WX@lIm z#*e0_d$RF+$g&fH(lzl!GUrw)1Zo!mUS6IlP}6JRf}Ek>mZIwCM+)v^F^*PtY6`#7 zkZ2F6D!!9|F}7?2sGR5~)47?xpgB{TLS`;2x%Jz~h`Ew+B&!nqcrqa%&?nNC zBTiKY7Oj^5kWq3hH*Blgbs-+;#Q}J%ryQ!eW9ELfM4Nu^-Kp|rXLH2;0FX6e-rlX&lT;D+*d63nT zj?sgFr{Qa7x!m+u`W26ck*|$`LP4K0Zo|l~36)0x8y{sR3J&}Z!>SVKpE?}e&*e0S zhDHRxe_r5#6b7&)4B3}Bj{+QEjA|7$&tE+M8=Nm#`8y(6s5i9(#62a9XVrQG*xo&XHki|a7?p$VBe`5pUO#-d}@;j8N>z^UB z10LhJIPtv0DIMit@iMbE#==CRRC6H|K!Xg%aO0?|w9}K+hb10-y;py2pdaIBY=C!x zU$gkaTSin7ne`Dw-vh<0+bb@LD@Klv|2k`Q7^B4@CMJ?31u<~tJG4wM1$%z?nqe9Mxjx!T& zUD|o(*IJR*lq!DUGqJ<-hBAttp^+{2pSindmoO(7DG&K=e5a8uO&AUW+|}g%0hq(Jq14$S4HKVhTBp@P?ExHOw>>!qCHY~KEiJZN*m8h2%lhCQU=bUXK z1F8Kt^&{r7Su%@&JRbv?LSDQ$Tfwch^p{g*^b-}b?rH?GPvn9LMubImv)mH-T$JOq zD{6O;?KPtAgvN{)-^@yK#g}WSAd^9#_N+=fXGOqaVct;pTSoydqfLsa8y)(l!;VI! z7Mc*mESw^U8u#Hh7DQYyjzgk7kwK{!k;U49qEEsqB(@vC)?IMZQvX?|;&{Rs5zqUt z(3v0<_HPVAvRLhpOFY{;kBR2})<~rGlBXu{;alihAfhS*X>V=@Jyd`YX7HC+^#xsD z1I@+)&Fl!Obv`EqcPkT;{j-LtC9vY&aRcp>ugji`v~&CMQ0TxH1T<*}W@k9hDKTyT zf-@|tcpMO5aQ$o;I-Ab1$HvNk{FTE0dmfs5pDZmvzCl{o;fmarNMB`d-9gZ0#;6_@^p;8+p{UIM{l4D=`tJ>Z!xP zu8V;qbXwN=^(G};ehrp(i9dxZ`laF6n|1+LB9W?<7uRlFVeHQbVZRGzxvrby7Q3iG#(m?w`7dS- zH)Iik2T&irr&Ugs<)W%OED8$)N5z`VSf4D@a{syUi=(mN;gMfkm4-`2g%@=l0G|D` z<_0-(x$_q;Tw0c3|LLGBGYBgslzim~LWKdKZ;ucdRDySJS+u)?7p!#5U(E_M{k8L> zT^Zikk9Siz7b;cd(k_K0a9APc9Lhca`y%620!-OIe|kAEr#mx|Wali?8g#oQ`Wutq z_WbA#Kb@lC%KApB$`hs8F<#jq9P_X%c;x*pMGtg{qCrlr-%aY)51@KFR^!qw+=>NA zWEiBO&YP4n6U8{~Fm`yIZGBtD%VhxFi{FU3)woQYVR1b(UtR;AqZ?S`Folpe_uap$+%Za2!%=QuS~5$| z0elm+KCc4*j#5v)^aJz+nU2A7_F)0T7M@IlCyUuNqiby?8O3os8QYxLst{fNbfkJY z{;>Qj=`4;K(4P9P%cvuq37q$&bIEe=(Si(hLCwB*z(xoMTZq@EtnqE6z9g6>o zulGBD#R*sHlqy<8BTsXc=eZ))>4-8DRNCjJ@_~a`_Hnw)gZf2y>t1JtrKV2qwDXI; z^=9_elAMDlWQr&C8&8{0zNO{x0uULINXxy$PmuyJDrSrLn`Nx@3K=M-7r4PW&0-gSDMy{CsJ_+HJ z$2Az|yXpP+<@7q&ML3_jdTE(aM$&{!fvq#MK#GbJ!UTxDUd77Fo@fqQSXB8Oo^u8kgM0FIrN?3YAol69 ze@8Fd>ZC`M@e?_qk%m9eRe}?47>f{?cb}x+xoOm)5Qw$b9am!K0aeevoRJ%RkAYU3 zwOczl%^SaL<$;IL^`oCJyfvo2r&gu^tds)V`Pj@&+4Nsz=_cBnuTXX}UIfUPzzXYV z#|7?a&DVse;-_!IKL*?t&TM+AUCI_RXKAhD&|&X%$r^4JD}k4Kt4R?e(k9|*ckj0R zJ>*wpDpMwzY586R7?NVlCUoq%2x%f^Lbgo64l_ULEumRv>On5(5T1(hob!+GADPClzTCiRNETm-Gj}Dvm~?N-yMX6pVbu5yht& zw9-v{8fgvp{q`H>!F29i0q6V+J9{(XyhrWF6lSb+=|p@WCBpcl$9YV+s-Gw*(ZC&u zMM#WlDxgrCZO^_oORy!>60&sU@Qm1g+PA<|?U0$Q6R3ab@&U3RN3=NnWVs8Z4&Cz< zjnz+*UPu<>zBWnGEG#VVh_RXx4ow~w8Gi)$MIGbkE09n-dB+Yzr*~9QkY2;hXVg4yqr)260-S5Jm(dw41#J+BHN{pej8j+E~;zwF8gT zEeC&hf^Uv-l`t$YYDYCBxsNUOiNY+}VlkA<*^FK|{QkTKQ0x*Dw3jc0GiUj%du8Ms z9`Ztl6BUgh;fZ1kfq1!bv;bk#YTN1K;%8%$^%<9iIROv@VuW$KdsX%{TwFr#S<xC%SiTt#v;quij!v&Z09 znB=B{L)qqNC(O)5dz|_o#v3fp{af~8xe6LGX5kH%tV90UdoHsXEh(}vn3?Fg;32SV z2h#@W`xVy bPrIQ649pV#Svba|?|D@PHAxU_~@7yjiv)E|!#qXgEo{WBP(< zBg#W_%AyBe)(U@2rgOU%eV&WY4yp<+2*6c04X1ZM1YW+yh0_U@M$bh$*l8t@p--F{ zqH6!X0`b#e(DL3u{J;(NPYiijUY!gAG=&^|-ItqdSU18=PMNrI^jQy0l<{f9{^Df z*Ol%-XzD>6q4^Rbl0Jw#P_aEoCB}qz;=kDp+BAbZ&8YTh6M&O*%#(VH+L$kp9(LR% z0&_3hy!ht5adn7Klv5U{MMrEC@Hurf*Kk%MV|5xDDk2A;QOWzvTTNr9B@1B+_Tl91 z$=iEP1yE!glD=O@)NLRXWECa#w_nu_Ii?EZQ=huQ+@3EX z5K=0F0jtPs#ZdB4Z%Ol$EN9Sg13zKcBRC>San@(YIn|~9TBer{LhA@HDJ*8o)^JLr z9*@iak!f#u4bu2W4zP{1w`f-f*Z-)}3!Vh8au>3njAIfK^r7t}2gHLQ{gn`M zj=#@3&7Bm?@hR{0%lAlDY%8DK`?B(~W@1Oy}->O8=zoX-Soq8lh{@FZ@vE8KT35*aw?plA*tN`0MW<>p$AVaHIqk11Xa3;UXZ>PJ(3!<_#PmEjaREIV~p`swo_{b5$mX zeHWC+i1q!ENjRpv?B&gGN@)KGs%(q8pedi7HL-{VStl*i?24{*186M_%bs>4CR|bu z8A{oBbAasFhop(*?ix?iu|d6m!}CH8vQ!Hc82{;9!_1UJqw)y|zjur2HeAe`ouldL z?Y;@`XZLKx&J}nut3?SKg80BNl@0dj^_O!L756khuw)@65 z`z4pR`dyqX@WAB430J6mSey-KB%HUgvo_GdLdrlML3)Tl-aGSXfdY0xgfPK` z5U{Si@@gT3hQ8o*M^?}IWqduRKfLst`wJ4HbdUIdTe2HI8Ynvx)BliWjfS-Ie@XLG z{Z7rwir7P7(TqFElEt+mPHinzO{i%@tl+syZ=4Ez!ZUvC8#@-M$u6+R#R?`gemt;~!lr?X97r&-zDu zlhs8n!v#2p=PvQYktqPb?IR{G*sgEO_BN^53qQhIzl05Hqb(0(`$Y1@bxDoVp^q+c z+_gyqWWYV4!0uz@vuc+mlP-fy>7v|Ly?XNj-_$82uzl9v=X%RX`-Sq_&(KruZhM45 z9TN^=DcUqznyR{f)xcn}Qh7B;U|E1P&b$W8Z@Wuh9 zhme>izEEdA&A*KpSQ39v3@GfCU1L}?ZL@l@bv&feFADjP_Q76nk7M{kx^A?h-t8G~ z>+u-!Gz(`*2EPyH%Avz&8Wi22b=*M4^uVhvP1wgTVZAR$jw7GE2ry?!zdsz0kF~g9 zrrLKL-E-dUEdy-eun#DTaAxg*uTmRF<||~{HuVh{4Nz0KGYv!(af1dSRVBF#P?Wfo z-htqwb8MPqJLKrKMad}RqLzZK4-W43zfdd^A%+fsWtxnyfr5(2zMI# zxoNOCT?EPcd~rC93;UFK$?ypChs}rc`q?MW?l^q!jrv`KhxpX}Y8W{(e}s6ru`Nc6 z;4@j5I0HnXlgDhui*4N|W;2tU?S9bXTSooUpCyAq$Oo4N#*5CAN3$YVjK((zZ@~K+ zPVr^cgp!U3<>3l0=7YqGX7h&NpdA0p>SP#8Rh!eH5TslUl+*#u%mRi3Tf*UxFrws?(MPp~kObg!XWy0EU%+fTQwN9us|k-2W=i;9 zCUQ~k(@s8$hLxy4`l!169P2D9WI{QQUtjCI1Z>xe#hyB`&%ux^6BjUfL?n{@!fyf7 z3C=X~P&0@9g>A6!0}FhJB0eJsA!_SKOyo4fGs^`PvSTae0KyDfcZ&-`@(2%l8U!|q zZ3LY9BT0epVUZ~sZLh73DW3-J(&DC#6$QyVgF&5W{KB!#*^^IamwKNW@JsY(g#$UoJhwkkDF3m$lSxTc;xF5S^y#NaE zH~$d}BbRp3C$`CAh6<#q%U&-{w;Mw~&~5c=CwCmp(u9Jj%XM_#+snUob>8AWowWTd zrhL(%O*z3(t@yZ5;8*^Q>EkwwXzb@Wh7h8OiBA`JX2d?6Cjmopj@E%T>k8`lQV-$2C%(aRAD z;|X+pEZ6>QW&}v^lM7l+3uO7|dv1%)IS^1H$mU7+@uC^&(#TfBr0o?_NkCW8L!-g< z0kM32_h%OTSOl25iY2Pp#2j$Yf&;|F5j=dQ5Aw&A3{?nCG`;$g+m*%^20U>=w-xwE zhjIl*XJHL?oF#i|mxpV4d#Xjg2l5FwWI&F`U9}cdcks}yi{f$ZxPdU?y2^i~9=tun z$+~^F{HKZtk0J>3E11SkI1Un_{bfCsS4Uo)W?7^mo>gE%xsbKWmfBvlb0%xwQJX6&~)|0{`4rVY%iGvR1dQbE2z8#@Cgh_JMyZ4-FOcAFTb+7}WR zoEiFk`l^an6{OxyP;l)NB&w>_r{cXmeV&iTW*k~oi(E||fPO~Rkfy9{P1EY#?OTpM zvQx8H6}Gtj)sl&y8@EfDglzda)v@5M8oH)pf#$MKfM@aqKVDTRrc5J`d*0x6-RrOC zW6_JVq8KKUs*MtIp;JYq9irS~u8bbdRq|j+)5Vdy(Yb&oRJBg;r+5rAVB%xt=SMd-2xgqRiwOB#991@Ef;S%y4K2P3(Fe9!^l@LHG?BvMQkxqGZz{6#} zubP>8%=G6X9^ariNo~}qF7XPSf$sbJR4+9(F??`fcvoO8ENFgkoZ!CCOxjviPbT*h z&=0}eJZH^59Zl`y*F;cbgK#f#HVaN1un1J=z3T zMrA{|RF5!2KP*dVF@}jP&Ou!%!~P!OrpS1L{ccY;>RT$4t81k5V)DpW;$+r1|GB)* zc4%?Ov_S&ul%){6@?Fd4zGBP?A^B?o2xeBVAP5>5F-UjH%C=ER>Ldyxzd~|VRVO?v zUT?7e1U4q?G780EcRgM#y+ukcb(t`>5K_mNpn_TWTTYqw)djnwumaCidJbyT`{Mw` zT=ZZpl}+~aY;2-Fa=TfIC<}zf98kR^sGY3sHH%&i3)VGTN#v>k6cA zYK6`#jmvp+gd$kRoKKLHTe*ixlzX8zZFp@cjlRTC(=Q4Bx$Bk^DW|<)xq`pt0WaO&Ab)Qpj1wex1YG& zUY!dPsY04($ps_YN2@m;kM|HgDwl!o)1loax}{hw#khyt5`f2>blabme_x0I($nj4 zFP_8iREIOyPBC~TleRd3+Pmed3%?|HVjNscZ-CH1bVSr&@r8kuv@($6P3NZD5XKc^ zmQ`Z7kH21&p%!l_b~Dk^fK(@nru!<*m_4qpy%7+szkh;EjbWjzcFQ&q&?gzd`J~1L z6iqJqL}6_ANEiH*;=~zBvj#XHm7(%h1G`l^vmdVPi)9CTVCfVA{u82uNrh? zU;zr}4&m*w3anO%9spOJ_uc~p*teSY9V!l z=B&-Gf|tp{Q{SsFN9KHiSOOq!@ql$*q&I$7%OwOwO|;MZJ<-_Dv6MP&B`aKH3J4zq z9G!!Pi}nIksF@?cW~8fZ!hean`6b|a$KAug(ZtJ zjf?ViEfpJ{U9?UePDb@`T@ry%6$rziq!|l=u^H#kf=C|}iJbaeOakTScuC>KNFpJL z_a3O6ezZI~xw`sViW>hAJEYi_S!nBwM?(q0Q_FPeoa?B_iExx{` z5-_$q3vVdk8M#2Su=?di33ye1rN>%ApvrqU9JL5XmS!-H(>eT4aHcQu%s*%h&6y^h z_o?p+?Yc2DDVqpou>|5=_qPl3@n;BYi=p?$=BQlPP~RYfghNhD)U1kyeKSUW`1(Cw zBf8$DS;Oem&g1>g53VD4%Q+7dfNc$YP+wFO`~l{8jC*<`O4^jWhnS8z8wS0TW=KRgRvZXgPXMYrO*|RNeKd-%NUqw3 zluHjV;Li4^GGA%$q06-{Nw!Sw&XezGO1e?3jueh}ynolJX%-lv=Aj~wD_8Jh3|eM$ zxoY_sHwHt0(Az(;?<>>pMI%^OMGYg%{GS&XX_8_hKDz*D4D+7Oc$P*7i0?wAL{n*} zI(Q`%5fA-O_a%e%1@7_VSKKm(p6Ao_ZNU#<+)DJ@l-;-F=aY4271cSE1M2AvGqLIJ zq>)Z`t%_)x>G*UhlQVguIz1w4G5=5W;W-2naK!FBa#LE3mPHBdwjr-uQGKtGs#mXJ zH7|!XKPu;aVAxf<;V1eGv#Vzj)}i4n6jHMfezGy-SF30ZC`KgWfl}dFMsv59z}Gv# zCvwjA+v*q`hvwNGz{cd>aL@6%Qq>!jHg)?i5c_~D&|?OXrlNJlvR39V<{27O^BGEM z`l-ZpL6wB=8?>ehmd8@N5k}P%(2`maJ69+k0f@frR&>xu$s389DFR+jK^hOo<7$e8 za$#|5H-jidH^!2l;HOTpHk#V7l^E?GXL{~OoStZ3&L#V3X3ux2^$XrZiX^(|1mp;} z&U>(5$c`LmmnPy?MvebW^Z)Hk$6Eg*SpWSt2HP{B%ltN3as(NcV~?;8z`Xm9V9_{= zO-mi57c)Ef`SxC1lu96!V0)9pVsSNW(5n6iu`VmEe4l@2PH&U7pc61g$5%eLQsU`X zglei2EKk&K+p2Dp2$?JF{d|7^b5pEyY?)vlDA6L(GNaBu6Ji1oLN4D1*3($CC}gdi+?{+9HmzU~ z_Gy|{P;XxhBoWjXDp zWds$WHnELO;&=e|HPJ*>!XhrPrplDBBOADf6Ky;*P3x0Z_bBQnN|mga*<3}`DkXGl z#V^uvd0jJ)P!<^%w!rrZH=HCrl#A8Q)sgudwNU=e1iKsW??+iVCZPh@HWHOjD-!Gm zDrUk*OGh^(nzYqU!^4naCux;5=R4K(R!xbOfx{X*C7c15wdYFx)bHDpV~!pt;9-~p zep}!jXvx^3fG(tY@{s4D*Uyle!!G73HXBun@G(&e>j48ZsIzS z)W$pKZ@hlyIv|ZjZlZD@_W039El5|DhAZC zR3@!tG(OF&Lg76s-eONQ)Uhr~gd~rQR}-eFq!mf#X)HvPtoj%&S>foQkbz18JsFV? z|5pBevHwD``?n6{FEFm`J@=rvn)KlB3y5JUMFF6vsvBaE+OS^lhiowSTn|pkTrCgA z5d8w0R8RaZVC9!)P$(c$b{M)rwXD)I`4@ov2k~ z{Rkq5bq0lO-_X)o@#R)y-Oa^?7#Y5NimfPUN_On4?V~Wci@x8w`uU6&Y(jUJBeSIz z`S&aQ!eQB`@(Or&vaw33|#o15in;XIbU{CdK`QILLupK7j;`=JQRF?A4L*u!DWZZzPL`yR0S zYU&&AZ2F6hc)7)bZO=bc5%Ofv_}SH3YoR>GQHcATJ44h{fg2XD4fV;AQbBndCwYv)8P3Rwn&&(!kP+UzxZ8wz6WG@4U z$Wwx!%|uxG=aeka;xYB?0Kx|F~hW4pvhvS z{=v3smxF9c7?PDW9eW>?J>?*^HUQ9J-WeZL2Gi*YIeOr!Q>C)*jV>;u+t2 z(KGMwpuTlYd8kl<6C@+QSv5tSMmn+)!-&sU+(ZC_~3HWW4 z#xVmwo7$PeDLSa&!I^PqJ@8CpeSaqKC%-vRMBGD`AssH%0imcEmD~hwa>005iyR~9 z^Y{8XDWHx92@o)p4+Fq-{6`{LMJ;Mra;~asasAwn6qlG$V8AVP{$d+wl_RCB$W!E< zWCq?Rp6ZEOMPuh(*fW?kWi+c#MYcGN2gD1@paAFnwX6tImprVI)iMuy#B=Fx zE}#6ey)fovX@b!R#qFP31g=ORh%MiYn_M>(UG0JWv)gRgzRV<5o%=MN- zqs%k3eX~mIeFL;ZHFm#>(xXNPF45G%Wzgg2Ekoo|avjMS5j3!(Khh*`KbO90(wcGk zS-NaBM|Fn5W@OwT3y{1!HAIR{0LWhoPI%Yb)5Su_6v)0i%8T15-&?J$=^ed!=fG4v zmL9hS4cHX2%G2LBg=N3ND^WMC$_u=6HD4IhWO)du*a2pUup$5~DO7^DX@}y60{E3yFJ}By zI&poszm65!vEEEI2G{75v{Xi>k*xczoLEvOjW{v2iy=W-v$Eg#V9006Jd^y;HA?@K zv}Am{KR_Vf9!_xCN+{lAMUtB0VqPfgc9=*$1H91XLx_mlzVk1N1Ap6{-r`NUeUj_br& zCXd?e?GR$)vG5Q{D`fp!B74%G-R@=!m-l5Ae|0-6TI@hcCpqBTz^``-abQwz!BC&#P0#C~q&JN39tGV!r0|EUp zEZh%Qu50SAyxx5balNn%iSDjj?|z;2lHS}OJ7!HjnYY>)I0b%wi;u%y40_EHH}X5N z=7ok#-3;3P!oGxqrLbUSxx)dYeKlv1fkz7;OsDgwc@yr{VqG@-PDE*& z51aG+79Utz7Jhb-HmpndK)Ph~J%H$u=NV3UU_@!^K}-~GVU(V(`yQTye}Bj}!;Hc3KoO3N)R09P=9UxF%rm>Qui`sACV(bex!(${%LN$SEyj(%8SFeE zo?LNDyB`VOO?ziaU&`#5i~#G=n+$P48%{2vbk-T$kE)`u8oYPYcTr86ueK}b=|qQl`BJJv!=-q zc@XQl=i<=_2G4Sl4D4V(`bQYw6e3UVbImM&SvQ_dbzqvbRoq+wnt%j}-o$UDgG~o; z$tEx}N=f!Fu?coqhe$cCZ-cR0JAjK-%K9`tI;YCAM?3gd_zZ?MwE?e3! zTS8f4&5kM$ESSVB=h4jvNd3-vmU6BKBlx#|&E&p1gl%Gr&BhuoK8%UJ%+1pg&1&jl zu4;QB?~>E^+Jh|n&gAX9Ga#5hftlD&ML}Yv8nmhfEn!4dM5?o+%FcxO!|25v3|34(*z*hTdGQW+I5KxF9jEKbIA$bK6 z^awdo%!f5d#)^-2?(62%Rd>*+9QAVfj+kv!IjXuY-&GxZd;DIX-6t86rC?5<4n8o3 zSSNCHO=ihAKSrL-?hha8YY1x9R?m*dyxNKqwEnrey5dHJU9ZTm?E=05ISZ(ImZ|H! z+QoyWQ7f|yzqHb2TNkwV{PZffmZoxB?2VdKT^FXXS`NCcu6lU@T`k{XERWqmP2M5Zvr;9mtZvDkpa%oWa!$=2S zoE@DS3&?lJE!7lSzGfl7yS;W;2rU&si>$`KwV56I=);sj-{5h`6U{53({|e~-}Hl} zvL)lXs#5zdKkX$i{bB2)cCk0Qxz6`^>aFFl%DUHMx$w(Y0kZfw>eRKZPD~^9=P_L$ znt6nshDe{ln`?~%h)(&GC~CT_FwK@rG9J24n%96+aSN{U(KBAa#Pm~SJTKVZcVmTw z1i$t_ceE4#VNep{G*o+Yl6t8?A!}MT&6^v*Cc;TuS{{jEhUaXgOu^W!|E`(jtnv%9-6r`sFziI&8N&G<#^uAh zdSfEG@>#whl3m

