mirror of
https://github.com/status-im/research.git
synced 2025-01-12 16:14:08 +00:00
Reorganized the code somewhat
This commit is contained in:
parent
59b8020fec
commit
770c0a2c78
@ -13,7 +13,7 @@ def eval_poly_at(poly, x, modulus):
|
||||
o, p = 0, 1
|
||||
for coeff in poly:
|
||||
o += coeff * p
|
||||
p *= x
|
||||
p = (p * x % modulus)
|
||||
return o % modulus
|
||||
|
||||
def lagrange_interp_4(pieces, xs, modulus):
|
||||
@ -35,3 +35,13 @@ def lagrange_interp_4(pieces, xs, modulus):
|
||||
inv_y2 = pieces[2] * invall * e01 * e3 % modulus
|
||||
inv_y3 = pieces[3] * invall * e01 * e2 % modulus
|
||||
return [(eq0[i] * inv_y0 + eq1[i] * inv_y1 + eq2[i] * inv_y2 + eq3[i] * inv_y3) % modulus for i in range(4)]
|
||||
|
||||
def lagrange_interp_2(pieces, xs, modulus):
|
||||
eq0 = [-xs[1] % modulus, 1]
|
||||
eq1 = [-xs[0] % modulus, 1]
|
||||
e0 = eval_poly_at(eq0, xs[0], modulus)
|
||||
e1 = eval_poly_at(eq1, xs[1], modulus)
|
||||
invall = inv(e0 * e1, modulus)
|
||||
inv_y0 = pieces[0] * invall * e1
|
||||
inv_y1 = pieces[1] * invall * e0
|
||||
return [(eq0[i] * inv_y0 + eq1[i] * inv_y1) % modulus for i in range(2)]
|
||||
|
@ -2,7 +2,7 @@ def compress_fri(prf):
|
||||
o = []
|
||||
def add_obj(x):
|
||||
if x in o:
|
||||
o.append(o.index(x).to_bytes(3, 'big'))
|
||||
o.append(o.index(x).to_bytes(2, 'big'))
|
||||
else:
|
||||
o.append(x)
|
||||
|
||||
@ -26,7 +26,7 @@ def compress_fri(prf):
|
||||
|
||||
def decompress_fri(proof):
|
||||
def get_obj(pos):
|
||||
return proof[int.from_bytes(proof[pos], 'big')] if len(proof[pos]) == 3 else proof[pos]
|
||||
return proof[int.from_bytes(proof[pos], 'big')] if len(proof[pos]) == 2 else proof[pos]
|
||||
o = []
|
||||
pos = 0
|
||||
while proof[pos] != b'////':
|
||||
@ -56,7 +56,7 @@ def compress_branches(branches):
|
||||
o = []
|
||||
def add_obj(x):
|
||||
if x in o:
|
||||
o.append(o.index(x).to_bytes(3, 'big'))
|
||||
o.append(o.index(x).to_bytes(2, 'big'))
|
||||
else:
|
||||
o.append(x)
|
||||
|
||||
@ -69,7 +69,7 @@ def compress_branches(branches):
|
||||
|
||||
def decompress_branches(proof):
|
||||
def get_obj(pos):
|
||||
return proof[int.from_bytes(proof[pos], 'big')] if len(proof[pos]) == 3 else proof[pos]
|
||||
return proof[int.from_bytes(proof[pos], 'big')] if len(proof[pos]) == 2 else proof[pos]
|
||||
o = []
|
||||
pos = 0
|
||||
while pos < len(proof):
|
||||
|
128
mimc_stark/fri.py
Normal file
128
mimc_stark/fri.py
Normal file
@ -0,0 +1,128 @@
|
||||
from better_lagrange import lagrange_interp_4, eval_poly_at
|
||||
from merkle_tree import merkelize, mk_branch, verify_branch
|
||||
from utils import get_power_cycle, get_pseudorandom_indices
|
||||
from fft import fft
|
||||
|
||||
# Generate an FRI proof
|
||||
def prove_low_degree(poly, root_of_unity, values, maxdeg_plus_1, modulus):
|
||||
print('Proving %d values are degree <= %d' % (len(values), maxdeg_plus_1))
|
||||
|
||||
# If the degree we are checking for is less than or equal to 32,
|
||||
# use the polynomial directly as a proof
|
||||
if maxdeg_plus_1 <= 32:
|
||||
print('Produced FRI proof')
|
||||
return [[x.to_bytes(32, 'big') for x in values]]
|
||||
|
||||
# Calculate the set of x coordinates
|
||||
