Diff estimator tests, and some adjustments to ghost tests

This commit is contained in:
Vitalik Buterin 2014-12-04 10:32:27 -05:00
parent 8cadf3d79c
commit 807533b8d1
3 changed files with 103 additions and 18 deletions

View File

@ -5,11 +5,11 @@ TRANSIT_TIME = 12
# Max uncle depth
UNCLE_DEPTH = 4
# Uncle block reward (normal block reward = 1)
UNCLE_REWARD_COEFF = 15/16.
UNCLE_REWARD_COEFF = 29/32.
# Reward for including uncles
NEPHEW_REWARD_COEFF = 1/32.
# Rounds to test
ROUNDS = 500000
ROUNDS = 1000000
import random
@ -17,8 +17,11 @@ all_miners = {}
class Miner():
def __init__(self, p):
def __init__(self, p, backward=0):
# Miner hashpower
self.hashpower = p
# Miner mines a few blocks behind the head?
self.backward = backward
self.id = random.randrange(10000000)
# Set up a few genesis blocks (since the algo is grandpa-dependent,
# we need two genesis blocks plus some genesis uncles)
@ -52,6 +55,8 @@ class Miner():
# Mine a block
def mine(self):
HEAD = self.blocks[self.head]
for i in range(self.backward):
HEAD = self.blocks[HEAD["parent"]]
H = HEAD
h = self.blocks[self.blocks[self.head]["parent"]]
# Select the uncles. The valid set of uncles for a block consists
@ -60,7 +65,7 @@ class Miner():
# uncles of those previous blocks
u = {}
notu = {}
for i in range(UNCLE_DEPTH):
for i in range(UNCLE_DEPTH - self.backward):
for c in self.children.get(h["id"], {}):
u[c] = True
notu[H["id"]] = True
@ -94,11 +99,26 @@ def cousin_degree(miner, b1, b2):
t += 1
return t
# Set hashpower percentages here
percentages = [1]*25 + [5, 5, 5, 5, 5, 10, 15, 25]
# Set hashpower percentages and strategies
# Strategy = how many blocks behind head you mine
profiles = [
# (hashpower, strategy, count)
(1, 0, 20),
(1, -1, 4), # cheaters, mine 1/2/4 blocks back to reduce
(1, -2, 3), # chance of being in a two-block fork
(1, -4, 3),
(5, 4, 1),
(10, 1, 1),
(15, 1, 1),
(25, 1, 1),
]
total_pct = 0
miners = []
for p in percentages:
miners.append(Miner(p))
for p, b, c in profiles:
for i in range(c):
miners.append(Miner(p, b))
total_pct += p
miner_dict = {}
for m in miners:
@ -110,7 +130,7 @@ for t in range(ROUNDS):
if t % 5000 == 0:
print t
for m in miners:
R = random.randrange(POW_SOLUTION_TIME * sum(percentages))
R = random.randrange(POW_SOLUTION_TIME * total_pct)
if R < m.hashpower and t < ROUNDS - TRANSIT_TIME * 3:
b = m.mine()
listen_queue.append([t + TRANSIT_TIME, b])
@ -149,19 +169,21 @@ for m in miners:
print "### PRINTING PROFITS ###"
for p in profit:
print miner_dict[p].hashpower, profit[p]
print miner_dict.get(p, Miner(0)).hashpower, profit.get(p, 0)
print "### PRINTING RESULTS ###"
groupings = {}
counts = {}
for p in profit:
h = miner_dict[p].hashpower
counts[h] = counts.get(h, 0) + 1
groupings[h] = groupings.get(h, 0) + profit[p]
m = miner_dict.get(p, None)
if m:
h = str(m.hashpower)+','+str(m.backward)
counts[h] = counts.get(h, 0) + 1
groupings[h] = groupings.get(h, 0) + profit[p]
for c in counts:
print c, groupings[c] / counts[c] / (groupings[1] / counts[1])
print c, groupings[c] / counts[c] / (groupings['1,0'] / counts['1,0'])
print " "
print "Total blocks produced: ", len(all_miners) - UNCLE_DEPTH

View File

@ -8,6 +8,9 @@ tests = [
[fit.diff_estimator, [1, 0, 0.001], [1.2, 10, 1]],
[fit.diff_estimator, [1, 0, 0.001, 0], [1.2, 10, 1, 5]],
[fit.ndiff_estimator, [1, 0, 0, 0.001], [1.2, 10, 1, 1]],
[fit.tx_diff_estimator, [1, 0, 0.001], [1.2, 10, 1]],
[fit.tx_diff_estimator, [1, 0, 0.001, 0, 0], [1.2, 10, 1, 6, 2]],
[fit.minimax_fee_estimator, [1, 3], [1.2, 60]],
]
vals = [fit.optimize(t, mi, ma, rate=0.4, rounds=12000, tries=10)