2?xnq}@0|27O^+i>oq$S`ule0l2QOGjB4-e`q7v8#iZyz(dZC zNYTGL3|y#BTC=qdH*qR_0Dt?L{w`4Qy|V)4pZ@!BhY>ZP?AK-@uiC91ioFP1-+{Zq z3o7W6W-K$)88RuIH4c`ehS6;2u)|(6H_M8mPcvL?YmcM5IpMTUeU@&j)-LY*%mELM z@Z+r&Z<~Hm5(`c83!BvR$qPjX+jo&3Egx_%IUh5%n9<}V7*XR(`__M zYu7%yPpg}8vZhxT3VhNqCcKZoQfUu3Ny)q-7^UfCiVTuyDiDZ0(ZX`W<@T>Dc(L;Y zv1L!t;?wO2cR^GKkq$~?@IL&le-~H2p{eh<;sw@MT@l(3mo@zp_NrOBwjElB@~ilj z@Tj@~vJ7DCN;u(Cm8IMG7t}I-61v<`(T%jgC*h~?9g3GB@-TVS2sjbqlo}Pom}+XG za%L#niFg~1%@@L%nOwl{A|*loXF67~_@T2VWv1s}_e;Z>X;q+IR0)vzQE==08a@;* zgD>}fc6~w=Qr~$nQ+-kzJ9vaBsW=Tx&Nk!#aj%+baLIu)s7-miuEhBzzWJgOEZN8j z7BJyG^Yn%TWL_!Em*6RShVw*{SBB+;j577RW-@sU`|1%0iUYp+e61 za4ClF1Wx?$?C8Q|lVikp$(JymRUbkp))CGMn8zfAF2@BVRR*e=3O&IkN?@9K#knfM zdti=J;6fJi*Gfx6AvzmQ^KwBHsNdUw{{u!qxxbTTTB;XJhsup;XL!69>b{g0<(Gip zwq93Zy1e1?hfMT%5SH5kiPJe|AvaQhv|Kp!*^H&GpD4eXcUzV2N`hkR@sPcB1P*pZ-^B$(gu~2 zKYyO5q|YdZ)`yvGNiY2>2$$${fRz$18DQ|{o8u-V%5%3jKGEq=zunB4vL(BZEB;8Z zIt^l*yG1DZQW)S_pyI0$ByU(Pq1sdhu`atV78`7fG{;xcQ|kf%;f~Pp8?qUY!Lc$|R~70Dt8px!k+_nOts=o0Q5HgkdtksV4=l5zQV?=ERDE zmT?8(o0{OV^Ij;FJCQio*ZENJkZ>rULh8#+7pgc}AstK1w?oihY3ytP7$*w4Oop1; zEt1)WqCHUiA$N0O0#bBfew&LF5UFPsm$pKp1`U-(+$GuwEkJ<6OnZd*U4I99xF;>v z$z0}=e3a%Fk^IYE=)oN^+7gcJxQbMCmHxPw=$+=V7dz%OPNga3t&L2(^bay%_fBKv z1p#r#O56c62|b|pp~O2ocnt3`r(-M9B#~lVIK$sC2IbG<(!`J@EX@GiDcbjmLBtrX zIwAfEy8`I1cn;zMc6$r=;D64Md#ziHw;Nay`iu3Ep1S}LdhXdP^wU)oHE!+mRg_86 zOkY+}(;$H`g7VyQ4e>bO$By3pUTI7be~!3qrqbxem#r&$-a=6%0xOP@A`{RA=34c}by)v+7PYIkZ zGoDFN9_jqKj0dQflX;{-N$zbK&*Z4LknvJDfz6-DcqpB&)OG`s_+ctspGV-I54gvV>%jTEQm;HJ~VxBc;aFH*0%)fZvr`eluq%T*$2o z?lM0Xe-(lzMLC^Xu0`JfNFys%AiJOG_!5w2^MG`!ihl_peN~EmF@(R|(EY9i`8hV6 z4e9W|Vp#Fje5(w;H++wH%uwB3_rh=3@JPrhVwf-{uirs!svHuMgaqrpEj!^jwzY`tg6fAWXh{SZ%6(z#icK z%dy_oH(kvar>1bV+lBx3IEF|Us-j^#f7&h+IFiNxJjXmOb0F&^TGPP?k7nZ+~lA1Xc#QBEn|-bdE5uaN;*-X`kS{ zmk8_}@u2{}K&kF5a8OU$m=LHoGs1@@V!N}}&3R;@FPVxmjzV#B3M@0KbdZ>OMwQAL zutDi&0O#J8?IS1bt9&uh^V_ zG&Pr@0|P04?OIEZ<2Dk$&#&-hv1(*m;X|az0DDM)4U%9FyT|~0NODlyYFj(D>`2y3 zI=_CuVo|ar%kIV|$32OpD6&}3uZsHS!@DoPmHA4_)ElE#AD+<^sWaKink-dWzWT6P z{giCV)5D|6lVe+*+lNOjee(H%`rUrR-Kt(UWzm*@+1nT{^8xP z?<6*V5-SP1d}@VX*-WLmU#$=Ce)>hMHhA~LN~GGm)#ottuyU!F4z2y_$9MmF_YH{) z2fFMytfaAV?s&)FB58VMFfq3@F-vosuO4M8MU<(E9MfZVxKs%G4Bv)HKclQq>DnI^=dltQzgwOiWG26kS5wv!N)Qppz!GEgFw*3xC4$0g3G zJO#a@sc$fp-xkZ`b4gwj9oZ_1!}B+ zPqoQjqed|``VKWNRnY#?tYdfPjgQYu8*2?Vyvlkr+4wH&vrLb-FY3*rvjg{qx@!P% z%E}E>&b#K=ZFhW>f*yJDYxf|NV$&4oYRx0%uN^wa`aK+%P|4>VUV!&ueYmQixa1Nt zkZF10;MB?E;lUmcjq|RIt<%2Sa;vI;Y3BJj%-}{~#)ERn$FNZI*EX(oY|p`|y5#$3 z9{Nnv!e=h2kD$Fd6#MG;1VAUKVyka1!o++6@85 zC-VJ>vq2gPrQ+^VsCOnW9h{&uo;#5?B!!IblFP%`PBBueT@~P~{8zU@g1l-gJH(}{ysYj7| z3;DpVpeXm5;%#cc{y&2$N?060PnjZZB+!ky0-1wNBd%P~%uI!h%X?eM7FOy3#S8*W z7MaZ%xIeZjohq2f)OKeZId=`cZWAjBR|RZ!Ekrm(AuZ-ha~stviw{VDtj?wiAoz}C zbnw=91T!opVMXH*KerG@h9p1*o4>QAgh3ju??E{zv~#o=Af&nnavX3%P8cUoa~TdxR116O0K-z_6D)cz2hS`2@3`(cuFL>lN>VI< zFDU&VP^@7oGg4)>q{{F$)&%+Ky9sDc8LGSEwlah{38!E(N_X6U9aGdE?n;eQ(BKI2 z0InE@f*c`cFmzM3>!vzXb-|z?&dmt`FF22`*tgvMy=;!$`W!*+m3Jdmy=3vX;HEHs zR@0fn6G#9e8m0HvEQBI2;GrQHz-kXDf49Pt*?a6AmO^sqbPNkNTdpNpfaMW;-xEiC zz|Da*&&P%vyK1|CD`Wf9gE2|5@5;!@8(>|*khOW0d(K>v#F7_`@_URTMq28Ho{D%R zTS^tT9Kb@lfo@%Hfw4IQAvlibcV)dULt>fpsc0Ur@xmP(D+|Zs?((S!mn)mUb}DU# zNYr*u?Ku)#75jbMt$5;)OXHvVBo^Z`(gsmOnd@GuJ?a*%V(9yepSS;k#l*!Lsa}MrKi!9l&gzD%> zdNmnrEcOb1G$FY!Sl_bV)nJvft+qAWqsV&sXUU;t^)KqGJ;Zg7{Tvtx5h>)Ld>D=&-c(R8PauK*zmzEmg=u3l0^}{PJpS z>yA8sIlXPm^Lv(zMEp|utlrl}N4n?oNi@)&fKXs*kB3-!K@hy}Aaj-JgHf}{ke zk8BuZ1wx}O_vN~G=rR!IMucH#9G9toBZ6svWG8Y1K;J}FE`!vi!LIn&u<C>Mv}#G|uVqLCqg zl2^(4SVMT&i>}~gQny{pFP@sR_!tC7y&}3+YHvV?5$4pCaTtWKFZAUNef*--Xx`dtVCThf{ zEP@u9==U+k=jeri0rp*Gvnx*RvX+H^xRNO@#1}ns%b0B!%~O~D<%*Z|v8nnBbF`}< zQ$Eb}(AOY@%(=d*W!G)VVh$zmqW3#PIfbotxOcG0ra7Ksg}Xbak^ho(UrA8G{72T~ zweIuUM=609zG06(o8qKFZH;Z;Kr2%E;;uY&*$Mr<53Y0o-BvA1aA zS780RZ0d3|IzkK@NXD(Z3Yb;!ks6lA;3Y^lKz$5;uJ(I&a+~s^F&Y|kJS;|03qO$C z*X~>L2`m;jVDY5h#hR-zIgk^7fF_=&;55$MAr{h{B9gr1yy*4dywb=Tr$VAPVGR=L z7eZu$FM^`cUH*=H0a1?WdLXz9Ms_HrWj=acnjL9gL=( zCgM29t%6gh*FFE|P6;j|dJ6(n2*SA?SxBbsge*;_yQw}^n~u}3FcRN?l)s(AL1D)c z!N2E{XFTP)=mHCL4{3Bh=E0b_KB@)H3ckwPaemjV8JO7Kh1d(7;o8xXOQFa?s?Gfv zviOsip>+TlxZJN{ENU>mXgh=y9UuY5Z*ha_s1!KcVe0Wc z5~TdPzBwa9r9!w#h4aP_Hd31FqU_brIxfGi%1$ZIQff>IpVVz_>XG_osqTMl+AL87 zS8mPfaWw5l30Km+p?T#$9c|!bB{p!FE$-Gyk(uWCoj;|9rE;*tyXiUYB7X@>`tIlRw&A{NX@nJ;H}7 z)4lnA@$VZX%P!UVEQi0L%HF%zwa<_1`ES?0`+JGy;;=Wb{rg3?>dr%UxlHx_Yf4gu zyMN#HOW7<{{m)MI@(*lae<%&B@lR|}%4In#*uS-Nb5!?#%uy|yW1guS=6L0Cv>4Qr zR2hbRsq-QaZ@Zzin2X?Yt)F`OTueMBx|4T(F^9io*p0x_Y>S$U33&)TOFAiqf_+o2 z2t$?Tj-F7tSok@frsG*ypC^QPF~FH-Ag!kV4z8}aPxbhIbe@#!R=)I z-IMCEqk%ksW(M}%D9dE%L`Xs9lzxwM3}s?KN2@RTAZ(7)D|&$(x8cd597B!&1QsGXU)pWso?K3$H@hHvcnsHT z#D4+fL&}1ekTU@$1Ti)-HJ8uB0w{lVS4(r_HVnS+ukduHQ)b4|T2D(o_Oa9U+T6N5 zFcNLEp(GC}HS7NR0{kGw-gPb(34-8^D!{<}alm9%r6+VGDK&$-`rjHtK)rWQK=S zZ6E%A`s3rLJiC57+wGF3$TmB?I)LXZe7hv8^M$3=^7?apNWj^l^+pHN;p{Mb0_C@~ zt1D#!K$+HR=Pvxl<}srevaH-ZrbSW|6@**XsNAzgShNpWtxltDWp4w%^7!;Xzpwmb z48tm`XgFdBJw3I`*sGHsq9K1v0I%cS`sVIlX-7(Q7qEHb^kn~y4DJF3H{!v_UgCb#+Y~)PUP4}lGXFRAh=kS(aB74~Z@Er@hwsEAeRqtV+MvnH9u#Um- zvQn=np=mD^cEdPfeb!{H)}G1941@XTHIX6w4BQN14xk@(Z%E@JuhsKB-N-K0t96bg zy@M@JYt`!)*4tnwY0H1ho3sV#bD9_YeCzFb($CI(x8;K-f|To6Fv7UxywTHodcjK1 z)7X=e?V5WFx)SLA8Chi3h{&wjU+c|u)*A;}C}9L%xd<|4-3Z2-C3IFwRU>)JFL--A zk~ce$Kkv%jVe~jNUvz(VW_!!@%abEN9-aGjp;({d$E6u4PfMEXuz{T)%P@M1*E4S z){;F%!{Dg^^t_?!eO_xt^edfntvHc`!t@;oy&a4X;Gg_uWn{ba*Bg3?R77|4au~Cp zU!WwV_uV~&l&vqUUa^C*s2~k7G%_kRrx=G2iZjSe+5Xf@%R+JWjs(h8iGKTbp$0;_ z_*R`)ejI;jd=Bs#9n6C>L7*5>=)%e|tUDSQhiXZ+0M<5fP|7p)n;}eFR82}yFp;Ua zY4ntX>nT0rIW;dny1{8-38>BAuMGbWX5}#*&2+pq?-B3 z`Ys_^B&up>a*CUz z>|G0T20{2BmC`6;P%2_NT+3$~6L$;Mcx*xrHFDGM#f*6@EVisiUpA2jw0v=xabxzl7m0;%Cy6$Z# zaZq@*0mdGPj|r9Wq~&Jv8##SIPoyEGESuYu{5`sr=2l8LuiX~iOez-9mv5LX58PS2 z)GSe!?OSP%d&)yz$$tx?&=6*{M_7pPm@j-5&34O04MN@>Bsi}zuPtz1M!d%`@o;xs zhc~+naVA(QGopBtCOK*RnC%++|J*=K!)G6Uefsb}5LhWUmytgK69F`rFv0;8x4Az7 zeI)@lmoUNs6t_!d0mm)^HaM3s!T}T!HZ(H|FHB`_XLM*XATcmAH>C zgN=>B0ssl13)l>xzygr9w*x^?sKxCa+?~J{meA*O{__Z+Go=Tx^YimE{oxJ} zwFNnWO@Vd*1t8QCWcz%gDbNO>W^W1xLEZl=1f8HI6zU+r%IfOs$^x{7u-H3U2+=bE zT)|LFfPX3o0&;QznE`&63{V8xg8nLv1%(=*ZV86`sZg^whq?ltK!9g~4cHW92YGgJ zwlf1c0iI6>sL99!lpH{Ie;UjGX}|>dt2qF67WTix{pI~T5ZLYyXP~L6y{!Y#&K+!L z0Wb&KfB;HT@+?p{C=&o^XZG6=Xali-_6NEE!GAVDlV^iJQU?O0L{$L5=L-L-4`S*B zc7Q@yAYhx{HM0H=^W0`hJ2P>6TU(GF6oT?QKMAlC$n?4I?yP?e*V@kB)z0%j$Q*2E zX8yYjGiL`@4Lh)-Ge}0_FPmo(%0Ds-5EQ`8#>dOa#{&R40zhu2maM-IPC_%q+)gcn6A&p&1U-i#{U1z_di_z|7iX@%Kw$=|C^DNvyIIkdb&Ri z{y%!4E!f8WFN*%0Dr7fzeRr{b^xpN--z#7r~Eg1rZX$h#=#Q!w}hV$ zz-sb0;^qgiK3@j5|LA|$$7=R3$O&Mz_#5(YJfq*Y=<@*nG2sHRTK)_20$8p8@pukr z^Se3!r1UJY`xkr;>F_W39PD4QIi8K({so`wasLDUS3^ymot&OK{>LUfcYpgo_>a2{ z1abqJqRdU(o4yUSsts(tt`;S7W!@YWe0iLDtYk#|E6I^ND6ie~S2DK`-cT^W=%HtCAYaXnrLYqwn)Hk^= z@M&|_Y-0k}BlW{l6w@i>1lw;=;$5pSR{Mtr7BPEBIwSmKUHmsssDh!Gl5YoyCAbi) zG#5Xj-RFFA*-yvvG?B&@$5m6vBUi;o84&-N*nEtye@}_1ZIu~jnSX$?kB{E=F@3wx z(%v`ahLgK1fG;KI2StcQxTl%ml9Z}%d-F`l&?Mf~+{@LW4VzaT<6r19DZMPqi_d&M z42!BoSfy5)>N2xv<$|WM^LnrtTus?tT{TOyrwF=b_ZFO`wg(AlfG6h?-cogZuI?t< z*+6M+t2>&UhVNpct>k+_zUYwzV2ICdX0DS2u881=V_tLsLGqk9Utm z>+N5s@wH&7Uy6ounOAN3VK-+Nj7$;?;pdz!$VKSAqYB}YM1PiVDWciCo3coo+6)Y& z;pM@h5juNpxRszwNA`~ABhfM28DPrOx=#{=eEdu?-#Q^|H^*NsrMVK=On!qiuHERl zMQ&)}RpD~6%c$z5S=EzZB;i2T0xwW5R{)OAa)o)3-k+1kYVzJV%G?x4k=;I= z#ARyeN{GZS*?#~5TuGv9?2jYO`9xK{Xj3~#DUy?9?O1uUdyFNM^0v!NeR(!nFyG+u z(u=2ZQ}TwrZ!TX(L}EV2Y< z(WN;iik}~e%m)*hYA}aWkNZsVd2xD^8+;H+di$<`(0>Bz(5NIjGy9&@G`;Zj<3t z8)u4G*vi#~v}2~?Nvdxv+%T$?2**k(+MS<=^%9FP%_isWGXBW-p zVt>-)uh+VA(D)JLZ2d-%U8UCv4%B}jwG^k5oJbx?BM=P{RxmC~XP+Untsb49qb#|; zaGEzI<1MZ7Dyc~w0v(YJ_F=u`Di_}%w)0Y=2zzBarnxheQ7iF!Ui85#`*vs-i4^rT z|1zU!k-v5JtKWQ~_30O#6RZkGI3$ERA%7=GR1cl`(&A#R7e6YX#?p*|nn!e@*(j{T zo|?WwS9%gJV>P^5JfUab>eVPAviEHngfPQ)Z^4i8Zi;T*J{|-~5!0P;s*C6JuOUlB zdG*~s8(Rn|an524-@=;J8cDI8`@OQ>2HS|1Ln@TG9MN}Eb;9+Dk;kOzxQn>A`hV1C zWH5U~ubg?1y3ydB<@l$zF*)+;qOWGf5nZWjD_Wy<_l{4Z!L_5DAqm)c5{F2`;7^m5 z_Y%L*PL%ylxgB7F1>P6@G zSfra8aHWm#-l)fZE7dx8bEEX~{eOjW3cbP zSjbY%>^e}?6A{Sc*p|d6^jW6x;@t^+iQ0Z-&}(_7?Zl}PD=#GWR7@>)C&6QpwWw|V zC4JYjkfB8#tQ2ZBJGB^>+modTdRx0ziiMZz17kE=8(f;OOdp$Z^k(bogMR^5YvaxP zkAXW%CmXX;Tzh5I&1Xdj*DLTZ?L-ulips9^8;jMtE&JO|feV}O%l10gc`f`OPWz04 z54IXzu-M;k)Ty5(SY}w*m~dpF| zzxg6G@mk#p4xJMn$2glxzke6MFlKtFujZmb_5dx&`$fQz1-j!JqKIaXN!D7pj6FTm z&uW?VY|mR{9T5&8vT{EO*N`;3da~h~ySPhJ9X_LXaWb?FOUoAV2fvn5ber{?16#jA zcL#~3`pA2S){_z7@dy^?cx3sCeJ1KI2wbOQGuR|!WCD+_lJ;+pNx_DRc5{NE~-J_Tixo|hTkOTU(xQ@r?1*}SxpGEv+%9c{qfBeSxvN_MS zIHF(e@vc6a1YodS3Vb-HXI3!la=P7)Md`HoG`$do4{3ThLPP;=%T&>bs{ zoaiIRF@T1V9=CK)tBBOJhBDXa8{5F<3v30gQ<)U~sz*5?^@3H_>r@e#Cp>9mU1vqr z5+&%b;f^T|?9Q$d;8K(_?3UD-#r^@A1oILYZbVOM6n~H!L=_$R{)nW+8|G+eP;=~y zVcM~7i|L!H=rY{czm&i>xtA;8&RM3KOwBeeX3N+i5W2L?ebJr^3HXXi(VS-=*+zc9 z{n#^yM1rXeHkTMuN_yEy;m4z1ApEPS_=Ps2iim2bjk5`?9Q^BXUW|7wgNUA!FPw2U zQ0G;UE`LW2u%bi7ZAMTiroAijdF7_|(g7L4bZL51J}Dto%Nl9HO0oo(sMDmVL(T^e zZqO|cEC{F-$FD0-r$LHD3H_u3njtA;7!!tBLdQKA*R;)4U4zZ9iv zck?$nwjqKY(;@`Xql=CAxWIW2F!VS@*;GsBP4i6aXacOI*yyljf0utH7Vi6N&w;m1 z!+3d83gNyWCfB>;YF%Ns+ZWjUJ0lO*bn@S8Fp}Ugfhx2pXWDcuQG1Cvc3&nTMXUXT zZ-4EG?Q1GeYQsH+(le+ASD4&2p)GHXCs*Au^sz4acLd@~ce~Dxi>SVh zFk_C2Or1x^Q#tJ%-`1>sOHD0ZJUiAn=s%qRuU6jCIrT*ym2_L;|? zLXnxdeE1CPW2YBJDVFry*qvQQFh8fWA$5=7xR8}dIkWvTInQ=9FJQqoV8gZ3q2Qz- z3UQ7#7JO}3SxRDFSvwSm9krnPo_J9tRL{53z@XkulOZ6u_#0{${2@hfIDcxulEA4n zPXMXP$m*kO$CMVwcXZu%D0Lvu4Aacz;*Xy^?ypo88}hL%jo%43aDZ+a{MejjGF5Ge7n2B}8+(-e4t(dkjvO z`)mo2IX+6wPw4D2P?1GGELuESH3k*h$yLh`B^?-O)q(o)E^|KlQGXJX4>zPRQY38n z+W1)VR&E8O-5zrr9+4NqE{SVQHY1lCz3ifhCz^#iv$~pW^2%rYT(%nHX7C$v9hz&P z%l8l^9Z71{9hJJDXK@2Y+;r7)zX(>&Z1{NrC@#h z((NNKgwGDm2lJqCDTs%+%*HREGX4Y+;f9VG%=*&^)65Blf2Dt5oq3bzz?MZ)Z^g?m zE@2Q`EzqsSvVr@H`aRJ|D^e@oBUk36;7{e4x>q<_t%`I%QO}2tZ{384J!MB=4-1A*8q#Gh2{C)#m&@%I zRS;B_A%A~D1k<`4tE&!(d3tujd{TD!i8P}i5@g+tdaKcXDtO}Z@z*h&`|S}lGCKRf zW4Z*9g@&1wF?E3&{f9IUm_GM#fimbL3WX(6Db$A6;y#y)?|gKZJ&31)nZD@f=X?}+{QUY;^la0{RvAN+EhDC z`mAs0mvB>W*f%h)R|4m7TOGC1XXS;|Q*F$oZ@E2Wq$D?QJ4e8XT7~&FQ+(J8w{Tp_hoUz&h7=-# zJ?U?Q8A(8AUYMa< zn2&`2_?0^0`#^kA~`PEO21A7Zh+6@XDuPd6{$$SZ` zCcGIKO+XThzHC3kYAFw0ew05Ea-VvB!4g!R(=r?-+Gs<_0BOQs6uFYZdgIP&03y2@ zK^feV$!6cHAIO{e{oBU02t=%dlWQDieCQ8Sx9HYBkhoKP-z=OZ%slbxgS2<$7k`#A zY1OxHXeGYXjruIL{sq(0hKko7(+jq-JGvlnL)oyVI3QwPTc1&kHrLLzkHT9-klA+* zAMC@lSGrjV?-pDynta09Z$>Y=D4pMtXL|6x&HHFe>#G9u!dKbdbk8aS(QgI8t~nnk z1bxd=)+9~gFz2f8zq4Z+;1qFl#(yUpK5czr&&FDP(mF`e+mV^{qYM=-+!cHIT)PIs z67%~g?E%&E?Wkg(o!Dr0zz+m;n|q6=3E_q{K|InbYw?D`O2x#~#_f6m)bbsGq${17& zV>|LvT~Q?V9gx>1J&l=PUlHcFF8%OlS?7pPgAv}%s?$D9ar#=AQkjPELPweJi{8b~ zJ?+W7j6z^RSkap8HXJqH*Tij13U`S|Bl91RjPAQ6^##r(?;3L-ca~mUzH8U^F1wNs zGYemx_DuEca1`om9#bjXnt!0AHt^HiXR_6YY-KwKcsP2qx=r(pCsXz1#z<$BiavG&zg*k^55ZUdc}UEYN=He_>Q%I@>waYYWqF}&86+;=cC%tGJz-Y z`2w@u41H94^T(u(dBN8W5zD*iFXx@BxR zPnHt@=tMtq1J-N#W|SeYVXz|a-6zn}eUVvLNb-)PLN-(8bbkRJDL%d5A-|c2>$)S? zJRFim-s&uXh=t#rVPN7Rz|zH=|0NxPv@fnw8AaPf1m7(}Ij_Ub$Ku;$Te$ntkn&x= zw+$!pMt1CDKPHG;W_N;(X3 zsZkDMLE4|y@6-vnSpAmsN_`P~*V3SZl9R$@-qkMZA=R*`=Az_PWt zRU!B}PBlyw!@u&0mea7nlb%(x9WQROa{_Am_8)E9cD+W;~JWyZ%(5Tun&W$AHyU zhdK}pk$Hw<_5*2-fF~nf^P4&{g8+1bh{uZF2tpW z$yM_U{!L}Ym$n;%hUwm1<&l8Ota&ls$AHb7xPK*H|G><-ttqr`5`YTwSk5y1`HvV={{`j`7*QMaX7BMnD3g?ra4R=CQM~G_Lo&5*5qeZz0ywScUR{5sM z8A9H8Qmb(0&Qub9_-ljc1F>YWL3>+4t!RI7xfoc@j`rmVBVaxMo4yHe3_ecnUvGta z_Nbs-ty@1fxw=|+dwoJ39)H0(o4-9$ zODj%?nIub|;vWAr!gl(dldVRjw{@x-bv1iKz4iV4C5~Q}!_D2-tg7pufwNf*3V)ZB z&XV)Z27Wqc1-+G0l}(TaBp?LVFZ|aeW{1F@1VQ|Gnwr-qfB~=nj1WXV`t0voWIlOv$*2 z_;u?V>{5MV9?==o@YuDqO3u;?&V(GgEXXaHfjQO{)(aNuYXb>D<3y0xU4IkO(luQq zbJ7~cp1q`Q?_F1#8){2lswbsFL=cJaPV*sB`K}H>1x?pnRXQQ9+}*iTAPmp?#5QpP zCYc%$YBY9dl?1m1_$E7EkdN!IDW;{7*Twf1MTE#)Y`Bx&9lsE&yK_VqK9aoEpI$Rh zYb=|h&)oQ$W8u~y7uhhX7JtVeW?7&dNqMoz2G6Yhh8nN-6OF!*nG*}Ab|J2?2&gXX zi|rFovuWigy8@-ywT32k+l7qBaoMgh6H*#OlQC34TH-b4s zXQrKxOGt`vl}dTLX)No{wnNugE~?;ND!n-z18FQ{_E6+;^<$5HDu3GW@5B@au3wjR z6C&tWjP#$0oxhmfd0HYurxxra$k$Z`&NiE>yrtr+79=UfI&T=CsH{y;lB=!l?dn z9r#1X_#j+=LM^p#KJf^ljZa#sfSr1_IAD7ln$PCfd`ChCK7W~^U-}sOb0RC{2!o<} z3u)KP?ZvL7hebkXb35A1?q!Kya@Csg&E{nRN)=8T6P5lupsUHZ+;T<#FNq9EJ9>rF$ zpT9^c6oE3^seeLX`)OR>8w~^(YML%@3hN)ymIvYR;nRa%dh@ba>N|Uq_v+S1_E`_< z$28)sf%>z70td?71K`hlmgordSe(9rfORDHVjKB)#;HWotG*ALsGL<-y)?Q?a@ZVd zWoE0PoLxxe13Xfrad7o~tDqYVdo$@;GM1H=QMeDsDsUodbqK2>-jZiE z-tWDO=S?w*G)l|ue$Lf9!Z&M42Zq?t-iu81XGyORp&{DW`&VLq3Zf!fT!