xs = get_power_cycle(root_of_unity, modulus)
|
||||
assert len(values) == len(xs)
|
||||
|
||||
# Put the values into a Merkle tree. This is the root that the
|
||||
# proof will be checked against
|
||||
m = merkelize(values)
|
||||
|
||||
# Select a pseudo-random x coordinate
|
||||
special_x = int.from_bytes(m[1], 'big') % modulus
|
||||
|
||||
# Calculate the "column" (see https://vitalik.ca/general/2017/11/22/starks_part_2.html)
|
||||
# at that x coordinate
|
||||
# We calculate the column by Lagrange-interpolating the row, and not
|
||||
# directly, as this is more efficient
|
||||
column = []
|
||||
for i in range(len(xs)//4):
|
||||
x_poly = lagrange_interp_4(
|
||||
[values[i+len(values)*j//4] for j in range(4)],
|
||||
[xs[i+len(xs)*j//4] for j in range(4)],
|
||||
modulus
|
||||
)
|
||||
column.append(eval_poly_at(x_poly, special_x, modulus))
|
||||
m2 = merkelize(column)
|
||||
|
||||
# Pseudo-randomly select y indices to sample
|
||||
ys = get_pseudorandom_indices(m2[1], len(column), 40)
|
||||
|
||||
# Compute the Merkle branches for the values in the polynomial and the column
|
||||
branches = []
|
||||
for y in ys:
|
||||
branches.append([mk_branch(m2, y)] + [mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)])
|
||||
|
||||
# This component of the proof
|
||||
o = [m2[1], branches]
|
||||
|
||||
# In the next iteration of the proof, we'll work with smaller roots of unity
|
||||
sub_xs = [xs[i] for i in range(0, len(xs), 4)]
|
||||
|
||||
# Interpolate the polynomial for the column
|
||||
ypoly = fft(column[:len(sub_xs)], modulus,
|
||||
pow(root_of_unity, 4, modulus), inv=True)
|
||||
|
||||
# Recurse...
|
||||
return [o] + prove_low_degree(ypoly, pow(root_of_unity, 4, modulus), column, maxdeg_plus_1 // 4, modulus)
|
||||
|
||||
# Verify an FRI proof
|
||||
def verify_low_degree_proof(merkle_root, root_of_unity, proof, maxdeg_plus_1, modulus):
|
||||
|
||||
# Calculate which root of unity we're working with
|
||||
testval = root_of_unity
|
||||
roudeg = 1
|
||||
while testval != 1:
|
||||
roudeg *= 2
|
||||
testval = (testval * testval) % modulus
|
||||
|
||||
quartic_roots_of_unity = [1,
|
||||
pow(root_of_unity, roudeg // 4, modulus),
|
||||
pow(root_of_unity, roudeg // 2, modulus),
|
||||
pow(root_of_unity, roudeg * 3 // 4, modulus)]
|
||||
|
||||
# Verify the recursive components of the proof
|
||||
for prf in proof[:-1]:
|
||||
root2, branches = prf
|
||||
print('Verifying degree <= %d' % maxdeg_plus_1)
|
||||
|
||||
# Calculate the pseudo-random x coordinate
|
||||
special_x = int.from_bytes(merkle_root, 'big') % modulus
|
||||
|
||||
# Calculate the pseudo-randomly sampled y indices
|
||||
ys = get_pseudorandom_indices(root2, roudeg // 4, 40)
|
||||
|
||||
|
||||
# Verify for each selected y coordinate that the four points from the polynomial
|
||||
# and the one point from the column that are on that y coordinate are on the same
|
||||
# deg < 4 polynomial
|
||||
for i, y in enumerate(ys):
|
||||
# The x coordinates from the polynomial
|
||||
x1 = pow(root_of_unity, y, modulus)
|
||||
xcoords = [(quartic_roots_of_unity[j] * x1) % modulus for j in range(4)]
|
||||
|
||||
# The values from the polynomial
|
||||
