Added optimized FQ12 implementation, now 7x more efficient
This commit is contained in:
parent
9a7b6825b0
commit
78f5968333
|
@ -1,5 +1,6 @@
|
||||||
from bn128_field_elements import field_modulus, FQ
|
from bn128_field_elements import field_modulus, FQ
|
||||||
from optimized_field_elements import FQ2, FQ12
|
from optimized_field_elements import FQ2, FQ12
|
||||||
|
# from bn128_field_elements import FQ2, FQ12
|
||||||
|
|
||||||
curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
from bn128_curve import double, add, multiply, is_on_curve, neg, twist, b, b2, b12, curve_order, G1, G2, G12
|
from bn128_curve import double, add, multiply, is_on_curve, neg, twist, b, b2, b12, curve_order, G1, G2, G12
|
||||||
from bn128_field_elements import field_modulus, FQ, FQ2, FQ12, FQcomplex
|
from bn128_field_elements import field_modulus, FQ
|
||||||
|
from optimized_field_elements import FQ2, FQ12, FQcomplex
|
||||||
|
# from bn128_field_elements import FQ2, FQ12, FQcomplex
|
||||||
|
|
||||||
ate_loop_count = 29793968203157093288
|
ate_loop_count = 29793968203157093288
|
||||||
log_ate_loop_count = 63
|
log_ate_loop_count = 63
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
from bn128_pairing import pairing, neg, G2, G1, multiply, FQ12, curve_order
|
from bn128_pairing import pairing, neg, G2, G1, multiply, FQ12, curve_order
|
||||||
|
|
||||||
|
print('Starting tests')
|
||||||
p1 = pairing(G2, G1)
|
p1 = pairing(G2, G1)
|
||||||
pn1 = pairing(G2, neg(G1))
|
pn1 = pairing(G2, neg(G1))
|
||||||
assert p1 * pn1 == FQ12.one()
|
assert p1 * pn1 == FQ12.one()
|
||||||
|
|
|
@ -0,0 +1,176 @@
|
||||||
|
field_modulus = 21888242871839275222246405745257275088696311157297823662689037894645226208583
|
||||||
|
FQ2_modulus_coeffs = [82, -18] # Implied + [1]
|
||||||
|
FQ12_modulus_coeffs = [82, 0, 0, 0, 0, 0, -18, 0, 0, 0, 0, 0] # Implied + [1]
|
||||||
|
|
||||||
|
# python3 compatibility
|
||||||
|
try:
|
||||||
|
foo = long
|
||||||
|
except:
|
||||||
|
long = int
|
||||||
|
|
||||||
|
# Extended euclidean algorithm to find modular inverses for
|
||||||
|
# integers
|
||||||
|
def prime_field_inv(a, n):
|
||||||
|
if a == 0:
|
||||||
|
return 0
|
||||||
|
lm, hm = 1, 0
|
||||||
|
low, high = a % n, n
|
||||||
|
while low > 1:
|
||||||
|
r = high//low
|
||||||
|
nm, new = hm-lm*r, high-low*r
|
||||||
|
lm, low, hm, high = nm, new, lm, low
|
||||||
|
return lm % n
|
||||||
|
|
||||||
|
# Utility methods for polynomial math
|
||||||
|
def deg(p):
|
||||||
|
d = len(p) - 1
|
||||||
|
while p[d] == 0 and d:
|
||||||
|
d -= 1
|
||||||
|
return d
|
||||||
|
|
||||||
|
def poly_rounded_div(a, b):
|
||||||
|
dega = deg(a)
|
||||||
|
degb = deg(b)
|
||||||
|
temp = [x for x in a]
|
||||||
|
o = [0 for x in a]
|
||||||
|
for i in range(dega - degb, -1, -1):
|
||||||
|
o[i] = (o[i] + temp[degb + i] * prime_field_inv(b[degb], field_modulus))
|
||||||
|
for c in range(degb + 1):
|
||||||
|
temp[c + i] = (temp[c + i] - o[c])
|
||||||
|
return [x % field_modulus for x in o[:deg(o)+1]]
|
||||||
|
|
||||||
|
# A class for elements in polynomial extension fields
|
||||||
|
class FQP():
|
||||||
|
def __init__(self, coeffs, modulus_coeffs):
|
||||||
|
assert len(coeffs) == len(modulus_coeffs)
|
||||||
|
self.coeffs = coeffs
|
||||||
|
# The coefficients of the modulus, without the leading [1]
|
||||||
|
self.modulus_coeffs = modulus_coeffs
|
||||||
|
# The degree of the extension field
|
||||||
|
self.degree = len(self.modulus_coeffs)
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
assert isinstance(other, self.__class__)
|
||||||
|
return self.__class__([(x+y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
|
||||||
|
|
||||||
|
def __sub__(self, other):
|
||||||
|
assert isinstance(other, self.__class__)
|
||||||
|
return self.__class__([(x-y) % field_modulus for x,y in zip(self.coeffs, other.coeffs)])
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if isinstance(other, (int, long)):
|
||||||
|
return self.__class__([c * other % field_modulus for c in self.coeffs])
|
||||||
|
else:
|
||||||
|
assert isinstance(other, self.__class__)
|
||||||
|
b = [0 for i in range(self.degree * 2 - 1)]