$t9A^1Iz z@|$DmuQsf`?yMDhui`c_1@hD4n>)v}S){08=~&LCN$@)J9#{GSNufwqwP1VIt*n7I zvhdaqh<}RF`-F(|9LyLEgnKxBo;O&x2>x2Z3yj$JUbar{J~^ya`zEM&vsuS_P97UA zQ_CS9rzOK<{)D*-Uq6@?TP2#%cxfYty>}>sL<7Uic**!}(s zmPmJL+DF z0b<~+Sy2WWPOO80v35F6K5+n)$^I)Qt{TI%$MI^nfRg_9V}SpvEsjRAk0u;WhP7;C zN`KlMlDoBWQsznL6&+A#Tph2cSj3m#*!R0EOTTXA%2Gz6G@5|rp!hxS#KA_V@AbnJ zX)Zbq$PDFU`wFChhY6aTK|3jDVdr=>_DCm>?v<lc2ObJ z^$WEstbZVTt~!D7i0qxcR?>`YZc!jrN`HpUbd9#s!W$bUD|R`pYdvKtdxX@!dU*|nYvu_L9GP}zq<2hQ#digxOeITu8dX$d^N#)*4hIx z)e_~Y`==&OrcR=d@t<^^2C8ua>`?`HWO)gA=Ch;Jb6o^{Bs2rdQmH4BbG5G-P=9OF zh8tx#rA!4rnx>!{UA84&womYW4N$xAHrF<#e%ON9l|dmW$mDHr2btwn*<6w*hhY;c z5D*0W^6jB{jt|*H1FY~C%Wf%yF~<6Hsgk>s(|7CmP_Ngw>F{p3`DIWkI{YQ5Yk~nM zOs_8Et$OSUI0SdCCf|w8Oe7M0cz@6mmvy>cgw=V4sP{HlDd*^jpWLQ`}Xjjl8~P%UXLTv zGaajh(GYjqAg_dZeuCYkH%g>DKPgB7CZfvlVrIDf0*}`Gl=a|^U*FZ|kALOxQofJO z0NLDcMFd1KLiIFTm3IT?p8ExQl+ojY{pb1UJ)msm)*cdCiy{G%gg5-G(EczBUnk2<5A%Q$*~^sM}BM-A8N z)p71)jHc0cuh(`WxGW7hVX-Gx2^aoI?r&6qd0 zyN_R*EOcoyI@Pyak{qAzolUTCQh)%j!ry7%I&PTkJYAxW+f~+nxPy{A#|98XHPKIt zh3W1yXeBRYHw=dk$GZ4W$SNUv&{gzB~~<^9(Sf2`K4wj3KgJB^f23p7NiT_;7mQ^*R%yEgCn#na>4@!aZcr(EI#cvy#T9 zRG353U)YVZ=jH3TdvKz&>bx}Jn1#a@kf^exBNbAdDqoLZA+%|hK{lobkNhZRTTzvi z<|b14E#s#SZ6tUn{|L=9(jb2lrLQzHj6ydAlZ+#O#AWUaFXfv&YS#DxG|}@KDoEGh zpxi>PpD`w|GV_&fixHA_ias>lVR$oKe^a@+A%~-=jChDs*uA`8s@yf8d~c2pv4!fi zAdX|)GrpN6t@86jw1;o_IqHllh@gDF#%OBp?0^M0TQcq+hR_MDuIYbbE`I0tYD%8- z2aa0@yfU7s4dGIs0WC@ricdS!3GcjA%NdddczUe0GPtkTPD-0Mm3{zNC%zh!z8x zI}%0dC$18N({usnPbz;5!Y>dqq!AoiA8O5|Y%kxXy&$Ncu2>vn`OpR;CeC>Sv$co{ zz0oCFFx8-qlKTlasGdMTJvcA-ih(b40?~T}4^y@aHU5@daEowp+zD6pEz%>t{Ts`V z2Tt1QMgznYcaK{?bk4n!zPP-wIu0ByI3A&es|pzzyyV_i$GLwTr4F+(-1%{^gex8r z@r_3Hmw2B_U&_}WmHgxsDWVg-7*<4tk|u_%(IySGc;VY@fpq}81vCGv+f_6bo3g}PILYNp+y37x#UAaL$I#r)6h_LB{ifs0x zI+fYj()T)GKc|18b~GI2`UP%VD-Uc~mGE>HpYp%xm(&OK67 z2u*wriCOE*E@2V9`v%{Le-_tA#J@;PslJ#7t#tGS?FZF7l6YwVcvCc9Nz*?6jx>6! zd1|BJM-0Qp(lzCY9Ng?j*)}fRb?-_K)~JSsCFo5e(*)Erg@2x<>6+E=etST<(#zqw+qEaYH^NawIhN8 zs

9=sU+pKH>w{M`$hTt_?kB^s)SfC}eR@{5*xLfp#N-EpR<)!u7L$r#``)XU(G+ zyiwigKmvd7Nmmzcd@~303+H5^>)c|yj8*sD=DhJ>(3AS%&~p0x*mq@Vgx3Hi{5~<< z&QP+O!vHd|%>~^nq0a_Zq;b%F-FmF`TfFAsS2^y33wH)iiq#;Rt^YN(i?6MTPbBj0T&LXKk(KxBcKj zZSr9prDucpX^oYXv1cI?f~4<C#t8mORie$(Z&Y33}HCSJ;UHmY3Tu*GU8I%v6K;??+?B-iUnY9vR zsKe#r_N}z`M_Oi-XR^%74(_#N26J>0!dQQ(d31E%eh)IPBYa9;-4s>;+>w^e%==yl z`%#MFc(`7JM-|~_+hkl})?bv;T)h})y8VLbh?HpFdzn;wX;f#wF`Z@=m0A=cOpeg3 znO|Jff)vX9VNMJCfF~@Du*8_|G{0KE8W^nq!x_SPs8byRJu6Az6mI}BwO0uU&YAp zoX4rh7NhhMuth`>^?0lA8GN#(>F4vRw|9?z`E|`6t9-~PLzeS@yDY2#7Mk4tC7y}z zUi(YQ5x5Z`;<}~N_>S*xZ|YF;atCqEIS6r3tux*;dOSce*M;NgroTZI1>bC2JD#_1rTkLku9_2wVzfwjiwarbZmmwp}!!dLU(CG*6 z{{wBfgSiT2Ze(+Ga%Ev{3T19&Z(?c+H!!y_!U2sV0Wy~`!T}W!HZ=+_Ol59obZ9al zI5#simtju=6a+apI53yb!vZOPwgpg}=@KrChT!ft$l&e}+}&LQ0}Re!g9mpH!6jI5 z4-g100fM^+2p(J$TrSz&b9VRqf7QJ;RWt9?{d9lb{XYHG0IAfqSS2i-%)zow5GX4r z8;1};N<~FM0Kmb)&BnpOg#rX>+d>_{f0A^0DnldBLw8suSX2~c4JC^|vFZYV%0CueV0TWcHW z^JD&V1Ta`I0yqT)`C0x52S_-AU2QEu5P%8@Y6EtBexe1)0ifk%VGD+O|0@N9uniRI zEX2<4>FLP^a&%*Ja3EK!CQ5t=pe= zEhj6eC&(2Hcs4lLT7V&L&k^nrORy{8`QZR91!aJmGZ^wGS@}-_3*fKW065t=|C{cw z=--KKA%6seEG(QHok0+9TZlEl%GLo4P?J?=gL*+(03e9vZz9Nl!OiJ89^?VCbpV+^ z6aJ_i1dx@`0Dztw{Hr}T3s+lbs2iJ`t;6pY*?*^bp0W(YQp(BE5e$L4q5Q5-+SV0p z@jP~K_CIgd9^&K)@%;-}*+ML>em7z1?#!+Ov2}3=D@gxEc{ZW^ZL}6rY{yV*Ywzo6*4=3ku^K%D&zRph00ITOFz<#z?;O8F{UpJ5k7yxy32mAT{ z)A4VF!pRA+w6%Z&%)!>S5R|{OKbyf;f8yuMceV8b7;!vnj}yT0`}5zE$+NsHogfb0 zf7AcCUv_B?4P9w9=07|BuTN6a$qV4i%Ebd<<>KW4aB^~gasc?B4}SknqYkqDs|=36 zV-+A)PJn0rALTyJ=|3fV{G|YfzqW%B@b6@*PS3Ih0~r2RxiJSXhsE<3=l`?T{|Nd2 zllbo}|2LKYZ$Yx|4i0~~8UFD9f7~EPTLnAi2mW(wRlt_E z?vDTKRe*wjo;N`PV*RXUR!$x^4xT^lwr;YvUSLagTd0N2pPKp8uJe1>9Bd(AbtgC5 z-!GTvC=QPQ@jWk?h5hpj#O+y_f4V?!&)Ww5;~IZs@bfmn z2Yilo{RiX&utWcbT+gvyf53l@!ouCv^?6o*DEN6!|G|H}kicLsum#HEoRh_?P`kR& zw(DAd2~tni?J;4*lk{tSF4nQa*Ds-cGE=7O@3h`$FDaGFF7|TDzP9UBm2|nzS)IS| z-KwW-@aDN>rIg*ZrZj&$_jCz6ljM6vMm>l5875yZRgyxe#I+AbojeAs3t7z4x=#y; z`G&sk%R-VT9bTy{zhYRMYDZUXX|^%}nV{}};f5x(*?d5IoA)OXeeQ;1Lda&Uaa5XW zCbg1q#|_Fm&l;??uR{aN*uCW4F+qwR!P}>_;ZSUuR|90yJV-UV%LN$sxg{P4nK-`Y za=20iS}OTennWlAQU%G)Cq%~gG)Ve(*-j{r&(k}?gmi2GR{|m$cYMle=iX)%o@Avj5-?dw-4*P2 zuq8ZlyW`yBv|`ssZNu~V)Jw@;>e|GAkl}Ae{4B?zh??6Z7NV1xr=OExD2WhQD)p^V zjZXCMLz_YRRYid(Na=%j5%@Wv%?u zy5P!+1)(VxRhNiNq-zfho~=b(Mk@3P4x5r8(eMOC3j1HdfI39&Q7y`k5brg zx%q$UI#3SwIb#P!B;4zq>+2zQ zg=S3FD%Y82a=o{gEh-H_CWelGqUsdWJe~-Q5{9r;FWrIL3wGsL0gQ8;QcpZIyMi0D zjgtOp<;lC!F$(4{AAh|tMdf3O7kRZDKs~+pXR&Hn(hlGxQMm2}{YnR|g2UgkKua$}4U+Fn)6kGZrPw7{w@RFi>_u zP;R&?Ud#(?3&RtF8QBP{YI5l}4yF6bZw+p`CGD=Pt8T+;vr7ETYEFYUvukZ=2{U(S zGZVDs`&e=4g}+#v%Ifz?jOY9NuuMY(jUrq{}NY{GJ^wdso?0KZ?%@Lz-d^eR+2*o z#uJ9H(n~(xlnBT!)-?Ae#)21N(Cb|B7JhP6VM6=im4EUpI&9o-q436-Go#K-~Tkg&Lxn+QY#deV5LQ< zdrLpK65EZXW=v3e(;=xKg|HPIQ2WL+R$#qeCu_PZ@1jss{G&LVWUgN+LQyPVK}b+A z*U$&;P_@#&N77*8rZaStop-vbUnREa6lO-aG&wKs7Et4sR>VuYkcK65iK*ugrQVr; z24@pm=dHL)g?!a}r*9+Q7hS2$cC-Q1ws7?)a~m*{%2d!CA!>?l7^0ukU$7kGtENwV zeJ&aUmw1_|xz^>bJMTqvo-OL_7}GMBMYs0imsiV++>@AO#JAZLKVN$1h1=gWc0A44 zd&y7nbDPE-EJV$Idd-n<82nai9JrEyx>O;OX7|F2S6|OSI=f&Oi7N8fXJLk*8}OXX z7rwZt51(wB@*3wQ8}G!C@QEYxcDU5`2Q~2-sP>4I@R(|sYbfF$(my9dzYM+pfwX{e zc0~P(ii3%C2;~I~RIdIGrQ?avp+-Q_0Q2pecT1EgEfu^rAb0@Tfh$o~F~&yffsz+Zg1X6HUyw~R6~}qnq0itBTVD?^r4XmaI%O+wcLNRl z;S5!VAG!fT=tVgVZ$FQqwf6t$f&qk$pI)`+$KvJewo$25b&Na2adP;|c0>2+_4f;N z5?g;L!S%|hz|RXzt#3nr%?(F?GTg)DYH(B98EjrW{TW^6Zf)b5r=!@)wQ+Eo)@|}IX#p*&!{#hED_d2jIIAucUCtRK`1QT z!NjhI$3fE`=N8i|$mMNLq4C}WmIL#Ah#G0zt(a`GK^GiIZ}eE+G35P!etw;?L(UvB zzoS)JO54HxGxN(_tQ_ z^aVeA%f90FXUI>Qh_FvMD0i^XoAr^Coi(%ig@-GOTU@vJ#u6*GsEQsW$f1oz-j5y|6IE8)c7H= zb0gfNAam4DFTYP*UpJ9TPt2uUx2kB&+F`UsJoOXVvBjs}W?zbDrzHAm zoIZYKcFdKf6r7cw%^xm1t=>XLk8?mQ=p>*jTiQ0zs(%QFsKOU*1;_4eq|$JD(z5Y2 zD0pRI!;hGMQwEL*4NDI$Ooo<;wC&SBX%HM8hFiRxW70OY58(O^-LG8&*8<-J*vW?$ zQhO(Y7dcoGc_;Ns(688rFK%>3-rpuRoa4dj8o$%|favdEp&w27 zbS6O6eaRiyTiA6~^&v)3${pC_uNwGeppijim)eJa>eg!ga-*mj+bux4OQC~!>OFv_ zy(s039lLySXxgyAZB`1!68{%X^NrVZF3GCO#AZhlTga=XBxZkPdo(QX8lP>o-Z9Lv zZyp~xHaV?s3};zoCrs7Xl!~GTm6ZVE!L&L(FXWmPsaA4S;JdEkcF+njN(k3Ve!0`P zj5(Hn-@$HM!x=P?vF*7Jeo!ItAUBLHJ}j~tp;NtE9txGKzxIZK6W?1FlfFCC_5bjm z80b{vQh1!oL+CcNnlY`Bdb>R#?$PlzhSr&CrixH2SitFaDh1fUB?kI#H_bY?4(Bgq zlbn%x!#RrE#G^F)flm5|d*HVj@(rXEIAX1TXoEGZHB1}d`JAwEVCT74qDhEHB9m}3 zSVzi5yf2n+Z&Qlxjvk^{7(#NcD{4%5#{r^&A1Y(;gXg{JF@U;4d~ItI*JKhiPmw1tVt>k2OXlM!8Z%5a%O@O;)KS68 z;#6t9N7*{+@Cd1=QE}Vl9iy2vWO4W-e}SN6l1neB$J?B8wrE@{oqAey)Yo3UzK(k^ z^=9Gm(YKT|yFrHEwpm8c9yIPAHS6+!s>YWZ5&F@i0wXc20q=o96roxJ7DpWGt#Sng zJ8VnSJFmWpTpcIx*9u&^c^`B((q9;wU`cq@4|y8S?c0&ceacZ&=nv^fxByjRpfCHza=nVLOO`|#P zwR6^Zf3JJ6n@MuL7Ecy?Jt^U0f_tYF(q8=q4|B|mSUfGmK$lZzv&m}W52r!V4${?Y z$x|5|Jgl0Y%d{LRLJv3#`#tzmk2K>xr`^#kL~_cb$}eAfBHd5rXDYp(Q=N!^DmOn% zVO;A>*wsjPN*Us<`?;wT@SZ<^cxUqoYdDf=Ttcptr-#$^tz-P&6Z+9;wusrpw-5#4 z3oItxDiMZZfr4uq=4<9{Z~i?oh}Z;BS|ZS`NUmx%{S|i({`w;?{A(t=fo%DM8=YuQ zBp3)qAA34httVW)nO0-gJL__BQcxwm+Z36+N1GS2%+8m#rPqupEzZGz2vZ5u7ulz! zjI_6D^?l@odxjqQvXU*z7;9$XcjG$3Amlpo_?d6q(RehOY&st$^CXBi9XL30u^ zYv#0-udoA7fkH=H1XEc=3m+zC^x*}6VY8Yf_|lo)>~NBp^ZWVGg;&t4p}iPI>5`^nHNmZah0U9O^)XScFI|)Gyd!D+XWG7`Q~0Y7@6rJwsqsJ@HV`Zi zduunVkollU06!pZLt4Cmf zeQ7HzIrcD4c<$QaTg%gNfuxAPLT#7PDrDFP8lpdM|ElJ(gKS4?bV7UE7u00$MQQl3 z)paCbsr484vp$d9MJ}^TzP{;ZfKP}`5yybg(nL>T5}wF+udeJCCUd;pY-qLWo^xfH z+p>hASdTj&S*HGf7=*E(@o5|If0J+(#ESwiJ zRRp>)BA-_hZ0zg8-X|q!BPm{A>Z{-|r3j3?Ui3Mz0B6L1;nYor$uO2{rl56FrST#3 zc{ZNqhi#lul4i|tr((C$)ALcg4R$#0g^(+liEvl|ttY&0L#$2-6S)|yIghX&5qC7` z2=QsKA2XdJ)nXej;5`h)^W=%2X3P@kQLKvK z*n2Sfu+=VqFTIl!C!<2NH%A21-^AUSsLdgMHA}Xu+FPvW#A1$&$kf9Rp|>nn&D>o4 z!Vp{H@V$?-yjpT_Nt)=j$@+&jpO@#%-O4<*oN3_&I2su`I4&r$6y?A0?9*PwYrO%F4SwoF}~J9oMfd4gLwKqu%Jd7s(zNipOAw6S#yPIfEuTX2>#^L zGjn;$-FEHPNbVdsaob0WcKpBtNGB`CNBK)FuY!g}}Q}*39Hh0e$ zo0thl(klv1YHlKfrfh`4e~Lz=znf${5&c)vmwtWYl7TtzHI1=G-o3+e(+6idP2Qd; zEycOlfXuP2nI_ktDf*o|?(@Xa1@Wus+3z-g-xo0E;PfYRRE!g??0@-A+Ylvm0gnUw$A(9T%x-hPZxh>lV ztSsbh6mBy&bnY*V~}!CBRMCgZA6e`8b3rtm%srL$iYVzJFe8Ob#Fks%5%8Ic|re7d3P3 zVb`Z1&&2wq%Wwqm=2Q+JCKuYHSp*Y*cGmTB7EIsJvvHeO$dZ%p!WRz~LM7mJSi5_i zR6lO-8Nr}S;g7mu$FI&NuFJeUM3G7IVlv3WLAp9ArCr$W>02r8T92D9D9$^|xi}6e z4?p2d=6xC<$~G3oFP^@%sioQBoRl4jGtM!SsIo`;swHOkS$-pRL5NukO}a^c$b?zG zNV|`h5U(f33O~_UH$ljF$hztm$G}N-*#;n4VX6-5hw`PtN&1UD=DFLGDD%u90Y$I$ z!h^u_E$?@~6o>WLqhKu-@sk2$w(d*)yw#O~eWAVaS2&TGjiacmel*BFX|F8BM0WRF z^(8U03i{RE-~H%|d;>3zEp}^vE-F2?xK{luy8slTL*p>8m}$?9`+cdMsZVLT^lBSz zF&B71Q8SH09_E?kY{s=v@-k}ku;RPSt`9na*sngojrEK5uO z+^lixva-#D+v)g8%iAW!ma&Tz*y?a;bIM&3DWqmg;fF360r<9t;k?Ly>33|$F6vnR zLbCf;@1om$tQ0>T-}?q5x=-uU-WDN5F}2Pv+rAbN^oO#+2&}eTZbVgL@nPLS>rRI_V;L z0*S|0#*^8uAwd{h?1deF7Z>OigJ!2r<>NL`R63WQ$<_9xbc$_yS0j&aVn)sKNR|D1 zel<`WqoU*ePyH0#NsaC9A*}rNwB$5Ifwn?fWGrD+nup%qVSXG_v8#ijFQ=&Gx&*_NUx%*S* zb+b#Dwc?e05H(N9SiK&LtrXa(rrIE1XM%Z2jDLzU_6jR=2$o|=r;+HS_dW)D+Zn4x z1g__;OuWxHY~Uq-Nz3~}-8^dRZ6h+w5AN?M5*y};YN?xMtS3i*ZmxTE@3bPA5LQP;L#g?) zQHb2|Qofp@KKD#fUSlyrg(CR6 z0DgI(SVw-YqkJlgfw{OM^LfrrMEZ=`P;e z2yEU((aJ2Lch|8*!AG=^UM1fc*LO~D(1}yL$S8e(ulr)OP3;DO*$$m#S!38BHB|B{ zG(B4ikxZcCtM0V;rP9Xo5Ue=)8?uV=`m`9EWkLkTU8tkfE`8yJw0|rKYr&y^A0}|4 z6=(CyhCJI?$ieN0FgHzCg%NsBtMtm6Wy(7d**ETN$2^FNsO5QPG+|v!-!L>YN=3$+ zLf=_`39rMdAX~>y@O@f-d&VzPtvJfbJ8K~1jzsD0s(?c<4&K!6Kk`&$N|%+PYZocf z^}ZAYRm~=&nl-^7CBg7v%z9{b>RPq$|Ez?Yi>g-nHhE2+aJa0sU0)bV8t|dE)Y|ia zN&bPvK16rMO&99~+Vh4`kEudRzNugoX&GaG3_d9ATJ%&#b?NkE% z@P(07{7Ct3}AZ}WKhA;-_t*cKCqgj6gGXNb()wl4Na67C(QEs@n`>DDa z-7M_bSHgPHx0Nl-E{XZMTbY%gD~D>TEJBNa znwnox1J0`US12Fh4a3R%3bp6Ezd(0tBoP|lo3%-^-{tEvh1$?bSv^{HQGA&Ht`{^M z%XNI{2>Ye@1-s9yz9(Y`3~M&ci5}a5gR)qDiySRfTiK}gUe5K6P4gdk8VM zsKRth!QD0A5uaQDM<~&sy{ReWuW3JjSpKl-_EVlcbTKtPIn*aA1wMS#)_+i)U?7H<{s~K##V}7S^;eRW#0rCq$y!qXh11{k%6|! zA1P6;ZS0RSR+Q=R*XLCW3Ia%GXUaPJKI$S>*Po*@u}Zw#IAeV6jyq@Bgy~(3tPI3=`~rU@AF@lKcv3zFDofw3xIp23c01277cG z#{jdnF+YueA@q->-#q?%o4Yv}uk6P&Z4`aVy+m&vW10lu-pHBlGXJEKl z1+f6o<0jrwvh7X9c^(DXa;|J$z4tB>QB_U+FOl}<*(=`|3mM+} zgM7hvBUA%#g%3&15$g^U1VZ!A%Iqn|=@vYRyQwh(eH(%Zw)lA{37n(PKYvbNZ#M5P zH0o?Ls+|jQ{i^6s8e`~xkJgOSb%{LHw(T|8D#a6~eJ1R!XV(Q(gUy1RclQAsDB@Kz zFRvHy*Aqpy4lk(dv@`MoUrs+%dw3%L{G0J3~Z?aaTn7=0DF!Z0$ zH}$9<5v*}=?fM9FX?*$o-#ayfMz~Et0>H+BvEWv35!@h&=Cb?Q*vFoUd0+Pj?v2 z73KIoZy`ZsX(LqhC7E1n;kClcojOv=3279R(6wriGKaTGLeIdO3ZzR8X^e(_@UYI3>BuSslm@_{M(BuKMB7&==}zy75mXT++Ly_kK#Oft;V zFXe|Zj1ccQfu`xyQQx<8Jc;4;Ot{C_GcG%N3Ox;vD4KGAiNR}Z=lvLja(Q*!pE;12 z1S^RFAK@4@*<&ZW1O}U_+dIps?{}LG>jgl(??a;3f^W4bx(u{<+Dg6#U5R`n<7YfT zK(iCufsSSyne}g~>@C8Bt4tX|3SS`K?*|`kQm*nI52z2ZH~XZCnhkx|5V`#2I$iIb z*=EJCYoc-bMH1Fo!fe`|~d{?~+eQGFw|!gr&H<|{J% zk{JVLXro{k*&sQd1*b8!J6e?F1*D)DNx4?bH%{_@)K%Hmt>vo^UJOQFFWxjH6P$}Q zVHc2}K)dV5^~G?l-fxDSD5 zZij!X?<0PIwlBQE(N%e6QcYvPS?f|*?6 zBjk#q9EeQawFs!b$3lV*(N3oJuSGEX-I%Y_km-u^z}ht{ne0>z5NA<-iYQl@=}9oj z{(i~(L_#Wcd}}#WWM42uUcU^fqawm>Y~hrDWHcioCj4ee5w|4%*p#rYEwhG&AGXwV z-(NH1&lKqVEpQb}o#eipxr<~r0L%!!C+4hi1+C|xdetkv5_=+$My?c23pevZmX5=B z%BJW$2=(VK&LmPs^Gik+YLp34VOF95)rD%XVXU6w#K~1SBE&za^x|oVocgP9*WBNK zj>TnI!i#fN3R=0JluNK;^Q0vA#L#i5yEjJEcR@fV9N7y4|$6dgR ztf{gc(6Qv5>7cfZ!xd(W4+*P;&Vj0L?Ky#S@!I%O@WLDoE)~2UaK`eNlC-L{R^@FF ze&Xs^`>WRC(~O6~pd4rMveVR?AErcg`@Xaa`Ce_Ms>??wxvGBu2SoM)Eed6qBpU$` z0yi|5Fv0;8w;K%tA3^~(w>wV)PEG)&cRc%DYnbVE^toki;MNc& zI1I@R;sJ^Qt7+*BD<@YTIKobfoqr490Y%ya^dPPfgge9r@T**amX#CacVRrZ%m4#>sOukC zA8w2EutGopcYq@l41u}cIk>@WAPB(S-2i=64S=>Y1op>Rb7R*tUlJAZ#GcPpr)mGzy$ z@5HSDO0v2DtGoLCs?HURfI1^xd0e56zbfSY73QwViZB~_xRVnEhIGaKm7f9>0Ri82 z-HZ44SRG(+517xNvn>>6WBaQF8#iZOLm1S>4Wg>>m&F}~`wwOZK>`GUK%lUQC;;LD zfOvxKd4B~r@N$OyR)2zi!FT!l`8dO!0k(G~K>VP#kh>pTA6F}P2mpz2gZTOUZ^geQ zTo4Fg0|g@i)(|@=4ELYtcQC~Ek9;?I1k@8?3cMp82mt)``TJyk$1NK;%+c!