row = [verify_branch(merkle_root, y + (roudeg // 4) * j, prf) for j, prf in zip(range(4), branches[i][1:])]
|
||||
|
||||
# Verify proof and recover the column value
|
||||
values = [verify_branch(root2, y, branches[i][0])] + row
|
||||
|
||||
# Lagrange interpolate and check deg is < 4
|
||||
p = lagrange_interp_4(row, xcoords, modulus)
|
||||
assert eval_poly_at(p, special_x, modulus) == verify_branch(root2, y, branches[i][0])
|
||||
|
||||
# Update constants to check the next proof
|
||||
merkle_root = root2
|
||||
root_of_unity = pow(root_of_unity, 4, modulus)
|
||||
maxdeg_plus_1 //= 4
|
||||
roudeg //= 4
|
||||
|
||||
# Verify the direct components of the proof
|
||||
data = [int.from_bytes(x, 'big') for x in proof[-1]]
|
||||
print('Verifying degree <= %d' % maxdeg_plus_1)
|
||||
assert maxdeg_plus_1 <= 32
|
||||
|
||||
# Check the Merkle root matches up
|
||||
mtree = merkelize(data)
|
||||
assert mtree[1] == merkle_root
|
||||
|
||||
# Check the degree of the data
|
||||
poly = fft(data, modulus, root_of_unity, inv=True)
|
||||
for i in range(maxdeg_plus_1, len(poly)):
|
||||
assert poly[i] == 0
|
||||
|
||||
print('FRI proof verified')
|
||||
return True
|
@ -30,8 +30,4 @@ def verify_branch(root, index, proof):
|
||||
assert v == root
|
||||
return int.from_bytes(proof[0], 'big')
|
||||
|
||||
t = merkelize(range(128))
|
||||
b = mk_branch(t, 59)
|
||||
assert verify_branch(t[1], 59, b) == 59
|
||||
print('Merkle tree works')
|
||||
|
||||
|
@ -1,162 +1,18 @@
|
||||
from merkle_tree import merkelize, mk_branch, verify_branch, blake
|
||||
from compression import compress_fri, decompress_fri, compress_branches, decompress_branches, bin_length
|
||||
from ecpoly import PrimeField
|
||||
from better_lagrange import lagrange_interp_4
|
||||
from better_lagrange import lagrange_interp_4, lagrange_interp_2
|
||||
import time
|
||||
from fft import fft
|
||||
from fri import prove_low_degree, verify_low_degree_proof
|
||||
from utils import get_power_cycle, get_pseudorandom_indices
|
||||
|
||||
modulus = 2**256 - 2**32 * 351 + 1
|
||||
f = PrimeField(modulus)
|
||||
nonresidue = 7
|
||||
quartic_roots_of_unity = [1,
|
||||
pow(7, (modulus-1)//4, modulus),
|
||||
pow(7, (modulus-1)//2, modulus),
|
||||
pow(7, (modulus-1)*3//4, modulus)]
|
||||
|
||||
spot_check_security_factor = 240
|
||||
|
||||
# Get the set of powers of R, until but not including when the powers
|
||||
# loop back to 1
|
||||
def get_power_cycle(r):
|
||||
o = [1, r]
|
||||
while o[-1] != 1:
|
||||
o.append((o[-1] * r) % modulus)
|
||||
return o[:-1]
|
||||
|
||||
# Extract pseudorandom indices from entropy
|
||||
def get_indices(seed, modulus, count):
|
||||
assert modulus < 2**24
|
||||
data = seed
|
||||
while len(data) < 4 * count:
|
||||
data += blake(data[-32:])
|
||||
return [int.from_bytes(data[i: i+4], 'big') % modulus for i in range(0, count * 4, 4)]
|
||||
|
||||
# Generate an FRI proof
|
||||
def prove_low_degree(poly, root_of_unity, values, maxdeg_plus_1):
|
||||
print('Proving %d values are degree <= %d' % (len(values), maxdeg_plus_1))
|
||||
|
||||
# If the degree we are checking for is less than or equal to 32,
|
||||
# use the polynomial directly as a proof
|
||||
if maxdeg_plus_1 <= 32:
|
||||
print('Produced FRI proof')