|
||||||
|
for i in range(self.degree):
|
||||||
|
for j in range(self.degree):
|
||||||
|
b[i + j] += self.coeffs[i] * other.coeffs[j]
|
||||||
|
while len(b) > self.degree:
|
||||||
|
exp, top = len(b) - self.degree - 1, b.pop()
|
||||||
|
for i in range(self.degree):
|
||||||
|
b[exp + i] -= top * self.modulus_coeffs[i]
|
||||||
|
return self.__class__([x % field_modulus for x in b])
|
||||||
|
|
||||||
|
def __rmul__(self, other):
|
||||||
|
return self * other
|
||||||
|
|
||||||
|
def __div__(self, other):
|
||||||
|
if isinstance(other, (int, long)):
|
||||||
|
return self.__class__([c * prime_field_inv(other, field_modulus) % field_modulus for c in self.coeffs])
|
||||||
|
else:
|
||||||
|
assert isinstance(other, self.__class__)
|
||||||
|
return self * other.inv()
|
||||||
|
|
||||||
|
def __truediv__(self, other):
|
||||||
|
return self.__div__(other)
|
||||||
|
|
||||||
|
def __pow__(self, other):
|
||||||
|
if other == 0:
|
||||||
|
return self.__class__([1] + [0] * (self.degree - 1))
|
||||||
|
elif other == 1:
|
||||||
|
return self.__class__(self.coeffs)
|
||||||
|
elif other % 2 == 0:
|
||||||
|
return (self * self) ** (other // 2)
|
||||||
|
else:
|
||||||
|
return ((self * self) ** int(other // 2)) * self
|
||||||
|
|
||||||
|
# Extended euclidean algorithm used to find the modular inverse
|
||||||
|
def inv(self):
|
||||||
|
lm, hm = [1] + [0] * self.degree, [0] * (self.degree + 1)
|
||||||
|
low, high = self.coeffs + [0], self.modulus_coeffs + [1]
|
||||||
|
while deg(low):
|
||||||
|
r = poly_rounded_div(high, low)
|
||||||
|
r += [0] * (self.degree + 1 - len(r))
|
||||||
|
nm = [x for x in hm]
|
||||||
|
new = [x for x in high]
|
||||||
|
# assert len(lm) == len(hm) == len(low) == len(high) == len(nm) == len(new) == self.degree + 1
|
||||||
|
for i in range(self.degree + 1):
|
||||||
|
for j in range(self.degree + 1 - i):
|
||||||
|
nm[i+j] -= lm[i] * r[j]
|
||||||
|
new[i+j] -= low[i] * r[j]
|
||||||
|
nm = [x % field_modulus for x in nm]
|
||||||
|
new = [x % field_modulus for x in new]
|
||||||
|
lm, low, hm, high = nm, new, lm, low
|
||||||
|
return self.__class__(lm[:self.degree]) / low[0]
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return repr(self.coeffs)
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
assert isinstance(other, self.__class__)
|
||||||
|
for c1, c2 in zip(self.coeffs, other.coeffs):
|
||||||
|
if c1 != c2:
|
||||||
|
return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
def __ne__(self, other):
|
||||||
|
return not self == other
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
return self.__class__([-c for c in self.coeffs])
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def one(cls):
|
||||||
|
return cls([1] + [0] * (cls.degree - 1))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def zero(cls):
|
||||||
|
return cls([0] * cls.degree)
|
||||||
|
|
||||||
|
# The quadratic extension field
|
||||||
|
class FQ2(FQP):
|
||||||
|
def __init__(self, coeffs):
|
||||||
|
self.coeffs = coeffs
|
||||||
|
self.modulus_coeffs = FQ2_modulus_coeffs
|
||||||
|
self.degree = 2
|
||||||
|
self.__class__.degree = 2
|
||||||
|
|
||||||
|
x = FQ2([1, 0])
|
||||||
|
f = FQ2([1, 2])
|
||||||
|
fpx = FQ2([2, 2])
|
||||||
|
one = FQ2.one()
|
||||||
|
|
||||||
|
# Check that the field works fine
|
||||||
|
assert x + f == fpx
|
||||||
|
assert f / f == one
|
||||||
|
assert one / f + x / f == (one + x) / f
|
||||||
|
assert one * f + x * f == (one + x) * f
|
||||||
|
assert x ** (field_modulus ** 2 - 1) == one
|
||||||
|
|
||||||
|
|
||||||
|
# The quadratic extension field
|
||||||
|
class FQcomplex(FQP):
|
||||||
|
def __init__(self, coeffs):
|
||||||
|
self.coeffs = coeffs
|
||||||
|
self.modulus_coeffs = [1, 0]
|
||||||
|
self.degree = 2
|
||||||
|
self.__class__.degree = 2
|
||||||
|
|
||||||
|
# The 12th-degree extension field
|
||||||
|
class FQ12(FQP):
|
||||||
|
def __init__(self, coeffs):
|
||||||
|
self.coeffs = coeffs
|
||||||
|
self.modulus_coeffs = FQ12_modulus_coeffs
|
||||||
|
self.degree = 12
|
||||||
|
self.__class__.degree = 12
|
Loading…
Reference in New Issue