~^WVee z)iP3iVx-0SyWqc7a&mA_fDbnx5WvkR2n2vYqWl2iyMy1qqkrgFLI27E_>ZqD%oYw1 z{gdonm;RHm`(M*%`)e`S0soGr1;1k~1iMDMzg_-s?EV$y|3UEo z&PU13(ebyI?U(xh&{{b`9lie2-|^KAdB=TC_}vD;{@c_T@@HK&AvRDqr~lTfBCYOr zKo(}__;(Ybu765UPl$~U6bZKfLzO?c;jaaAgu);?a98NB2L-?l0s{X_cehnwhr36^ z^^T9fRgk--`S+EIFfiQa*LLv<3IVJT2rDn#yAj_>f&d@T-5T0JJbyD7z{>-JBkx=Q zcjfs3Y~cvpU-J~?1Mu3y-4MUf-++K9fcNg5`bXvm@P9fxy1D)h2nqmrUGIqbw+sUC zBJB~7e_ZZz^BUPl9^7lgk`v5p#xK~pedZAF+%5^QQ`xJtf>#hfWK;X!KUn;#$aX3-Pj~IJ z)6#$)(SMq(`}U{rl|`c7*xFm%*-`SIk-{C>`feH=YHkCWb>C|jU!x!g^cK_(HRe1Q zHxUAz0+Mr&kIJ6)-DL}d;nQon>(xT)cvofP+_8o+WY9K?s7 zgp;Q~CWv!KZt2t#IdT1VWBH4GOjh~gE~dPfDt`?4TstY5C`~A6&`*g6$5?#iHq+D| z&iK48T0sn^Pm#YH`s|bfa@=I|UenS$M{Iq6%ECM%#zslOi%zN<9kbG^lH^oEpM)il zeYmK$;;H&wxW(F)OFIdAtL-RUhfy(6OuueTO1)41bZ2FKtYMgYTTzODzXU0+j2$Df zCV%dDB=!O4yhvL=^+CaBeGYBu529^(BP(;CSJO{wh;z?l=*FnIZz3>%mSUZI0KDud zL{KzbpCG536;tqBRBD`og;Jj)2zu9WH@RF^w-=tbq!79!)P$4bR5%ftD3}Wmw6qFs#b>B;Q-rKyq+=fA_ zpOgKGj`zosKgP-*F7a7*2F7W)@eeH#uD&H#7{v|N_IOgN)Y*&m8!i8fklSa_C7y+=398=W#~7bP{hxmw9w}a8^2AQNqjK0XJDbt3&jtu{?Uimsfg)4l+O4#x= zEq2|)MB<3VF8j!&<9cUkh`6Eb1%CuijkyarJUcrO2#6rHA#HX*`@$bpR1ZkC%jwBlr2PiCBM&e!qC8bv;c zw{65bxJEsn)&irf3JuD|It?1pJ<1S%n#|v-*m6EmcCZ@|O(V*L-f8lkWPi%W%iIx3 z8;5w1M_d6ZuJ24&TO9zN%)nVN0HV$-k2?tF<4V;FtJf+-k)Pe zQGB}Nc2vHHvY^`PDd@~guw$>gV9pC5Z{i5;%j>xqXWD>G*)vXVK??GkIYNlYe5`@?SVuYcjL9%ad!x`sjQ zSxq9*Ree^^zsNqd>UEd$?1}yONhP?=0yZ$`j}nv-?MHb)ce@x6t&hwcP|kiXTycL~ zy^TURlCRx1yHY-977A1*a{{?Z2ZubI5{P0+GvC>me^G5SbgLA&=(U1sOo1O;Xngu@v8d+1{}7Ocef-bOISbFu`9r<1MPA>vA^=!N-B zdh!_?>X+PTwx`e9PWRIny@#>iHsz0v(k=qBc6P7qzs9(7u77eQQyOw-Rnx5ynti-x zqwbPaFtuTqxmsq%Kn9+su`|A&ON!E*OP7_r5Y%FNO##wPcc>(^FJJ#i>`Pr8@Q&T2 z4}7plHq#a@>6ef?BGma5ZP25T72-B&i>XqL?@aH>bJB^;;7Wfnt^eA2w$5D(8!Pi`nFV+%F5#6$zH*_Fajx23dMn);>c4G$f=g6knN` zJt*MmMSmQW-p}*@*6Z4l!SKd<`=Pm>S4Kt#3!+Z}_`qHxQ-6wmyTV&Yb6xUFI>`+K zYm2t_X4*~9UH@@>_&8IU9!#A0)kw^&zD@c*U~KuL?qc!-PCuwllJzhli)(txzVyTQ z5Qm=lxgB|1#jGH~OC|H?qtRYzFneF>L7RIIv462fdD%MrS#CBub!v*_MBm8YdIrXb z;$AFod&33^^fzVcV;@4sz#2vYT=)^^(68lfij z;(t6`+Z&Jt10Q6B-Don-B5(_Lkkgij>+`5B~bpOG#7BoWP~Rv2g7`UFOs5Ix9$ z;R>0d49oV|(~A%hUZSrXu7M}ICbdvlBUA4C%N1x9>d>8c9jZLG>l?yml&fbRCZkOh zxd<;zg?`CRX-U~Vxw0!-z*kO5Nfb&EzJGZDN|(@Mn2u$&g;jF%Wf?%&n|jw@$r|_g z2JuUrJ>kkpZM;yhzV@h!3K$9G3j^L7?Jv$S*P2vi;z`m_Rotldh4tn;T*_bV9f;Hf z%Sh?^(OQQo<(pz`lN^_NAG12=vFN`;;V^7qqOG4zqkV-E7i?vzH>N5%m1DE#o_}IN zH)}?_V4PigCb!ypT5Cb_PO!108)lkuw8HY;aQnLPF|_jVOQP1>YOvdI2jbA3ST)_; zNcHtfRk)e{{yu|hTou;3J3&CMD-KqY%M<4;tPvgaTS4DjbYFz_d=zRRDj2*a2P8X= zRX6gT$=eARI9mqFTRn6BQoQ5ZFMlH2v-vhVeS_fZ(Ds|#{3mDv+`AJy8Vze3_v?qM zKOUk%@eY>um5geAn0q|YA1Pv5+^@{yupHIU{$RL!jN6-{-chMM&`;y)8&Kw?_Ub*e zAmvhZ(#S!vjjTI~1m&~Us`lVIOm1V0oISA>LM}-%xhLBdH%|Fwt1osT41WkgBta!% zRY73?-eq@59R~HT6xXW9oTsV<;1p8t8r4Mfd2r4%O%I7u&`_iciE6{N7rzB?n^I*d z+tQ?rhoZ7s=5t&e@qTSnt@H6X6o9_awqp2s`!V*wj3jrph1rMuoHPH@vRq{8vyAu$ z835A9@86IYqg-8)@InbAm+CCO#V@c=qrq!u0}qgy5I zfj-YGTAaItvR1}+ZwNHd3N+KMof0$|uW|Ko!?vEh3}|S}Dj#DS&D*UEJP1F*c+}%t zEYy9PpX>UWckt7!R3*apA51Y(}X3PHSxXVw|o3Wp?{Os7^)?9)P^~N z_d+0nm3=+erLym;QNQK+5p!LYd}rSv7lTsX>j59yn}|7fY*mj3-0PeW=3VB!1O1L?z@=B-aR)?{e0DiC0TZs5H=(uH~s< zK9nm#`|v#{&Jz>htbgZl22I~KMue$}|8#Il$+xif3}@-{W9ud%(S#tmGo{yD6v}bJ zR{IaTjIf?eFDCumK~m$tN00oW8Q>0<;v+X^e9d10+}J^AGF4jP+~TW}JGs9c{eG#v z-Oliu3zsBBj4h8@ey4T$pi~puBy%uicA9Nki*%Hq>_KE>2E`N_#l ziW9#R#o_aCxC2JNi`T3KUWKhhB{?f05)k8*aWbto~IADl7J z<7Dm@M%ll*M}JqhNFP-@PhorBphO6;Q(j(0$=2zN=9AWECh={wX0G{qbDdtWtHpxs z5tE`&)E;=Ergor)d0Uud5|>=Ibt|XBO^@R5)izG)JT>@yyaM%WUTEa%bhXVMK9M)? zcH!j;f8pvgvcy7;PBt1fRGpXIOsv&~m9pOq&KsK^eSa$RWN7R@v3?=oFJS(dV5)UJ zsr`)Rg=m$ifyBGX+<}+s+vu;t`f^3dO;vqf=v+#LP=yE*=(&Me*!IiFe@p-u%iObx z>W=bq#SeY9_^&-N{N7qH^R#1F=R%D0_KC_0_#pb8y9%hmBDAl{AHjDsHb46;yzSg- z+RXC1hkw=K0pl{(Im{!i@_vby7G#}ccP3Grwqx5iJGN~*={V`IV>`KH+qP}nwr$(a z+cWPoYd*|}+N)~+fU3RfI?v-sAm^Vd!wiFC!SV2VRC9ouvD&O^Rij7m@Vr@#mD}!u z+!E0;fjGgwUnUeIZi($jZFA*9p7(guQKB4coJl|`^77|srf1Emp-%0xh;(eqqYhw9 zF|f*Q-eIv)B+5IhOe7MLR2!;>sOFr)QDTGzR5a)T9_J?O927~%2qK#uO{QcNi?2^= ztrOiFDt!- ziyV>B3++S8>WIHFsKu(c-A;X32S}Be4_MOgJYSiw!8h*$bj(>C&j>B?iu+Bg5i@&{ z<@v`SMv(9&=nxTe{piyla64+sRLS~OY@U5Xeh(aetReFgum`a6+y%<2a5-3>DxUO~ zw^9diU`wZ5rPH9x1bU|eiPUpCn5Jj|!?f)qdiu7}2N-`{A2jbaFNZi@`c>5eJT1#w zUbZzt3p8JE;Yd&Q?Cz1jk;)ae(nVcYg9^!|2gayPLt?7aY59bl(sRzb4#u?^gx7Z0 z&hLT>{?IX2ryI&d(`Mb;6`r&Q0_kIp0jA^;hm;RKc#B@kIK!Cam^Q|=6(9Qmf!P9V zZ;$jQbHxqnEus^-XK!&^t5WhB!IZ}7j!viH%+x`)_DO@2TVr7faZ1(zAWGS^4p;14 z%JMbj)??i^7rfTtX@%6-wwkqP&<@EWX2^|)xeskp^~*vMf@bKIbeX#)g>D**-|G-< zDqO2EuESz%W*4Ff3G*hPgJV(CE0b++GZm5~>X(P24d^^Gf33uK7u42J3tWajBN(ct(&*AP zz(bCQPVl0<$aLoAi%gEV7rkMaHTD6tZ5f{pJ&! z#?mH#o*YrI(m6~US{L#naMMN+ev@XjBM9}8YaaTDn=9Qekg1O;$F^-TyWoV!b^Xk9Q7_*WhXg?Z=n_gOnjB|B|^8!%>czTcv{IUeeI>u!h9Nyw{YR+y?JT^o}c0sv%6QXS6*br}rXDQ8zzHc5SPUSzgb7@=EM48D) zdJCjxE<3@6NaGB=L##~|IRB13+TbcG%EF5iwrx7 zhT#XfhCI=B%j9{!OF+K~`k3n=0{4L&SVUczzQdOPRh@O;eumhHhNhD0T(=uAGx-TIv=ig^^=KZ#xdU^Z zJ}5ESk-x9e`b;UF0DiE(DuNeP>+cc{QIG8Pt1p2rzow$nuDJUwA>4Nwk{xkntQl>J zSV`a7wX!YvU{@(mnU~VzrKS!T-5&x>bu;I-eUx4b;(w*y-}fc?>^UFqegj!0*p#Y-9-6NgsLTeqZliB&0YO{v(P zh$vdC_Nhqn)~ZXlz|gQ6FtCn$5KLqoBHh2$=KG4q0p;!cu_dUYuXL6!X=<{W-X3c@ zzSpsq5~q0?lx`wM^3BV?jIXJ^&%z*prFB(NM6z++5w<26TE8^EHzS(YMXK(91)y>zx>wVB&9(Q3q+NyM0=r*o9?(JN_?X^8#fUK^iZf%C-u&Sa8x zGD@zY06w7UoB_}|NgJ-8#_LzGE0Aj#QFZnxJOg>CFddnk6wAU z`_T?K@F#aC3|^EziY(CSZLI@E#k2C|u_3o6VJ6yJzTRp2i)Dk@n?}i*vjYi1i4CNG z0fO`r3K&}R=vpXdAqO^^%xK28p3?*#WXa9pJ&2sUeP`c(gFYJu6UnY!xi;ho4dabh zbW8FU@Udt;Y-*IPm0pR>+cvP3X;hIAX8xJW?x=#d=m=5^6IYr(@!nW(|Mlb3K+W7- zwKs$FVYN3R-1jYqI4n~pZ1#2G3n?Bs2GF(nqkLmUCjo^;dsx3$i{^n?_3YG%%%JDq zr$Gv3dFGzzwwE)&TvNz35D8XLVlLrAFr}_`d@w!~2;GG6xf&qwW_O5kd-u14s3bgGn~vDq78(f7N`{g8T_= z_f@k%MZ{&mJ*n`{Bx9;-tG;CGqr-n3RyR2wRrZZs9E|k{4rVN~DqS5}>qeHw&yYrA z-H!~!6gJ2_V`8J~nCYQKMSni+!iSc%M+e`Ce3hPC9$fS#M~B5Xw2;b8l5MaYFrRs{2e6tuDA8Sl zcgm_;7Jx20_m4m4z}C-}yHyxFHZpJPeX1xd61Z0kp=;b0(C1hMJD-9JQuLTNekjGu zMsk`eb~WTyrmGD}=Re6E>yN=$$~Om%bVVS`IW!ADF7z;B_m)FAAmWEm=2cr~G!CU1(uctiXEKN@H_(;C11d7{Rnf{U!xhY#)0z=u+Gb zw9Nyqic^e`P4@QUE-e3?HoCA!zy;V^%xvR^%bGdnWKz<9sEhhE0Tc!Mu7!&~y6F&p zK@m!Zf!Q#A&sy2>&%uL*F%(3wXdkJaec%4bXS9_82NP^J4ECH%;$!B%O zRyC1v^_FZcZw$AWp@z_00IOFa><&nRke!-PNzWCzUUYya8io|x(yj5Ra|sEH6l`Xc~ z`RziB?Gor2>qn@+Z6L^7>@^x4xODf2Y4Q&Ai!{~*nU_Nm;0Rz<|HWAr2JIPV+DUAd zObEF=QE(tRE3HK16(C4JNoWF*nXLAwY$T%21dIg7OnUr+&@|)*{53PrQKmt$PK4?g z<6r$229=m&H0W?RvkR`5_JvJa2Z?(7E@@IJ1n+!N;WgAF71i|<2d;LKcsMP_Y=y|_ z@8KOm$+~TIz>Vktog=ueyP+%jn(q4*8ju3t&wBJu*7SU8%~LvsUM_->x$NtQNe|L% z-z4aw#%xoqNl= zH85vmxM1H3z_u@x1UP~(s91RF?qVhukKppujZ(fB|&|Ao8{=pseZyY90x>?3u!gAV4QY*f3T+)NK@M%vv zHo$ID|9Fc4Tv7|HjI5^$d{mTy{-qo|~79<;t=Zujr1!q6NQW=eJr)BPrE|fo9P~*oKQMU(TAqI(nN|rs|HFYvq1p$5 z`~Tz@k`|495P0JM5pTMKf?g8*6L047fugr~l7N!pf^c%S{Cgt6`_E(@g@c*>e<$nz z1e{#V|20}i|7YOjV*hUgC!h&j5pTVj4hGB>3Z?U(b<@=~1p>#s(BAcB7lWu(WOi5H zcb9-j&|kzC%+=HQ#`}7@?MI_aLzRv17;j-2$B~V#EuEsFwWxqgau|7kcyhX*0w`8> zIo|99sJ70&{@+EUqGIW{bt&{yN2+q+tE1BwjpQeQ6;Dr;yAdG=fH{2@R&@ykLfgCo zzWfKuAOLpJ17>Fjg2cuB0fa`=g8)(I{zJIrPJ$@f1^Vj5m679Tb?Wvmv)eE@e?OoL znh7BqoSdAPywl(jT?07)YXcDjndD}`kM0%agU=G=o|ywfw7LIiz;F}ea&S-rtE($0 zC}89U&_onOG(qtJPXR1I2eHd5hwSA3I2oskEFQeLLylqvI2-dm$;FL zNUITmx@BKyys9zi4JbJ@Ff?kvZm>1~kz%+^|ArP776gDo?H`AKb_h_{!jA4AZFXt? zwCV7K7Elhp2#mtO)iu8J1s8RoRJ0Ce?z||B07#8p zTztt_`{4}`>LEm8f2O|wKxlqN>0j@FUxG6ld&d2@gLCJ{i^WGNwTN_Z`$PX-Ut_YI zBCoKRcHnhp^yeTk*6tDHmD%wgD3z;q4fyiXDiZ*tXT$FM12|Cv_5V2wxZ3&c9-2hz z`*Y)>KYb=Z=lNLx+z!A9B)HvaQ^nIygaw)XqH!W+w_%S+L45u(Yx_aJ|0%iO(fqCv z{@KAFYu(uRIV$6%AnzH z{M>iZrUh+H(CojHO!esGrr^Kdw9g~KN=)ob4EIfe0=2gSb;Ygep$+v-!QYwy)}&=( zSM>it)Yc2)ZRrUEF|fRYR^sW#0`zGG7y!QLuN#jX`=GVyKM}9Ml^8z(t*v^q6X#zO z-&+h7M})EXy)f^f4nV)FzJq#@UlAE7eV5)5U*orqceFMcMmNTekC5L}?*4qRd>5&G z2<*z#Ap8hFr%Zo`dav=SkNn$UkO%aptkeHngsTC91V9xVgtte%n?Jq`)^48wVEy&m zPov|M_H97lPdh8DD`rXx=4H*5N88-bZcnxh(kQI4U+3r0oG{~LGjZiZv3%xeg1cFK z0Ic;X?JhUgvkU%5Y{6&SkUV0{)bwG8zIr9lwu1^~ zX3`r*!VYWm?N;8upO7Qfe-vT>e%O?Q^EfxHY6lG`L92Lt{0R?d)56n;n#AeLh%0RD zBT$V~611g^33qi+wy&?8N{0RIgO2U|l8X^DQ?3&#ZP{UR-?GGUZ}u5%oWp%xT#rrh z&^VoOVor9x$AxZjjzsZoJ2N7s=IrpP1>4stK8`t(m=1H;7_w&9+||^8#qzwk-uy%q z^ELZj>{_}UtbMYPu@S766#H~9Bdm6i#Ldjfo8p=ymv*E-IbB1=Px60L=~xvh1UP4! z`Tfe3Kb6fubCMPuTF>4Cs8h=Vg|00vQ(+WLTr^hMDx^0!=7wyab52mf-sOjKwpOCG z@qA{9O{~NSZ=bvd>!=0+9r5pFV(;m3Q-?7%{*pm* zS`NAr#ct}1msUc$ub=v~42wb`*lpSaBufefevv%jG+OueJnJESJW#{Wxdj6 ztyF8|p(g4}6hqW-PkhR3(>BAmk1VZeM2dR*ZrwKB(Dpi8?gN+ZR#~QjD4|*&DY+aV51&vA{iFL8ROew8eQTRI zznR$vNm0pSuB`3Sxf92~mau5)p5CKozBzi9)DNWS0GqG4ua8`Y0WHbJ1Pb4@O|Q<5 z%rJwtVYV|qjK;Uf*x5tdDPkTR^|DHWGi2pQ{(x;~om`|tWsVGCe9b09ypAl+le+4v z{q(WiYgh^JB|+`B>%`3COrXIGe}<)Y!Vn5!ISqpSO!QsvW(@?~niJfXzwVLrX#5HW zN2{YF?Q~XO_YW zaZ?8>C{I*}ZkqfEReR{ZaKLbw?M}|$9U{2SJ8f#nvg0116u$fS#6z%Xg05e|^E9O} zoI?OWu|=P%(!w5{b~9&cw!Y%6HulBT-!c1SJ1{bJl?NXEz$aquyf=ktEsZglI8;=e znX)esio0&DXCH6Gc`i`D;fAN(`ol&HJRsw+;_hL{WCE4r zX~_c(-CklmIcEdnnS5GDt|h?K>CJPH)Ut^4u&9TS?_7_%{BViI&VQ(EOIUc8M$rJE zRK5=J8?Q@|1AX$?VyCYV1*kDEs?zQ99nFBG`Mfv`=B9f+v&aWQrPf_VNub9v7_x$ffMT&uR; zMF^hOcHafm*5SO>N99UX^yb}SDA063-c1h6f%03OeEAVh{uzzQ2v^f!2`613*wrXI zkT@dRnh52UU+XA5+9&cGY%P9mJ4$C#_dCS3AqinrNZ^8%db$YzG0LLyb0xixECG)? zbq^Ls_91C)vn9_0>l#NYTw3kmxb5wE;1;Z~m!+M&hrhdT_`C*@KNZsmOq~y4g-kk~xMYQ&iB0Yo>8<+imR=(nbYnKBS&wL+Hyn-S{dx z5IVV#gJ79jNDT4Ydo)X5-E&!b5A=0vSOW1L^NM01IyQaQH3y+!=>4D92E2}?(epgp zz-p}wwKzRU6@*>bpdW@{Dk3ZFIUges#QO^dQ}af- z=_rlUUa3JP444?Srx-5qZVr+*q~Vydr?K{_fl7Z6P2I zo|AE{%g_*7sg(Li$v}xtc=yPj3so|M5mklHCeI5RpL-)&{V_Pvj595DWY52h|#+1 zZmFq$tdBbch&5BGMSc_ik>_*jo@N|N&Hr9H@mwqtb!x1+9XE;38#GqY4*2UygNj_1 z5;an|F7YC7jF^zpmvDM5VnlW2(goX{R2vH&S?Zmn(YWl!&Rz}hWd@-4KPKW{Kn9nr zMA>AyM~ItL#x;xTK*~?eHFi0>q2g_&xFfb2SCT_?JHl3UZ@Q2>Yd2WByPoVBqsuSN z_}P*WtZY{(6@*L6$LQ~wqLALzfIo*_=y1LrX4yuL{y`jtRKh*g^imY$ue2w=!}0jK z*w)f7+U*-EAL|Ds*zph*6w|2YE2Amp=i+4t4_g--L;soAO2WKg^>kf*Z2t`dbD$I~ z?&I@0Y3UE<^b-9(3gQY9+2I`7iLE!p2a22SLE@CPM5s?SM)B7E9RIBQPEFz>YU>d; z7b?4y0`huYVx1FBJWzw9hHFlvV>i54*iR@-illz_QZxmCS)dr9*uEJ`xtK_x(MkC& z1h##Ofz1GCx+*7pNc~}CP31jH$nOIASye|ouN5R{}5~z%xoy^KG84^7Y&V{=mE6B`>+1pU#nXMeTglLkq8VWmtl#@46 znDv^=k|r@e5}xBw>Wabdz2p*N3+Q#ijIa`7oiCC*xN5x9HKcE_=P&|4_vY0AD7QRWk%lwEI^8o{+1IE{HP`CIDi!b}sQ1?TwFA=(YwpFArYw1Boa(ISvQ`=H5-} zWY<>MT8I3tDQv@ELi>*=MCvzss?&pZNg#H?1h&m5Jn^^9#MZ6oT0y~p>*_nXK%~fV zQw{!Xg?^{oeiFVT1@@EVx`b$RP5J26nMOb}vM-}0&P7d(ZtesF&6mdPzP)P`60d=j zA5`V1cW~Tr#du7C*xGY1@vaGGqPLPEeKOT>I1DGX!WePHAQz8urU_%ELS% z81zxe%1Fk;sdV;-1ADN=>|1`;r&0k2Fj@}6p7!yZ7P zV3aHWR}{4*Sn)jfVX|`_-bYN}L&CQ8*$U>*Z>b!A=uu+`8Q#sILOo_i0xcI?Fz|~# z%fKk)i2`h*?4ZGt_S=VE$n;|Z^~j`L9R9;HYY zVn$Ju{#lYKidmRsj_G1KXBRSf{DYOeJge$=iQp1wf z^k;HG5qJd29j~YnIQ{WS1;+vlldKG$UhMCpM>hBEOnhL{(zb&ywY-F8T6nh28gcKL z$M>!E7oXFrsLZ8O>EMZ(U%05uy3#7cL}#~{j#oxJlA9-LSbh$B!VSw5)0+SeP-4G+ zWaVP%WRP;cDU}w~JqJ1MG;$UHzm$JVr*w15Z0U)=3CXJQLuS;p=0Xh9W;^93r<1Wb zTM|`x1b63YTY+mnNi4%^sVQlt7DbsLS}%U5K4vhc#!=0gRx59r1-Q2!L`WL->o(@W^}g&8x!