|
||||
return [[x.to_bytes(32, 'big') for x in values]]
|
||||
|
||||
# Calculate the set of x coordinates
|
||||
xs = get_power_cycle(root_of_unity)
|
||||
|
||||
# Put the values into a Merkle tree. This is the root that the
|
||||
# proof will be checked against
|
||||
m = merkelize(values)
|
||||
|
||||
# Select a pseudo-random x coordinate
|
||||
special_x = int.from_bytes(m[1], 'big') % modulus
|
||||
|
||||
# Calculate the "column" (see https://vitalik.ca/general/2017/11/22/starks_part_2.html)
|
||||
# at that x coordinate
|
||||
# We calculate the column by Lagrange-interpolating the row, and not
|
||||
# directly, as this is more efficient
|
||||
column = []
|
||||
for i in range(len(xs)//4):
|
||||
x_poly = lagrange_interp_4(
|
||||
[values[i+len(values)*j//4] for j in range(4)],
|
||||
[xs[i+len(xs)*j//4] for j in range(4)],
|
||||
modulus
|
||||
)
|
||||
column.append(f.eval_poly_at(x_poly, special_x))
|
||||
m2 = merkelize(column)
|
||||
|
||||
# Pseudo-randomly select y indices to sample
|
||||
ys = get_indices(m2[1], len(column), 40)
|
||||
|
||||
# Compute the Merkle branches for the values in the polynomial and the column
|
||||
branches = []
|
||||
for y in ys:
|
||||
branches.append([mk_branch(m2, y)] + [mk_branch(m, y + (len(xs) // 4) * j) for j in range(4)])
|
||||
|
||||
# This component of the proof
|
||||
o = [m2[1], branches]
|
||||
|
||||
# In the next iteration of the proof, we'll work with smaller roots of unity
|
||||
sub_xs = [xs[i] for i in range(0, len(xs), 4)]
|
||||
|
||||
# Interpolate the polynomial for the column
|
||||
ypoly = fft(column[:len(sub_xs)], modulus,
|
||||
pow(root_of_unity, 4, modulus), inv=True)
|
||||
|
||||
# Recurse...
|
||||
return [o] + prove_low_degree(ypoly, pow(root_of_unity, 4, modulus), column, maxdeg_plus_1 // 4)
|
||||
|
||||
# Verify an FRI proof
|
||||
def verify_low_degree_proof(merkle_root, root_of_unity, proof, maxdeg_plus_1):
|
||||
|
||||
# Calculate which root of unity we're working with
|
||||
testval = root_of_unity
|
||||
roudeg = 1
|
||||
while testval != 1:
|
||||
roudeg *= 2
|
||||
testval = (testval * testval) % modulus
|
||||
|
||||
# Verify the recursive components of the proof
|
||||
for prf in proof[:-1]:
|
||||
root2, branches = prf
|
||||
print('Verifying degree <= %d' % maxdeg_plus_1)
|
||||
|
||||
# Calculate the pseudo-random x coordinate
|
||||
special_x = int.from_bytes(merkle_root, 'big') % modulus
|
||||
|
||||
# Calculate the pseudo-randomly sampled y indices
|
||||
ys = get_indices(root2, roudeg // 4, 40)
|
||||
|
||||
|
||||
# Verify for each selected y coordinate that the four points from the polynomial
|
||||
# and the one point from the column that are on that y coordinate are on the same
|
||||
# deg < 4 polynomial
|
||||
for i, y in enumerate(ys):
|
||||
# The x coordinates from the polynomial
|
||||
x1 = pow(root_of_unity, y, modulus)
|
||||
xcoords = [(quartic_roots_of_unity[j] * x1) % modulus for j in range(4)]
|
||||
|
||||
# The values from the polynomial
|
||||
row = [verify_branch(merkle_root, y + (roudeg // 4) * j, prf) for j, prf in zip(range(4), branches[i][1:])]
|
||||
|
||||
# Verify proof and recover the column value
|
||||