View File

@ -2,10 +2,12 @@ import spread
import math
import random
o = spread.declutter(spread.load('diff_and_price.csv'))
o = spread.declutter(spread.load('diff_txs_price.csv'))
diffs = [float(q[2]) for q in o][::-1]
prices = [float(q[1]) for q in o][::-1]
diffs = [float(q[2]) for q in o]
prices = [float(q[1]) for q in o]
txs = [float(q[3]) for q in o]
txfees = [float(q[4]) for q in o]
def simple_estimator(fac):
@ -45,6 +47,57 @@ def diff_estimator(fac, dw, mf, exp=1):
return o
def tx_diff_estimator(fac, dw, mf, lin=1, exp=1):
fac = (fac - 1) or 0.000001
o = [1]
initavg = sum([txs[i] for i in range(5)]) / 5.0
txavgs = [initavg] * 5
for i in range(5, len(txs)):
txavgs.append(txavgs[-1] * 0.8 + txs[i] * 0.2)
derivs = [0] * 14
for i in range(14, len(txavgs)):
derivs.append(txavgs[i] - txavgs[i - 14])
for i in range(0, 14):
derivs[i] = derivs[14]
vals = [max(txavgs[i] + derivs[i] * dw, txavgs[i] * mf) for i in range(len(txavgs))]
for i in range(1, len(txavgs)):
growth = (vals[i] * 1.0 / vals[i-1] - 1)
if growth > fac:
surplus = (growth / fac) - 1
o.append(o[-1] * (1 + (surplus * lin * fac) ** exp))
elif vals[i] > vals[i-1]:
o.append(o[-1])
else:
surplus = 1 - growth
o.append(o[-1] * (1 - (surplus * lin * fac) ** exp))
if i and o[-1] < o[-2] * mf:
o[-1] = o[-2] * mf
return o
def minimax_fee_estimator(fac, days):
o = [1]
initavg = sum([txs[i] for i in range(int(days))]) * 1.0 / days
txavgs = [initavg] * int(days)
for i in range(int(days), len(txs)):
txavgs.append(txavgs[-1] * 1.0 * (days-1) / days + txs[i] * 1.0 / days)
initavg2 = sum([txfees[i] for i in range(int(days))]) * 1.0 / days
txfeeavgs = [initavg2] * int(days)
for i in range(int(days), len(txs)):
txfeeavgs.append(txfeeavgs[-1] * 1.0 * (days-1) / days + txfees[i] * 1.0 / days)
# Calculate inverse fee, invfee ~= price
txavgfees = [t / f for f, t in zip(txfeeavgs, txavgs)]
for i in range(1, len(txavgfees)):
if txavgfees[i] * 1.0 / txavgfees[i-1] > fac:
o.append(o[-1] * txavgfees[i] * 1.0 / txavgfees[i-1] / fac)
elif txavgfees[i] > txavgfees[i-1]:
o.append(o[-1])
else:
o.append(o[-1] * txavgfees[i] * 1.0 / txavgfees[i-1])
return o
def ndiff_estimator(*args):
fac, dws, mf = args[0], args[1:-1], args[-1]
o = [1]
@ -86,6 +139,9 @@ def dual_threshold_estimator(fac1, fac2, dmul):
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1])
return o
infinity = 2.**1023
infinity *= 2
def evaluate_estimates(estimates, crossvalidate=False):
sz = len(prices) if crossvalidate else 780
@ -93,8 +149,12 @@ def evaluate_estimates(estimates, crossvalidate=False):
# compute average
tot = 0
for i in range(sz):
if estimates[i] == infinity or estimates[i] <= 0:
return 10**20
tot += math.log(prices[i] / estimates[i])
avg = 2.718281828459 ** (tot * 1.0 / sz)
if avg <= 0:
return 10**20
for i in range(1, sz):
sqdiffsum += math.log(prices[i] / estimates[i] / avg) ** 2
return sqdiffsum
@ -102,7 +162,7 @@ def evaluate_estimates(estimates, crossvalidate=False):
# Simulated annealing optimizer
def optimize(producer, floors, ceilings, rate=0.7, rounds=5000, tries=1):
bestvals, besty = None, 999999999999999
bestvals, besty = None, 10**21
for t in range(tries):
print 'Starting test %d of %d' % (t + 1, tries)
vals = [f*0.5+c*0.5 for f, c in zip(floors, ceilings)]