&Tf))p3V zokMiRf+;%+upHaU5=XV67fww{KF*#?wm$+>D2rqn2cO|F|B{kxq{k(kGuDn};L?>z z3u;zN1+Gz>bTR!hwx_0w8veT}q3-PD$aX0FV~>4V62#fmyqSQU7V5%4FCiuwR6;5m z&_cQTEu)zzN!E2F!1hW1H3Y*&o$jJhgW~()k~tv*zndZjB7?*gz0A5**N{~G`+4dm zQ)560lT|*3P8uHjZ@^-lJ+b}16a{_XQh>XS z%w=z=GT21bNl0KRL#_F$1ABSfu-{i(cdQ7JPJ-Q zyw!*>Qjkg;A(#0&;oOvuuQL$Egu{ZSoZ&OPDsWjFWg5cgs)Z|r&E|@okV{1d#F%YT zTk37nO>=$-IQm%&3N4flOgU0E+-rczBxibik{9roVEBYood&>Op!QFa*BMjNug0N! z2#k6Ec#kXd;h`>-)Xk)Qf4YF?l#9me4c)^Km&@Di&$tTscIeg{V3IhlCOvl z9`fDjHl8|KgvI$Q^ovo_=?bVL)uj5p|YNe@*Z@MxEnMJq$g?9AvPi;u>AOWx%J zG&H)MOVqb@IGA2#s$b?-@Tt!qr}z0<3=QNLLMeb5MGj-rpj2O$dbh!xtOo{(=hhBQ z@H{TsA~d*g1r4b>WVge@$~p4^THYsk@Bk+h9=(WGXv46Lp|PRj{fS`3e=^D*tFJ}P za)LlxP-%ac6*k&3pSq0LD4d^~9k!AVo`;}3V>x9N=uq>J?0^Yd`>*g?WZt}2AN9Z^ zKS?w3-kvAdSUEy|B#vQt^Ep=i=63ek{&ze$c(S8%a7&V}`I8a?tVZc7=;rP_76E|f zp|>kBahf9m6^R62quTRy?qF;ra9#}{2$3g1=k}5-L<*+OFaHxu7!;`kaab{(zj_iJ z3=|8eo?L=XJ7&lczpU{bLO6NgHW?UlvJ+3DzzJoy?ISm@piwyT*j#7PNS{`#N!_N7 zIs&DsU6*^cNVYI+7A$u^5o>*U@Bzr&AK?}iTA!X%O=?t6!Hubt5 zF9lr%%^k$b7J~T7yA~d!Na3Ee1Wj=Hv6N|`m@bAmzuaMaB90y|lhZq9%7)Yvl52P6 z7P1xyn90e!JxOn&gSe4p5I>ri3Eg=4;l(^iYNeiNB7TZ?4vfcQZNXW$Vgao4NgfW& z#4ZiG&7^InsIVj>VWN2#-Cq?H5vU|EAgBDMigE#$8DiwA=9}_tq8Cd{VpuxwMu=!c zjKkolC2j)4UA(Riq<^h(FJ7m#o#fDyrH4ZISo$8lxLOH=5E0ixkxl! zHD9d#ty#U)Y=-0~)tXg@>e%$}^YQ!R>HWUSUI{KFN`hA1H?~Nv zF4F=bsnh9jA#sM~k%@a<-+=a@%1D;&K1 z@|-w`#@`Ub8ZC;xPy@`;F>o4g;{hbLUFXy1lTkcMI^(ylhJ28jc@Fvwsaz&;tw!Yg7QQnz!o$!D8zA zqSWwyS=c{x4hSw2-R(U~$9ZW@jag~SmOSTOtq{`?!H1crPvwDR;5tU`1#KAH*v)~( z%DIy%-O(d~<{KdU=ZA^(IG(mSle_kgRyZ?!n*HDhrHC0@@;kb1L zE^#jB9s3jVC;$TMB_7MOzf><$jy+TxQ%QN!t7mCDryrmN(5zh!V?r%lmd0qF6lUW^`rW?5adAh?Y4oyP0YWUMV>ASw-Rds+M!SSP3RV9nZ4a5S84Uf zHH}xtV1PKK#eozQZwFphg<-MdM}kHlLRapY3mLqb2B;MLWWS7}=i%Ip9b$dU#Bg-F zl9Z&=lCrfU$zT9f`$8`$?@TZP?YvQA?7$lu(R58EaKKxM9S~&tJCsX{e#aY)<@FKs zeqKTXuhrJd@jpVTWwipOKFa&_akwbrN?vx&{!?wFMFXLBP(h3`0=9iaE-^>?a-EakoFm0bv)#-m94OOE!TPQV~A zTz-L9VCUA%-m?*(ZEh3Wa{&d*j(BnSP_Ehagd#%Imp<_Tp?^Em=TN2` zLczW94k@OsX}qDG{V#JoHfN^L@6T~2kCwEBOZ5imPkI&>8dIV#n34j_6 zwnhSa>=Cw8%n3a=x=A2YRRFa>u_-9M^bpC>@(z1XWA|k~Ls+M~Lu~uIKP%&+7Wtgz zIGLQ4v6$SUxk{vMY2{BlKPRo5g6^IwHY3{}F*aAGjh}<`%8>5iSa!DXx<|Prfpw?F z`h5MVlmjZ-vO3TSiF`5v{kO=!_y1O^HMUl;@|SL6A&(mR0f&pDk@DK?5-npf>%rdm z2i3kmAGR_?!Ke&?L-auD^Vf4u8X{9OF^0AV+swhd^)jC-4ZNDn1Zwb^-S#hMKS8D! zO%$mx#s&-S?NGhQIsbpL{`fCW^wmDl82MjtE>$LXh&)o;!ojARw}Y)|N`U$-!i#5v zG*%c_>!F}6@@dEcO>MuRv+KnDFA^4q9VvY=i4RSA;ns~*hC?w2i3d2`zSTTX{Sgv}6ald%IiShevqAx* z;o)Znw-V`K$Wb)M2(Lz)31lK89$zD?JQ!kj>^}Rr4@pQ|yLInq`VK4*={<3layc69 zD9OLHn}IfKj)Uf3_Mb#;kTA zO#=j$dP3j!JHpN`^8pkFB^a<-ioq|xsiUK2+6Pm?%iZeb4Kf&g$O-G|?ISy%D}aC} zC`>RHc`MI+`U9`}MEN`O4;4O|H4ig}6*goRP<#~bjt4r~{%VD|o8&pEqX)+S%D-K% z7W3w;fSNMZ`8Jb6V;_-grF@7f)(YR6skuHlzcJ6GE9h@+RR_3k0qtHO(6VjVad}v? z$WvI=)o>9d#&nbiJIWezAaqV*Tuo}f?OhcrvHp5OKx_EBS?y;2dPG=@%Nk%^J`YA? z>8qmsXN>RdwI;^VGzekA=j}spp|XZ%?07!u?Mh#@k6Rr2UB+r*$xT9;e0_^PDGXuj zRDiSxW`#l%Qh_O{@n(AtxZ zrDpdSpGc3y?<0)sxzru)=QDLihr6T|YJBwhNwX1i^{)V$MGcGiX$D8L$@=LPJxf5x zEb!<%sm!qahT)2XYooahZQ6D*N5TY=qxR7zY~+XA1T_(Kj=UYXhemz{gkRkD`fI-F z#_N=q2LUi_vakDRns7KXxRj=P{Wbw-OE1LIY*PdsVhQNNR!t68ra;RKHpTg&}%H;S#5#Y|?F&L71_t)gB&^E8p`U#h-nmY-OW-J_oQ=wOY5Y1p9yIGxc? zo4PAU{45b3$8z0!`~JOVRk|d(^3IW?3d=I|;y1wi8!mxoAk{?i{?;wnxwa9ukXD4y z8mmQu&BbydZH-oF_DNWK^yO`ryorM-v2n1Omk1Pfh~W(!$>C#4KaeLAiS|vX^Vpo6 zl1`Q5!iapV5o`Hy2xZGI$WC#^wq_Q)8w7;cqZm%Tr+nM%+ctfL!Vmb5{H4{c3yL){}qMI zpq(Kv;9#Vd^$`A0@(X(j)-5G45;2my-4Q8;L*Qe1o|W>>r4-tw>NFe}_iz1U*vOy# z$o+g96qF2|E?d=peb{~MR%SH|dPTINCjD&obrlq&>XM#5A zydnUvYIc9?@2(S=PbImXEZcT^a_J02#%_JrQ|=>a9)RMk)-QBx$=P{^Q$Ve=F!NtM zWE}U=eSbf3tw`AO&uM}QJqKR~n;PFuYT)di%%NMMz6ft+YJH5l-YnmajIUHQVKsC+P9q81M?rm15$>bj`Qv`Rm77I^ zBeNy7AfPCBIPSP5X6{6J5c{D9)_EZqS?ZGM@^&6%i{Wbj zL*H5-9_D^B+-5R(W~0BJfzx76+Qg0mKWrnu5oH$o9F9S7P71Sx>|h13?Eh>;<}*Z6 zL{`o|*DSI2iTC_SW(xOZTr3TddOZs z_ck!EwCs_i6sYPH|L~XyLE`!i>6bxB_60hH+|AD9S6A70Ye2FcV!+3d(J;xXgNb_T zUxAP>v&Oa@)Oe+_f|!+!ouwg;bb zcX7tx0x!;A7I_++6!uGZJ)h^}>>N$Bs+p&Mn0T+CP~U1787@ zqiS@?IVk{wB1f^|Mz8)FlKbjOc$;g*vO2M_hl0lk^Gg7MvSrnqsLEZ^`xCr@pJ&~} z?}L_lY1&pt!r5rUsv% zsMys88*hWq-6I)pn5Ev!l9qX*IH*G|D0V#$%?cREs=e5I!G+A(k-{tZ{U3kl-z-+f zQ_=LNuFe2N4E%d@0EOr01(_Epb!U{XHahWI1KWbys|^f?&$d>p7O%exO(il2oV*^K zD6XVkO-%&InO-@~FYP_Cmc|JbP&I14Mx7-3hi4xOrLN+$?_<>YkMkK;drx6vM-FTQ zX^cL`HA1I4UM%GnEO5VSwGP6b{6KMm2?C{^UfBRa+TG6I7t|sHWD;5zq_FGjgLc`E zWGiv|&e7Di#nmLWO`a(w$&pd-tW^HmK4C+#W(7bCnR%M*sm^-mG~;v%_@eQk#nfn(i_ zGm3z1?cHWWkG z{Zsa_*1+W;t$jP7H0}X1fO-X4?379>a$aYFqpq7>uAj+;1$R8UFIySr)1@&#Wk3 zNe{!AcC;|C&Dr(!T5a6Q(t)!)YvsLc6$@Z_%VWg%D_c~&sxW_U7>61L%NsTiLiJz% zrjY(eZD*JC&S>Me=I_MFy`&13KjZ>pZrkkMVt*#4Ub8Xp$7sj7-a?YPVF;t|f9tP% zA}iQrvnH_*(CrJIx}Ji1$(2#x96>t4k;kjeJ{y3>`Kaz+?LRopDg1uPidr`d=qYvbQy= zhyRc|kUPLr-Cz{|7VRcc5cqAkRZ)K4Z4!~aQd`#_>D6o@Kdo(dy@{nBp|#n}XxQVC z^2_TMRjQO1Hz6vL~P+ zwqf}DbfR@2qW9ittO!eF4NOoVYVQlSV~tox{S!9tGnqF1DY+Qe?O~lSaK>Q*QZsPc zJxIIyVgVU1YTg@91DHJ;pV2gz8HjBS>zw)@4(3kkU}S62GgDO9`p*m?OKV`nn38&w z%!$shszj_B5?csx5^CFa=MoB3)LmJ zi7b;)0}^PUQ$@x5COQrI5ZZM>~k8_20i@3(D^W)6z7R2X-J z7l{mPL~QKXWVgjU-1uu949usH|5y1;|CaXb8FuyK&__{r$N2ij1Mme469pXb(BCua zx0z&cgAC60d<|OGbo04(LMBP}r?BS(>;3&?>)ep68Q}isKEn|e-lStsknE*_Ejk-5-#?I>%Ere3 zSJuhJn$j5zDi6-c!ok9sf*1ly@Sj`e5YRg8f96i{zYdO0L~P8g|C7unV&P8YIsR$+R|UHJNk_?Ed2BO+JRTD$bbp zfVXsMVM4RJ;qk1_DiB4>*dm{i9tuCONeYWp$En|ZPXvh~th9oPJ$fe7Qh(p z66Zf2hZPp9C`fB^ZY+oEo76lgx*Nec*TNxhY;bb#i(!cm?EufJLNQoY0Yy(@!Kw+N z61`hE0FEuGEn;UJAm2=46c~%Y z*&`5Z+pW(o+>Mvb3fjieoyvyU04S?HB&&hEcV@xYmy6Dzc85dcwdIcq?l`dB56Jfu z%pbAhM=<{geD7Z>h5l@okxxF>6)|sug=@6^ z@O9XR{QbZWJm3$DBG{c7855J9_9{4jMF{m){Kk$-cv4@rq*a36G@x)61?U~C7+=Iv z^@uY|Z{ntZEPv`MiZ&f;Jf^hXpjIjSZP{(i1M8|+U~4im4(hXBNKsRYdn3Jd<>kP_ zYf0?aeWT~~Ucf~knUkp!Z^b3RRU(RA9TJ3rjN&QaJJQb2yKDs-ZI9LB@*voBnV+4zOw49UYyq65}Ez%9NqQR-vTwHgwfxNo}#LWrqHTdwemg zw>@6+a*I4Z%0`1m2UMx;z=M-o(&`#=hYoZ)t@~VlOVZh_Wt_qJy42AeeleKyvbU`& z+E7g5h2gZ-_*5%}+i>yS=Jqv*{Y)Cc`EG~tY-;c`HsDLL>WN4EH=xF~6l&3sviU3b zDZ1NTCXqKOkAPgCk!MkPCV!cHkk9)?K#Iq1kU$IhFWI!2|5o08^hW4>GQSIdh%*67 zie8%i)rf{s^SbjwOcj6b0ZsZ`ApS356@OK%hEwolW;+3oT#e9K*{LcC!pPv{ z@`&t8d?T_CY#W)Jxbr8Q`THbu;HRjTEng~*3yG7@_Badsf7Z0O^&*OQ7ZcwnnT$~x zhYgZkK6fkgje37Iw&2fJYZ_wMmQ>U=qF4pwY-8umd{*AUTYz+yAUV&ieY7cGOWrK> zr9Jh{t(v4^oDxwS=;9a>nSCuKW}RG}uc$v5YjzOh;<0M#8h-m{kf=4QP2TZvGsqOO zTuZTTAYOo~R)ZZuk1s(Nb2hD%P;?3!O}afiTdOgu*S4TAA(#Ce_I^XYnS>*nP9b7Y zQP44-gE%O?9w5Sw#QkhG8VBjan1~Bl!V%#Mi=aX&)l|+Z$?QQb^E9^?6pEo#=gv;u}+8@TPWKQY8Zu#jD1b^b)t-HgT~T}EF;TgUVXmvy+7W6-_Lu`J?GwY z?yvjY``pJ8-?gmu@o?b5#jX+sV)Ih}l=ub?et4Tz6SHTN;)ZZLo%6Fe&ze<>3!AaY zfG~aZ6RFMQP~pxsN1qY{r>ClJZkr?tk0i#1XQrO#6J@WQ_V{{&Fg)8nkjgs{#Um0& zdLjI@@_vZO_bYujM*tkmDX$c#-Q|JCo~~@M*_Nyv^Dt4D75P0`TGQ1SX2Jtk>HQ_A z+U(XDCPiT{;qbE8f|4m244&JvEMAXq@P2af`KHu)u7y7ki#F-i#eL6;eJ%)?B1Yx4 z>0MPfbKxmt?#AfV-I5;@RCoWHWIbQ!nppD1|Kwp+TYNn}?_04)>t-bRqUTbUo#j@n zo75|B=qHHrlV6xj@#XSovs4Fokx(yk;o3k|KMOB&kr0c73Us`_Y9OOli9H_a;=SE87+-L7TLVbA}&)to4}1c$eUtR8~@019Nky!9sbl zcPK}$GeW2rBRn;WxFD1lbMh$c>ImYQkwv3H%`JCtD4WXQ`?zgRn&xd^TPIv)T}gb? zD`AiTw;xrnfs>2?AYgCIXyQ+bqz4qVp*0Di{VnjKC>jU)vVR)6zIIy^H*C z2e|$ZsI+ZT+5L>>xKsEvTe0_;kD3aH2K&Nuaq-WWpXECFTPXu`(lcY)Uwug~01P?I z9bmaG(_a5rcw|R;4J9utn*>xB#7t>uRfpX{Vp(7zYdh~O#*q{ZMzG5GJ8!{#g1RM-dYbW*(=$(|n%@T_U?1SR?SOQ<#38<{MnCwv%&m~v zF*uh~at?XJv7p<^ROq7XC^^&ShAfLp-_xhaO62D#o)6CQS=>X~q=MAw6Wv955U{op z7DU-!gwGh2`Ahuj>?z%kg39GIMGQuD@9xQ>L4!jwAOyR03GfaP?o|NlAHS-Vo)EOQ zgK-2DdrIFuqcdS);HXau68_#L%htF4F*nWmOV|x@TW50~eJ!y%(|(&g48kNKuxh!I zidxzed9_Z$iPoz~PxXeGG}I64lJW+FJDhruY_G>x0XbdW=V10{kb0B#rJsnUocGX3 zu<;yuA~kd%Wwnx9?$OAi{oIY_xSHy}BKFFgS@-PSNXRVI%!iW+^^RnM`1teNHH$$M+jHNXhC`k`Da@FN3|oA=G$tKf%XEH6H-HSB|69%02zIo zHp&|>uPk>dz?}E(j!JdG{XFDxot(tzr9MLPG<-C2&oSrFjx?n_`f>RSV7A$%;f;R$ zn&8V-i=PNNxqWBsS}U)4eW{8xaJb$TUPb+QI^JQklf2_?;-xsG%hPw3{%GZ1 z*iFKQpSQUE<`i<;!NaDm0$q)|8hcl%b#}e*Dn1vtKH=Hz1&6)7fGJ|u+j6K>L?Wf1 zn0S94ITw7Rqjs2&&21%zg|ed**B{X7fi;XxWcnQSh4`kjmfd$SRIWbOaPzTH_wEPh zT-2i(Yx!Jgj&y?Y(2JRkq4mcBtfgm4)%!dT8d)m$*E5W!6jWbVw4*VFe9Zw?Ee$D1 zfV{LkS(8+k2~5{ zTefQ7V2FzYc8xU;a^^+mcMWH|@}UgK`6dSSs(!8{wGDhv@-!k4MQ;>+RWSaLlZ8V& zx1|hBch`oBOBghwbs)a183tIb)j-VIkyhW!HV8SfvMvsa)E_hbbYuE;$stU^;1oLf z{Auaw6U;8{x0#P#^ggX;ODzfJ84m;acpq2%nR{DG)AIQ_sMn-cRJ#_Poyw5vNNFFR zJoJ&WUi#}`=*x;x+ENkCvT%qCl1)vFYp<}jy^QaBF5E7#xH(wjDmY=4HQr$ z75N$UtdYMBJ^>a#AQ&%8`Z))2w8!nQ=rYgMb|;$>Urd$o?Cwk`JODNH7>7c+;<>QZBl z2rg}NXmscA(!F}E0LgyXTt*!Dp6^V1QcsEo-T%53F%|oi-~x>})_q5hxZRHM+5DvV zCk31QkvANd$!9(yO*cIz_wLOmK$`g%WO@}^FS8w%w))AYGtJ|6;PlA}6glcRB#a!D zry?nP-=)x^VJSh0Zht(-m)vNNk76u!&X{eXMM+i)omtoNZa0hT{H+y~tw~S6A8k26 zdlx0kx6H)}c+9Aeqx(hK#Ex{k?@mr^SF%a=qajWr_Y2*1l^7qYyLz4tS6^a3mKyww zBs`uYeqNrMusb#(d*O-v1Hs5-tNdM?jOgho8899f*tS8LzI`nH$6J;vLk!4T0~(-D z&X^9F^R)slRj9aSN>DbJ#PcTtFI6`=eonk(AZS4qMl#yr{{P8pp*p7}o zBhi)k{&$8$+-#)mzZFp6?g7g&Q-W&$rFL+_eH6AQo^u%Qagd5H#RXEu@bBWOHJu z_xEm;j&4>_mHajw5whbE0>(zKMwGh0*&SoM02Ymrl;9&}f1Ot~-qH_0JUmy?(MeJ; zgy$TZ;ZVe&(}R&jn{cwv_5Ak&Us?`Y%t-SewDV{4-e^a*W?3HMLfW~U67$hh2>XWj z0^>t-aJ3>}dO)D|+1zed^R0L3q5mlV-5se}%FFXw9i;mE2;)%O^_&Msf}3loLG2-aQiq?;Rp19ghGz zZO&)+bO<_PqdRp4RF&@)cQL>dI+Uni}k4}Q? zC8*VU)Z^ghVF&@QK~%`9;!t6Pg(U$=E{hxY7(&_&2Fb^vzrq#uU%JxPXliPBXdaDv z*D0pcH+++-Rr`~Dx{9$endSPe`Iq#S@OGO9-3_cnq;WZauUvdh=x9bZ1DK8ajr-RK z&EXN?9{9kA6QY#^&0)EK*1pH7cH29`0|YstG2aC_fk7G|@QKehFfarJ(Ewcn*>b8~ z5AX~GK{Wp{u7RAOriPc*O-&(&>KYn`I@i=8VDPnTU>#$1u%?N+k*T4PKIs34oMf>) zsSF!`aExPnnh) zTD$dn(Yav>pAI=W*&J`|=KrC#k H+LZG@JmU?v diff --git a/casper4/papers/discouragement.tex b/casper4/papers/discouragement.tex index e57e91c..3faa8a8 100644 --- a/casper4/papers/discouragement.tex +++ b/casper4/papers/discouragement.tex @@ -11,67 +11,75 @@ \begin{document} \maketitle \begin{abstract} -We explore ``discouragement attacks" on economic consensus mechanisms. A discouragement attack consists of an attacker acting maliciously inside a consensus mechanism in order to reduce other participants' revenue, even at some cost to themselves, in order to encourage the victims to drop out of the mechanism. The motivations to conduct discouragement attacks are twofold. First, the attacks can increase the attacker's profit, as the mechanism may contain long-run ``competitive" mechanics where some participants dropping out increases revenue to the remaining ones. Second, the attacks can be part of a two-step strategy where the second step is to carry out a traditional $51\%$ attack on the consensus algorithm against a now much smaller set of ``honest" participants warding off the attacker, and hence pay a much lower cost for the attack. +We explore ``discouragement attacks" on economic consensus mechanisms. A discouragement attack consists of an attacker acting maliciously inside a consensus mechanism in order to reduce other validators' revenue, even at some cost to themselves, in order to encourage the victims to drop out of the mechanism. The motivations to conduct discouragement attacks are twofold. First, the attacks can increase the attacker's profit, as the mechanism may contain long-run ``competitive" mechanics where some validators dropping out increases revenue to the remaining ones. Second, the attacks can be part of a two-step strategy where the second step is to carry