values = [verify_branch(root2, y, branches[i][0])] + row
|
||||
|
||||
# Lagrange interpolate and check deg is < 4
|
||||
p = lagrange_interp_4(row, xcoords, modulus)
|
||||
assert f.eval_poly_at(p, special_x) == verify_branch(root2, y, branches[i][0])
|
||||
|
||||
# Update constants to check the next proof
|
||||
merkle_root = root2
|
||||
root_of_unity = pow(root_of_unity, 4, modulus)
|
||||
maxdeg_plus_1 //= 4
|
||||
roudeg //= 4
|
||||
|
||||
# Verify the direct components of the proof
|
||||
data = [int.from_bytes(x, 'big') for x in proof[-1]]
|
||||
print('Verifying degree <= %d' % maxdeg_plus_1)
|
||||
assert maxdeg_plus_1 <= 32
|
||||
|
||||
# Check the Merkle root matches up
|
||||
mtree = merkelize(data)
|
||||
assert mtree[1] == merkle_root
|
||||
|
||||
# Check the degree of the data
|
||||
poly = fft(data, modulus, root_of_unity, inv=True)
|
||||
for i in range(maxdeg_plus_1, len(poly)):
|
||||
assert poly[i] == 0
|
||||
|
||||
print('FRI proof verified')
|
||||
return True
|
||||
|
||||
# Pure FRI tests
|
||||
poly = list(range(512))
|
||||
root_of_unity = pow(7, (modulus-1)//1024, modulus)
|
||||
evaluations = fft(poly, modulus, root_of_unity)
|
||||
proof = prove_low_degree(poly, root_of_unity, evaluations, 512)
|
||||
print("Approx proof length: %d" % bin_length(compress_fri(proof)))
|
||||
assert verify_low_degree_proof(merkelize(evaluations)[1], root_of_unity, proof, 512)
|
||||
|
||||
# Compute a MIMC permutation for 2**logsteps steps, using round constants
|
||||
# from the multiplicative subgroup of size 2**logprecision
|
||||
def mimc(inp, logsteps, logprecision):
|
||||
@ -196,15 +52,16 @@ def mk_mimc_proof(inp, logsteps, logprecision):
|
||||
precision = 2**logprecision
|
||||
|
||||
# Root of unity such that x^precision=1
|
||||
root = pow(7, (modulus-1)//precision, modulus)
|
||||
root_of_unity = pow(7, (modulus-1)//precision, modulus)
|
||||
|
||||
# Root of unity such that x^skips=1
|
||||
skips = precision // steps
|
||||
subroot = pow(root, skips)
|
||||
subroot = pow(root_of_unity, skips)
|
||||
|
||||
# Powers of the root of unity, our computational trace will be
|
||||
# along the sequence of roots of unity
|
||||
xs = get_power_cycle(subroot)
|
||||
xs = get_power_cycle(subroot, modulus)
|
||||
last_step_position = xs[steps-1]
|
||||
|
||||
# Generate the computational trace
|
||||
constants = []
|
||||
@ -215,6 +72,7 @@ def mk_mimc_proof(inp, logsteps, logprecision):
|
||||
constants.append(k ^ 1)
|
||||
k = (k * 9) & ((1 << 256) - 1)
|
||||
constants.append(0)
|
||||
output = values[-1]
|
||||
print('Done generating computational trace')
|
||||
|
||||
# Interpolate the computational trace into a polynomial
|
||||
@ -225,37 +83,56 @@ def mk_mimc_proof(inp, logsteps, logprecision):
|
||||
# Create the composed polynomial such that
|
||||
# C(P(x), P(rx), K(x)) = P(rx) - P(x)**3 - K(x)
|
||||
term1 = multiply_base(values_polynomial, subroot)
|
||||
p_evaluations = fft(values_polynomial, modulus, root)
|
||||
term2 = fft([pow(x, 3, modulus) for x in p_evaluations], modulus, root, inv=True)[:len(values_polynomial) * 3 - 2]
|
||||
p_evaluations = fft(values_polynomial, modulus, root_of_unity)
|
||||
