Added optimized FQ12 implementation, now 7x more efficient

This commit is contained in:
vub 2017-02-08 09:02:13 -05:00
parent 9a7b6825b0
commit 78f5968333
4 changed files with 181 additions and 1 deletions

View File

@ -1,5 +1,6 @@
from bn128_field_elements import field_modulus, FQ
from optimized_field_elements import FQ2, FQ12
# from bn128_field_elements import FQ2, FQ12
curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617

View File

@ -1,5 +1,7 @@
from bn128_curve import double, add, multiply, is_on_curve, neg, twist, b, b2, b12, curve_order, G1, G2, G12
from bn128_field_elements import field_modulus, FQ, FQ2, FQ12, FQcomplex
from bn128_field_elements import field_modulus, FQ
from optimized_field_elements import FQ2, FQ12, FQcomplex
# from bn128_field_elements import FQ2, FQ12, FQcomplex
ate_loop_count = 29793968203157093288
log_ate_loop_count = 63

View File

@ -1,5 +1,6 @@
from bn128_pairing import pairing, neg, G2, G1, multiply, FQ12, curve_order
print('Starting tests')
p1 = pairing(G2, G1)
pn1 = pairing(G2, neg(G1))
assert p1 * pn1 == FQ12.one()

View File

@ -0,0 +1,176 @@
field_modulus = 21888242871839275222246405745257275088696311157297823662689037894645226208583
FQ2_modulus_coeffs = [82, -18] # Implied + [1]
FQ12_modulus_coeffs = [82, 0, 0, 0, 0, 0, -18, 0, 0, 0, 0, 0] # Implied + [1]
# python3 compatibility
try:
foo = long
except:
long = int
# Extended euclidean algorithm to find modular inverses for
# integers
def prime_field_inv(a, n):
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high//low
nm, new = hm-lm*r, high-low*r
lm, low, hm, high = nm, new, lm, low
return lm % n
# Utility methods for polynomial math
def deg(p):
d = len(p) - 1
while p[d] == 0 and d:
d -= 1
return d
def poly_rounded_div(a, b):
dega = deg(a)
degb = deg(b)
temp = [x for x in a]
o = [0 for x in a]
for i in range(dega - degb, -1, -1):
o[i] = (o[i] + temp[degb + i] * prime_field_inv(b[degb], field_modulus))
for c in range(degb + 1):
temp[c + i] = (temp[c + i] - o[c])
return [x % field_modulus for x in o[:deg(o)+1]]
# A class for elements in polynomial extension fields
class FQP():
def __init__(self, coeffs, modulus_coeffs):
assert len(coeffs) == len(modulus_coeffs)
self.coeffs = coeffs
# The coefficients of the modulus, without the leading [1]
self.modulus_coeffs = modulus_coeffs
# The degree of the extension field
self.degree = len(self.modulus_coeffs)
def __add__(self, other):
assert isinstance(other, self.__class__)
return self.__class__([(x+y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
def __sub__(self, other):
assert isinstance(other, self.__class__)
return self.__class__([(x-y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
def __mul__(self, other):
if isinstance(other, (int, long)):
return self.__class__([c * other % field_modulus for c in self.coeffs])
else:
assert isinstance(other, self.__class__)
b = [0 for i in range(self.degree * 2 - 1)]
for i in range(self.degree):
for j in range(self.degree):
b[i + j] += self.coeffs[i] * other.coeffs[j]
while len(b) > self.degree:
exp, top = len(b) - self.degree - 1, b.pop()
for i in range(self.degree):
b[exp + i] -= top * self.modulus_coeffs[i]
return self.__class__([x % field_modulus for x in b])
def __rmul__(self, other):
return self * other
def __div__(self, other):
if isinstance(other, (int, long)):
return self.__class__([c * prime_field_inv(other, field_modulus) % field_modulus for c in self.coeffs])
else:
assert isinstance(other, self.__class__)
return self * other.inv()
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, other):
if other == 0:
return self.__class__([1] + [0] * (self.degree - 1))
elif other == 1:
return self.__class__(self.coeffs)
elif other % 2 == 0:
return (self * self) ** (other // 2)
else:
return ((self * self) ** int(other // 2)) * self
# Extended euclidean algorithm used to find the modular inverse
def inv(self):
lm, hm = [1] + [0] * self.degree, [0] * (self.degree + 1)
low, high = self.coeffs + [0], self.modulus_coeffs + [1]
while deg(low):
r = poly_rounded_div(high, low)
r += [0] * (self.degree + 1 - len(r))
nm = [x for x in hm]
new = [x for x in high]
# assert len(lm) == len(hm) == len(low) == len(high) == len(nm) == len(new) == self.degree + 1
for i in range(self.degree + 1):
for j in range(self.degree + 1 - i):
nm[i+j] -= lm[i] * r[j]
new[i+j] -= low[i] * r[j]
nm = [x % field_modulus for x in nm]
new = [x % field_modulus for x in new]
lm, low, hm, high = nm, new, lm, low
return self.__class__(lm[:self.degree]) / low[0]
def __repr__(self):
return repr(self.coeffs)
def __eq__(self, other):
assert isinstance(other, self.__class__)
for c1, c2 in zip(self.coeffs, other.coeffs):
if c1 != c2:
return False
return True
def __ne__(self, other):
return not self == other
def __neg__(self):
return self.__class__([-c for c in self.coeffs])
@classmethod
def one(cls):
return cls([1] + [0] * (cls.degree - 1))
@classmethod
def zero(cls):
return cls([0] * cls.degree)
# The quadratic extension field
class FQ2(FQP):
def __init__(self, coeffs):
self.coeffs = coeffs
self.modulus_coeffs = FQ2_modulus_coeffs
self.degree = 2
self.__class__.degree = 2
x = FQ2([1, 0])
f = FQ2([1, 2])
fpx = FQ2([2, 2])
one = FQ2.one()
# Check that the field works fine
assert x + f == fpx
assert f / f == one
assert one / f + x / f == (one + x) / f
assert one * f + x * f == (one + x) * f
assert x ** (field_modulus ** 2 - 1) == one
# The quadratic extension field
class FQcomplex(FQP):
def __init__(self, coeffs):
self.coeffs = coeffs
self.modulus_coeffs = [1, 0]
self.degree = 2
self.__class__.degree = 2
# The 12th-degree extension field
class FQ12(FQP):
def __init__(self, coeffs):
self.coeffs = coeffs
self.modulus_coeffs = FQ12_modulus_coeffs
self.degree = 12
self.__class__.degree = 12