out a traditional $51\%$ attack on the consensus algorithm against a now much smaller set of ``honest" validators warding off the attacker, and hence pay a much lower cost for the attack. \end{abstract} \section{Introduction} -We model an economic consensus mechanism as being a game where there is an infinite set of participants each with an infinitesimally small deposit (we'll call the ``size" of the set the total sum of deposits), of which some portion is controlled by the attacker. The payout function takes as input $x$, the total size of the participant set, and $h$, the extent to which the attacker deviates from an ``honest" strategy. The payout to each honest participant is $\frac{1-h}{x^p}$, where $p$ is a protocol parameter that determines how the protocol reward changes with the number of participants. For example: +We model an economic consensus mechanism as being a game where there is an infinite set of validators each with an infinitesimally small deposit, with the total deposit size $D$, of which some portion is controlled by the attacker. The payout function takes as input $TD$, the total deposit size, and $h$, the extent to which the attacker deviates from an ``honest" strategy. The payout to each honest validator is $\frac{1-h}{D^p}$, where $p$ is a protocol parameter that determines how the protocol reward changes with the number of validators. For example: \begin{itemize} -\item $p=0$: constant ``interest rate", eg. under optimal conditions each participant earns a return of $8\%$ per year. -\item $p=\frac{1}{2}$: the rewards (and penalties) to participants scale with the inverse square root of the size of the participant set, so \textit{total} rewards scale with the square root of the size of the participant set. This is a compromise between $p=0$ and $p=1$. -\item $p=1$: constant total reward, ie. the total payout of the protocol is dependent only on what percentage of participants take what actions, not on the size of the participant set. -\item $p=\infty$: the protocol is dead-set on ensuring that the total size of the participant set is some specific constant $k$ no matter what. If the size exceeds $k$, the protocol keeps decreasing rewards until the size drops to $k$, and if the size is below $k$, the protocol keeps increasing rewards until the size rises to $k$. +\item $p=0$: constant ``interest rate", eg. under optimal conditions each validator earns a return of $8\%$ per year. +\item $p=\frac{1}{2}$: the rewards (and penalties) to validators scale with the inverse square root of the total deposit size, so \textit{total} rewards scale with the square root of the total deposit size. This is a compromise between $p=0$ and $p=1$. +\item $p=1$: constant total reward, ie. the total payout of the protocol is dependent only on what percentage of validators take what actions, not on the total deposit size. +\item $p=\infty$: the protocol is dead-set on ensuring that the total deposit size is some specific constant $D_k$ no matter what. If the total deposit size exceeds $D_k$, the protocol keeps decreasing rewards until it drops to $D_k$, and if the total deposit size is below $D_k$, the protocol keeps increasing rewards until it rises to $D_k$. \end{itemize} -Note that if revenues to participants are dominated by transaction fees, then $p=1$ will hold. +Note that if revenues to validators are dominated by transaction fees, then $p=1$ will hold. -Each participant controlled by the attacker pays $\frac{1-\frac{h}{r}}{x^p}$ where $r$ is the \textit{proportional loss ratio}. The proportional loss ratio is the ratio between the loss the victims suffer and the loss the attacker suffers, where both losses are expressed in percentage terms. For example, if an attack that causes the attacker to lose $1\%$ of deposits of all participants that they control causes everyone else to lose $2\%$, then the proportional loss ratio is 2. +Each validator controlled by the attacker gets a return of $\frac{1-\frac{h}{r}}{D^p}$ where $r$ is the \textit{proportional loss ratio}. The proportional loss ratio is the ratio between the loss the victims suffer and the loss the attacker suffers, where both losses are expressed in percentage terms. For example, if an attack that causes the attacker to lose $1\%$ of deposits of all validators that they control causes everyone else to lose $2\%$, then the proportional loss ratio is 2. -The reason behing the above formulas is as follows. We assume that there is some ``base interest rate'' paid to all participants, which is proportional to some inverse power of the total size of the participant set. There is not necessary a principled in-protocol notion of the ``extent'' to which an attacker is attacking, so we define our own: the extent of an attack is $h$ if the victims' return decreases to $\frac{1-h}{x^p}$. We assume the proportional loss ratio $r$ is fixed, hence the attacking participants' return must be $\frac{1-\frac{h}{r}}{x^p}$. +The reason behind the above formulas is as follows. We assume that there is some ``base interest rate'' paid to all validators, which is proportional to some inverse power of the total deposit size. This is certainly not an exhaustive characterization of ways to assign the base interest rate based on the total deposit size, but inverse powers are attractive because they are robust to uncertainty; that is, if one designs a protocol using such a function with the expectation that the total deposit size will usually be $X$, but then in the real world the total deposit size unexpectedly turns out to be $10 * X$, the economics do not substantively change. There is not necessary a principled in-protocol notion of the ``extent'' to which an attacker is attacking, so we define our own: the extent of an attack is $h$ if the victims' return decreases to $\frac{1-h}{x^p}$. We assume the proportional loss ratio $r$ is fixed, hence the attacking validators' return must be $\frac{1-\frac{h}{r}}{x^p}$. -In contracts the \textit{griefing factor}, another way of comparing attacker and victim losses, is defined in absolute terms: for example, if in such a scenario the attacker controls $\frac{1}{3}$ of the total participant set, then the set of victims is twice as large as the attacker, and so altogether the victims lose four times more than the attacker, and so the griefing factor would be 4. The relationship between the proportional loss ratio $r$ and griefing factor is simple: $$g = r * \frac{1-\alpha}{\alpha},$$ where $\alpha$ is the portion of participants controlled by the attacker. In our above example, $\alpha = \frac{1}{3}$, so $g = 2 * \frac{\frac{2}{3}}{\frac{1}{3}} = 4$. +In contracts the \textit{griefing factor}, another way of comparing attacker and victim losses, is defined in absolute terms: for example, if in such a scenario the attacker controls $\frac{1}{3}$ of the total validator set, then the set of victims is twice as large as the attacker, and so altogether the victims lose four times more than the attacker, and so the griefing factor would be 4. The relationship between the proportional loss ratio $r$ and griefing factor is simple: $$g = r * \frac{1-\alpha}{\alpha},$$ where $\alpha$ is the portion of validators controlled by the attacker. In our above example, $\alpha = \frac{1}{3}$, so $g = 2 * \frac{\frac{2}{3}}{\frac{1}{3}} = 4$. -We now rephrase the problem into the language of supply and demand: there exist a set of players, each of which has some \textit{reserve interest rate} at which they are willing to become participants in the consensus mechanism. This is the demand curve, where the interest rate is the price. The protocol, which offers interest rates for participation in the consensus mechanism, sets the supply curve. If $p=0$, the supply curve is horizontal - the protocol offers that interest rate to an unlimited number of participants. If $p=\infty$, the supply curve is vertical. For any other $p$, the supply curve is declining with a constant elasticity of $\frac{1}{p}$. We model the attacker as having unilateral power to set $h$ (by attacking), and this pushes down the supply curve. +We now rephrase the problem into the language of supply and demand: there exist a set of players, each of which has some \textit{reserve interest rate} at which they are willing to become validators in the consensus mechanism. This is the demand curve, where the interest rate is the price. The protocol, which offers interest rates for participation in the consensus mechanism, sets the supply curve. If $p=0$, the supply curve is horizontal - the protocol offers that interest rate to an unlimited number of validators. If $p=\infty$, the supply curve is vertical. For any other $p$, the supply curve is declining with a constant elasticity of $\frac{1}{p}$. We model the attacker as having unilateral power to set $h$ (by attacking), and this pushes down the supply curve. -We model the demand curve as also being a simple exponential function, $x^d$. In general, we expect there to be wide disparities between the reserve interest rates of different players, as they have different levels of wealth, technical capability to operate a node in the consensus mechanism, and willingness to lock up their capital; additionally, we expect many players will be readily willing to lock up $50\%$ of their capital, somewhat willing to lock up $80\%$, hard pressed to lock up $95\%$, and not willing at all to lock up $100\%$. Hence, $d > 1$ seems likely, though we will consider the problem abstractly and give results for various values of $d$. +We model the demand curve as also being a simple exponential function, $x^d$. In general, we expect there to be wide disparities between the reserve interest rates of different players, as they have different levels of wealth, technical capability to operate a node in the consensus mechanism, and willingness to lock up their capital to become a validator; additionally, we expect many players will be readily willing to lock up $50\%$ of their capital, somewhat willing to lock up $80\%$, hard pressed to lock up $95\%$, and not willing at all to lock up $100\%$. Hence, $d > 1$ seems likely, though we will consider the problem abstractly and give results for various values of $d$. \section{Analysis} We want to learn two things. First, are there opportunities to perform a discouragement attack for profit? Second, what is the difficulty of performing a discouragement attack in order to set up a cheaper later attack on consensus? To examine the second case, we can compare the pre-discouragement and post-discouragement intersections of the supply and demand curves. -Pre-discouragement, the intersection is between $y = \frac{1}{x^p}$ and $y = x^d$. The unique solution is clearly $x=1$ and $y=1$. Note that we can adjust the currency unit and the time unit so that the default equilibrium of 1 unit and an