term2 = fft([pow(x, 3, modulus) for x in p_evaluations], modulus, root_of_unity, inv=True)[:len(values_polynomial) * 3 - 2]
|
||||
c_of_values = f.sub_polys(f.sub_polys(term1, term2), constants_polynomial)
|
||||
print('Computed C(P, K) polynomial')
|
||||
|
||||
# Compute D(x) = C(P(x), P(rx), K(x)) / Z(x)
|
||||
# Z(x) = (x^steps - 1) / (x - x_atlast_step)
|
||||
d = divide_by_xnm1(f.mul_polys(c_of_values,
|
||||
[modulus-xs[steps-1], 1]),
|
||||
[-last_step_position, 1]),
|
||||
steps)
|
||||
# assert f.mul_polys(d, z) == c_of_values
|
||||
# Consistency check
|
||||
assert (f.eval_poly_at(d, 90833) *
|
||||
(pow(90833, steps, modulus) - 1) *
|
||||
f.inv(f.eval_poly_at([-last_step_position, 1], 90833)) -
|
||||
f.eval_poly_at(c_of_values, 90833)) % modulus == 0
|
||||
print('Computed D polynomial')
|
||||
|
||||
# Evaluate D and K across the entire subgroup
|
||||
d_evaluations = fft(d, modulus, root)
|
||||
k_evaluations = fft(constants_polynomial, modulus, root)
|
||||
print('Evaluated P, D and K')
|
||||
# Compute interpolant of ((1, input), (x_atlast_step, output))
|
||||
interpolant = lagrange_interp_2([inp, output], [1, last_step_position], modulus)
|
||||
quotient = f.mul_polys([-1, 1], [-last_step_position, 1])
|
||||
b = f.div_polys(f.sub_polys(values_polynomial, interpolant), quotient)
|
||||
# Consistency check
|
||||
assert f.eval_poly_at(f.add_polys(f.mul_polys(b, quotient), interpolant), 7045) == f.eval_poly_at(values_polynomial, 7045)
|
||||
print('Computed B polynomial')
|
||||
|
||||
# Evaluate B, D and K across the entire subgroup
|
||||
d_evaluations = fft(d, modulus, root_of_unity)
|
||||
k_evaluations = fft(constants_polynomial, modulus, root_of_unity)
|
||||
b_evaluations = fft(b, modulus, root_of_unity)
|
||||
print('Evaluated low-degree extension of B, D and K')
|
||||
|
||||
# Compute their Merkle roots
|
||||
p_mtree = merkelize(p_evaluations)
|
||||
d_mtree = merkelize(d_evaluations)
|
||||
k_mtree = merkelize(k_evaluations)
|
||||
b_mtree = merkelize(b_evaluations)
|
||||
print('Computed hash root')
|
||||
|
||||
# Based on the hashes of P and D, we select a random linear combination
|
||||
# of P * x^steps and D, and prove the low-degreeness of that, instead of proving
|
||||
# the low-degreeness of P and D separately
|
||||
k = int.from_bytes(blake(p_mtree[1] + d_mtree[1]), 'big')
|
||||
# Based on the hashes of P, D and B, we select a random linear combination
|
||||
# of P * x^steps, P, B * x^steps, B and D, and prove the low-degreeness of that,
|
||||
# instead of proving the low-degreeness of P, B and D separately
|
||||
k1 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x01'), 'big')
|
||||
k2 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x02'), 'big')
|
||||
k3 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x03'), 'big')
|
||||
k4 = int.from_bytes(blake(p_mtree[1] + d_mtree[1] + b_mtree[1] + b'\x04'), 'big')
|
||||
|
||||
lincomb = f.add_polys(d, f.mul_by_const([0] * steps + values_polynomial, k))
|
||||
l_evaluations = fft(lincomb, modulus, root)
|
||||
lincomb = f.add_polys(f.add_polys(d,
|
||||
f.mul_by_const(values_polynomial, k1) + f.mul_by_const(values_polynomial, k2)),
|
||||
f.mul_by_const(b, k3) + [0, 0] + f.mul_by_const(b, k4) + [0,0])
|
||||