interest rate of $100\%$ per period holds; hence, the omission of adjustable constants in the supply and demand curve formulas does not sacrifice generality. +Pre-discouragement, the intersection is between $y = \frac{1}{D^p}$ and $y = D^d$. The unique solution is clearly $x=1$ and $y=1$. Note that we can adjust the currency unit and the time unit so that the default equilibrium of 1 unit and an interest rate of $100\%$ per period holds; hence, the omission of adjustable constants in the supply and demand curve formulas does not sacrifice generality. \includegraphics[width=300px]{disc_chart1.png} Post-discouragement, it becomes: -$\frac{1-h}{x^p} = x^d$ +$\frac{1-h}{D^p} = D^d$ -$x=(1-h)^{\frac{1}{d+p}}$ +$D=(1-h)^{\frac{1}{d+p}}$ \includegraphics[width=300px]{disc_chart2.png} -Let us now look at the attacker's interest rate, $\frac{1-\frac{h}{r}}{x^p}$. First, let us take the easy case: $r \le 1$. In this case, $\frac{1-\frac{h}{r}}{x^p} \le \frac{1-h}{(1-h)^{\frac{p}{d+p}}} = (1-h)^{\frac{d}{d+p}} < 1$. Hence, if $r \le 1$, the attacker will always lose money. This may seem counterintuitive; one might ask, what if the discouragement attack pushes out so many other participants that the new equilibrium is on the very high part of the the supply curve close to zero? The important thing to keep in mind, however, is that if $r = 1$ (i.e. the attacker gets the same interest rate as the victims), then the attacker's revenue will necessarily be at some point along \textit{the original, unchanged, upward sloping demand curve}. Because the demand curve is upward sloping, and the number of participants decreased, the interest rate paid to the attacker must have also decreased. If $r < 1$, then the attacker loses \textit{even more} than the victims, at least if expressed as an interest rate, and so the attacker's interest rate will end up \textit{below} the lower point along the demand curve experienced by victims. Hence, if $r \le 1$, discouragement attacks are necessarily costly. +Let us now look at the attacker's interest rate, $\frac{1-\frac{h}{r}}{D^p}$. First, let us take the easy case: $r \le 1$. In this case: -In general, it is certainly feasible to design a consensus mechanism where we can ensure $r \le 1$ as long as the attacker controls less than $50\%$ of participants, so this is already a very useful result. Now, let us examine the case where $r > 1$. For very high values of $r$, it is easy to see how the attacker can theoretically make a net gain from a discouragement attack: +$\frac{1-\frac{h}{r}}{D^p} \le \frac{1-h}{(1-h)^{\frac{p}{d+p}}} = (1-h)^{\frac{d}{d+p}} < 1$. + +Hence, if $r \le 1$, the attacker will always lose money. This may seem counterintuitive; one might ask, what if the discouragement attack pushes out so many other validators that the new equilibrium is on the very high part of the the supply curve close to zero? The important thing to keep in mind, however, is that if $r = 1$ (i.e. the attacker gets the same interest rate as the victims), then the attacker's revenue will necessarily be at some point along \textit{the original, unchanged, upward sloping demand curve}. Because the demand curve is upward sloping, and the number of validators decreased, the interest rate paid to the attacker must have also decreased. If $r < 1$, then the attacker loses \textit{even more} than the victims, at least if expressed as an interest rate, and so the attacker's interest rate will end up \textit{below} the lower point along the demand curve experienced by victims. Hence, if $r \le 1$, discouragement attacks are necessarily costly. + +In general, it is certainly feasible to design a consensus mechanism where we can ensure $r \le 1$ as long as the attacker controls less than $50\%$ of validators, so this is already a very useful result. Now, let us examine the case where $r > 1$. For very high values of $r$, it is easy to see how the attacker can theoretically make a net gain from a discouragement attack: \includegraphics[width=300px]{disc_chart3.png} -However, with the right bounds we can still prevent such an attack from being profitable. Consider the case where $p=1$, and where the attacker must maintain a $50\%$ share of active participants to exert $r > 1$ griefing (note that at the $50\%$ boundary, the \textit{proportional loss ratio} $r$ and the \textit{griefing factor} are the same value). The next question is, does the attacker remove some of their own participants to keep their share at $50\%$, or do all of the participants controlled by the attacker stay? +However, with the right bounds we can still prevent such an attack from being profitable. Consider the case where $p=1$, and where the attacker must maintain a $50\%$ share of active validators to exert $r > 1$ griefing (note that at the $50\%$ boundary, the \textit{proportional loss ratio} $r$ and the \textit{griefing factor} are the same value). The next question is, does the attacker remove some of their own validators to keep their share at $50\%$, or do all of the validators controlled by the attacker stay? -In the first case, as long as $p \le 1$, no matter how high $r$ is, the attacker's revenue must still decrease, or in the worst case where $r = \infty$, the attacker's revenue will be unchanged. In the second case, we note that the size of the participant set will decline more slowly - specifically, $x = \frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{1}{d+p}}$. Suppose $r \le 2$, and $p \le 1$. Then: - -$\frac{1-\frac{h}{r}}{x^p}$ +In the first case, as long as $p \le 1$, no matter how high $r$ is, the attacker's revenue must still decrease, or in the worst case where $r = \infty$, the attacker's revenue will be unchanged. In the second case, we note that the total deposit size will decline more slowly - specifically, $D = \frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{1}{d+p}}$. Suppose $r \le 2$, and $p \le 1$. Then: +$\frac{1-\frac{h}{r}}{D^p}$ $ \le \frac{1-\frac{h}{2}}{(\frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{1}{d+p}})^p}$ + $ \le \frac{1-\frac{h}{2}}{\frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{p}{d+p}}}$ + $ = \frac{\frac{1}{2} + \frac{1}{2} * (1-h)}{\frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{p}{d+p}}}$ + $ \le \frac{\frac{1}{2} + \frac{1}{2} * (1-h)}{\frac{1}{2} + \frac{1}{2} * (1-h)}$ + $ = 1$ + Hence both strategies are unprofitable. For values $r > 2$, the proof would need to be more conditional on specific values of $p$. We can make the claim that, if the griefing factor is bounded by $GF$, i.e. $r \le GF * \frac{\alpha}{1-\alpha}$, then a discouragement attack cannot be profitable if and only if $p \le \frac{1}{GF}$. We can check this at the boundary $h = 1$ as follows. We want to show that $\frac{1 - hp * \frac{1-\alpha}{\alpha}}{(\alpha + (1-\alpha)(1-h)^{\frac{d}{d+p}})^p} \le 1$, so we show that the numerator is less than or equal to the denominator. At $h = 1$, the numerator simplifies to $1 - \frac{p}{\alpha} + p$ and the denominator to $\alpha^p$. At $\alpha=1$, the two are equal. To show that the numerator is strictly less for $\alpha<1$, we can take the derivative of both with respect to $\alpha$; the numerator becomes $\frac{p}{\alpha^2}$ and the denominator becomes $p * \alpha^{p-1}$, and since $\alpha < 1$ the derivative of the numerator is clearly greater, so for $\alpha < 1$ the original fraction will be less than one. Checking for $0 < h < 1$ is much harder, but analytically it can be verified that it holds. @@ -81,15 +89,15 @@ Hence, if the griefing factor is bounded by 2, we want $p \le \frac{1}{2}$, and \section{Discouragement Attacks for Breaking Consensus} -Here we evaluate the feasibility of attackers with a two-step plan. First, run a discouragement attack to push other participants out. Second, attack the network against a now much smaller participant set. The second attack could either be a finality reversion attack, or it could be censorship. In the given model, this is clearly doable: an attacker can grief with $h > 1$ to push all other participants out, then remove most of their own participants, then use the remainder to perform the attack. This can be overcome with an honest minority assumption, where some participants are willing to stay despite the lack of economic incentive, and it can also be overcome with outside donations to ``honest" participants. A third way that it can be overcome is if, when such an attack starts taking place, a large number of outside players temporarily join the participant set, diluting the attacker to below $50\%$ and thereby making their attack ineffective. +Here we evaluate the feasibility of attackers with a two-step plan. First, run a discouragement attack to push other validators out. Second, attack the network against a now much smaller validator set. The second attack could either be a finality reversion attack, or it could be censorship. In the given model, this is clearly doable: an attacker can grief with $h > 1$ to push all other validators out, then remove most of their own validators, then use the remainder to perform the attack. This can be overcome with an honest minority assumption, where some validators are willing to stay despite the lack of economic incentive, and it can also be overcome with outside donations to ``honest" validators. A third way that it can be overcome is if, when such an attack starts taking place, a large number of outside players temporarily join the validator set, diluting the attacker to below $50\%$ and thereby making their attack ineffective. -This kind of attack is difficult to economically model because under certain assumptions the cost is zero: if an attacker can credibly announce that they will grief with $h > 1$, then all other participants will leave, and the attacker will then be free to join with one single participant and perform a censorship attack at infinitesimal cost. This result is true in \textit{any} game where the net profit of a participant can be made to drop below zero through no fault of their own, which is itself true of any consensus algorithm where a censorship attack has nonzero cost, because of the fundamental fault inattributability of censorship versus a minority going offline. +This kind of attack is difficult to economically model because under certain assumptions the cost is zero: if an attacker can credibly announce that they will grief with $h > 1$, then all other validators will leave, and the attacker will then be free to join with one single validator and perform a censorship attack at infinitesimal cost. This result is true in \textit{any} game where the net profit of a validator can be made to drop below zero through no fault of their own, which is itself true of any consensus algorithm where a censorship attack has nonzero cost, because of the fundamental fault inattributability of censorship