l_evaluations = fft(lincomb, modulus, root_of_unity)
|
||||
l_mtree = merkelize(l_evaluations)
|
||||
|
||||
print('Computed random linear combination')
|
||||
@ -263,30 +140,31 @@ def mk_mimc_proof(inp, logsteps, logprecision):
|
||||
# Do some spot checks of the Merkle tree at pseudo-random coordinates
|
||||
branches = []
|
||||
samples = spot_check_security_factor // (logprecision - logsteps)
|
||||
positions = get_indices(l_mtree[1], precision - skips, samples)
|
||||
positions = get_pseudorandom_indices(l_mtree[1], precision - skips, samples)
|
||||
for pos in positions:
|
||||
branches.append(mk_branch(p_mtree, pos))
|
||||
branches.append(mk_branch(p_mtree, pos + skips))
|
||||
branches.append(mk_branch(d_mtree, pos))
|
||||
branches.append(mk_branch(k_mtree, pos))
|
||||
branches.append(mk_branch(b_mtree, pos))
|
||||
branches.append(mk_branch(l_mtree, pos))
|
||||
print('Computed %d spot checks' % samples)
|
||||
|
||||
|
||||
# Return the Merkle roots of P and D, the spot check Merkle proofs,
|
||||
# and low-degree proofs of P and D
|
||||
o = [p_mtree[1],
|
||||
d_mtree[1],
|
||||
k_mtree[1],
|
||||
b_mtree[1],
|
||||
l_mtree[1],
|
||||
branches,
|
||||
prove_low_degree(lincomb, root, l_evaluations, steps * 2)]
|
||||
prove_low_degree(lincomb, root_of_unity, l_evaluations, steps * 2, modulus)]
|
||||
print("STARK computed in %.4f sec" % (time.time() - start_time))
|
||||
return o
|
||||
|
||||
# Verifies a STARK
|
||||
def verify_mimc_proof(inp, logsteps, logprecision, output, proof):
|
||||
p_root, d_root, k_root, l_root, branches, fri_proof = proof
|
||||
p_root, d_root, k_root, b_root, l_root, branches, fri_proof = proof
|
||||
start_time = time.time()
|
||||
|
||||
steps = 2**logsteps
|
||||
@ -297,43 +175,39 @@ def verify_mimc_proof(inp, logsteps, logprecision, output, proof):
|
||||
skips = precision // steps
|
||||
|
||||
# Verifies the low-degree proofs
|
||||
assert verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2)
|
||||
assert verify_low_degree_proof(l_root, root_of_unity, fri_proof, steps * 2, modulus)
|
||||
|
||||
# Performs the spot checks
|
||||
k = int.from_bytes(blake(p_root + d_root), 'big')
|
||||
k1 = int.from_bytes(blake(p_root + d_root + b_root + b'\x01'), 'big')
|
||||
k2 = int.from_bytes(blake(p_root + d_root + b_root + b'\x02'), 'big')
|
||||
k3 = int.from_bytes(blake(p_root + d_root + b_root + b'\x03'), 'big')
|
||||
k4 = int.from_bytes(blake(p_root + d_root + b_root + b'\x04'), 'big')
|
||||
samples = spot_check_security_factor // (logprecision - logsteps)
|
||||
positions = get_indices(l_root, precision - skips, samples)
|
||||
positions = get_pseudorandom_indices(l_root, precision - skips, samples)
|
||||
last_step_position = pow(root_of_unity, (steps - 1) * skips, modulus)
|
||||
for i, pos in enumerate(positions):
|
||||
|
||||
# Check C(P(x)) = Z(x) * D(x)
|
||||
x = pow(root_of_unity, pos, modulus)
|
||||
p_of_x = verify_branch(p_root, pos, branches[i*5])
|
||||
p_of_rx = verify_branch(p_root, pos+skips, branches[i*5 + 1])
|
||||
d_of_x = verify_branch(d_root, pos, branches[i*5 + 2])
|
||||
k_of_x = verify_branch(k_root, pos, branches[i*5 + 3])
|
||||
l_of_x = verify_branch(l_root, pos, branches[i*5 + 4])
|
||||