versus a minority going offline. -What we \textit{can} do is model the game in various ways that add realistic ``friction" to non-attacking participants' economic reasoning, and see how the parameters of the game can be optimized so as to maximize the cost of attack given these frictions. One possibility is to model it as a three-phase game, where in phase 1 the attacker griefs with some $h$, all participants get their due rewards and penalties ($y_0 * (1 - h)$ for the attacker, $y_0 * (1- r * h)$ for everyone else, where $y_0 = \frac{1}{x_0^p}$ is the default``peacetime" interest rate), then in phase 2 both the attacker and other participants make choices about how to allocate their resources and finally in phase 3 the attacker decides whether or not to attack. The attacker is modeled as having a \textit{budget} $b$; the attacker is only willing to lose $b$ in order to carry out the attack. +What we \textit{can} do is model the game in various ways that add realistic ``friction" to non-attacking validators' economic reasoning, and see how the parameters of the game can be optimized so as to maximize the cost of attack given these frictions. One possibility is to model it as a three-phase game, where in phase 1 the attacker griefs with some $h$, all validators get their due rewards and penalties ($1 - \frac{h}{r}$ for the attacker, $1 - h$ for everyone else), then in phase 2 both the attacker and other validators make choices about how to allocate their resources and finally in phase 3 the attacker decides whether or not to attack. -Let us first consider finality reversion attacks. In a finality reversion attack, if the total validator set has size $x$, the cost of an attack is $\frac{x}{3}$. An attacker's strategy is easy: grief with $h = \frac{1}{r}$ in phase 1, drive all other participants away as their revenue drops to zero, and then attack in phase 2. The attacker's cost here, assuming the attacker had $50\%$ of the validator set in phase 1, is $x_0 * \frac{1}{2} * (1 - \frac{1}{r})$. +Let us first consider finality reversion attacks. In a finality reversion attack, if the deposit size is $D$, the cost of an attack is $\frac{D}{3}$. An attacker's strategy is easy: grief with $h = 1$ in phase 1, drive all other validators away as their revenue drops to zero, and then attack in phase 2. The attacker's cost here, assuming the attacker had $50\%$ of the validator set in phase 1, is $\frac{1}{2} * (1 - \frac{1}{r})$. -Now, let us modify the game slightly: suppose that of the $\frac{x}{3}$ penalized, half goes to all other participants. Suppose the total validator set has size $x_1$ in phase 1, with base interest rate $y_1 = \frac{1}{x_1^p}$. The attacker griefs with some $h$ in phase 1, and as a result in phase 2 the validator set drops in size to $x_2$, with base interest rate $y_2 = \frac{2}{x_2^p}$. The attacker then attacks with probability $P_{attack}$. +Now, let us modify the game slightly: suppose that of the $\frac{x}{3}$ penalized, half goes to all other validators. Suppose the total deposit size is $x_1$ in phase 1, with base interest rate $y_1 = \frac{1}{x_1^p}$. The attacker griefs with some $h$ in phase 1, and as a result in phase 2 the total deposit size drops to $x_2$, with base interest rate $y_2 = \frac{2}{x_2^p}$. The attacker then attacks with probability $P_{attack}$. The attacker's cost is: @@ -109,20 +117,20 @@ This gives us $x_2$ out of $P_{attack}$ and $h$ through a quadratic equation, wh $x_2 = \frac{\frac{P_{attack}}{4} + (\frac{P_{attack}^2}{16} - 4 * (h-1))^{\frac{1}{2}}}{2}$ -Let's look at the case $P_{attack} = 1$. Then, $x_2 = \frac{\frac{1}{4} + (\frac{1}{16} - 4 * (h-1))^{\frac{1}{2}}}{2}$. The discriminant equals zero when $h = \frac{65}{64}$, and for higher values of $h$ the discriminant goes negative. Hence, for any value of $h$ substantially above 1, there is no solution, suggesting that there is no $x_2$ at which participants would find it profitable to stay. This can be seen as a negative feedback loop: the lower $x_1$ goes, the more highly negative the interest rate can go, and so $x_1$ goes further down. This suggests a rationale for designing the mechanism so that the maximum possible $h$ is lower the lower the size of the participant set, until below some critical size it is not much lower than 1. Additionally, it is also an argument for selecting lower values of $p$, though the benefit is fairly marginal. +Let's look at the case $P_{attack} = 1$. Then, $x_2 = \frac{\frac{1}{4} + (\frac{1}{16} - 4 * (h-1))^{\frac{1}{2}}}{2}$. The discriminant equals zero when $h = \frac{65}{64}$, and for higher values of $h$ the discriminant goes negative. Hence, for any value of $h$ substantially above 1, there is no solution, suggesting that there is no $x_2$ at which validators would find it profitable to stay. This can be seen as a negative feedback loop: the lower $x_1$ goes, the more highly negative the interest rate can go, and so $x_1$ goes further down. This suggests a rationale for designing the mechanism so that as the total deposit size decreases the maximum possible $h$ is also decreases, until below some critical size it is not much lower than 1. Additionally, it is also an argument for selecting lower values of $p$, though the benefit is fairly marginal. -In general, what this analysis suggests is that (i) discouragement attacks for consensus breaking are difficult to fully defeat, (ii) setting lower values of $p$ is a good idea, and (iii) perhaps the best way to is to increase friction for participants in the consensus game looking to drop out. +In general, what this analysis suggests is that (i) discouragement attacks for consensus breaking are difficult to fully defeat, (ii) setting lower values of $p$ is a good idea, and (iii) perhaps the best way to is to increase friction for validators in the consensus game looking to drop out. \section{Bribing to counter-grief} -Suppose that victims ($\le 50\%$ of the participant pool) are concerned that their revenue will decrease from $y_0$ to 0 as part of a discouragement attack. They can choose to bribe outsiders to enlist in order to prevent this from happening. Bribing outsiders individually is expensive, because the bribe must overcome the outsider's concern that they themselves will suffer from the attack. However, with an assurance contract we can create a bribe that only works if enough outsiders show up. A bribe to increase the participant set by a factor of $n$ would cost $(n - 1) * (n^d - \frac{1}{n^p})$. If $p = d = 1$, this equals $n * (n - \frac{1}{n}) = n^2 - 1$. Hence, such a bribe would be rational to organize if $n \le \sqrt{2}$. +Suppose that victims ($\le 50\%$ of the current validator set) are concerned that their revenue will decrease from $y_0$ to 0 as part of a discouragement attack. They can choose to bribe outsiders to enlist in order to prevent this from happening. Bribing outsiders individually is expensive, because the bribe must overcome the outsider's concern that they themselves will suffer from the attack. However, with an assurance contract we can create a bribe that only works if enough outsiders show up. A bribe to increase the validator set by a factor of $n$ would cost $(n - 1) * (n^d - \frac{1}{n^p})$. If $p = d = 1$, this equals $n * (n - \frac{1}{n}) = n^2 - 1$. Hence, such a bribe would be rational to organize if $n \le \sqrt{2}$. -However, suppose that participants fear not just loss of profits, also heavy losses, because they believe that an attacker will launch an attack and destroy a large portion of their deposits. Then, $n$ can be increased further, especially if the choice is between a small change between already relatively low interest rates and a large short-term harm of losing a large portion of one's deposit. To assist this mechanism, it is worth considering paying a small interest rate to those who are not participating in the consensus game, but are willing to make their deposits ``conscriptable", in the sense that they automatically join the consensus game as soon as some condition is triggered (for example, net interest rates including penalties dropping below zero). +However, suppose that validators fear not just loss of profits, also heavy losses, because they believe that an attacker will launch an attack and destroy a large portion of their deposits. Then, $n$ can be increased further, especially if the choice is between a small change between already relatively low interest rates and a large short-term harm of losing a large portion of one's deposit. To assist this mechanism, it is worth considering paying a small interest rate to those who are not participating in the consensus game, but are willing to make their deposits ``conscriptable", in the sense that they automatically join the consensus game as soon as some condition is triggered (for example, net interest rates including penalties dropping below zero). \section{Conclusion} -Discouragement attacks as a cheaper way of attacking a consensus algorithm are one of the hardest classes of attacks to come up with defenses against. This is true in proof of work as well: if a 51\% attack succeeds, then there is a coordination problem opposing ``honest" miners trying to recover the original fork, as none have the private incentive to participate in a fork unless everyone else does. Hence, our recommendations at this point can consist only of two parts. First, there exist marginal tweaks that can be made to mechanisms to reduce the effectiveness of discouragement, increasing difficulty of leaving the validator pool and keeping $p$ values low (particularly by not relying solely on transaction fees) being chief among them. Second, if a discouragement attack does start happening, expect an assurance contract bringing in more participants to be an important building block in the solution. +Discouragement attacks as a cheaper way of attacking a consensus algorithm are one of the hardest classes of attacks to come up with defenses against. This is true in proof of work as well: if a 51\% attack succeeds, then there is a coordination problem opposing ``honest" miners trying to recover the original fork, as none have the private incentive to participate in a fork unless everyone else does. Hence, our recommendations at this point can consist only of two parts. First, there exist marginal tweaks that can be made to mechanisms to reduce the effectiveness of discouragement, increasing difficulty of leaving the validator pool and keeping $p$ values low (particularly by not relying solely on transaction fees) being chief among them. Second, if a discouragement attack does start happening, expect an assurance contract bringing in more validators to be an important building block in the solution. In general, this is still an active area of research, and more research in counter-strategies is desired.