x_to_the_steps = pow(x, steps, modulus)
|
||||
p_of_x = verify_branch(p_root, pos, branches[i*6])
|
||||
p_of_rx = verify_branch(p_root, pos+skips, branches[i*6 + 1])
|
||||
d_of_x = verify_branch(d_root, pos, branches[i*6 + 2])
|
||||
k_of_x = verify_branch(k_root, pos, branches[i*6 + 3])
|
||||
b_of_x = verify_branch(b_root, pos, branches[i*6 + 4])
|
||||
l_of_x = verify_branch(l_root, pos, branches[i*6 + 5])
|
||||
zvalue = f.div(pow(x, steps, modulus) - 1,
|
||||
x - pow(root_of_unity, (steps - 1) * skips, modulus))
|
||||
x - last_step_position)
|
||||
assert (p_of_rx - p_of_x ** 3 - k_of_x - zvalue * d_of_x) % modulus == 0
|
||||
assert (l_of_x - d_of_x - k * p_of_x * pow(x, steps, modulus)) % modulus == 0
|
||||
interpolant = lagrange_interp_2([inp, output], [1, last_step_position], modulus)
|
||||
quotient = f.mul_polys([-1, 1], [-last_step_position, 1])
|
||||
assert (p_of_x - b_of_x * f.eval_poly_at(quotient, x) -
|
||||
f.eval_poly_at(interpolant, x)) % modulus == 0
|
||||
assert (l_of_x - d_of_x -
|
||||
k1 * p_of_x - k2 * p_of_x * x_to_the_steps -
|
||||
k3 * b_of_x - k4 * b_of_x * x_to_the_steps) % modulus == 0
|
||||
|
||||
print('Verified %d consistency checks' % (spot_check_security_factor // (logprecision - logsteps)))
|
||||
print('Verified STARK in %.4f sec' % (time.time() - start_time))
|
||||
print('Note: this does not include verifying the Merkle root of the constants tree')
|
||||
print('This can be done by every client once as a precomputation')
|
||||
return True
|
||||
|
||||
INPUT = 3
|
||||
LOGSTEPS = 17
|
||||
LOGPRECISION = 20
|
||||
|
||||
# Full STARK test
|
||||
proof = mk_mimc_proof(INPUT, LOGSTEPS, LOGPRECISION)
|
||||
p_root, d_root, k_root, l_root, branches, fri_proof = proof
|
||||
L1 = bin_length(compress_branches(branches))
|
||||
L2 = bin_length(compress_fri(fri_proof))
|
||||
print("Approx proof length: %d (branches), %d (FRI proof), %d (total)" % (L1, L2, L1 + L2))
|
||||
root_of_unity = pow(7, (modulus-1)//2**LOGPRECISION, modulus)
|
||||
subroot = pow(7, (modulus-1)//2**LOGSTEPS, modulus)
|
||||
skips = 2**(LOGPRECISION - LOGSTEPS)
|
||||
assert verify_mimc_proof(3, LOGSTEPS, LOGPRECISION, mimc(3, LOGSTEPS, LOGPRECISION), proof)
|
||||
|
36
mimc_stark/test.py
Normal file
36
mimc_stark/test.py
Normal file
@ -0,0 +1,36 @@
|
||||
from fft import fft
|
||||
from mimc_stark import mk_mimc_proof, modulus, mimc, verify_mimc_proof
|
||||
from compression import compress_fri, compress_branches, bin_length
|
||||
from merkle_tree import merkelize, mk_branch, verify_branch
|
||||
from fri import prove_low_degree, verify_low_degree_proof
|
||||
|
||||
def test_merkletree():
|
||||
t = merkelize(range(128))
|
||||
b = mk_branch(t, 59)
|
||||
assert verify_branch(t[1], 59, b) == 59
|
||||
print('Merkle tree works')
|
||||
|
||||
def test_fri():
|
||||
# Pure FRI tests
|
||||
poly = list(range(512))
|
||||
root_of_unity = pow(7, (modulus-1)//1024, modulus)
|
||||
evaluations = fft(poly, modulus, root_of_unity)
|
||||
proof = prove_low_degree(poly, root_of_unity, evaluations, 512, modulus)
|
||||
print("Approx proof length: %d" % bin_length(compress_fri(proof)))
|
||||
assert verify_low_degree_proof(merkelize(evaluations)[1], root_of_unity, proof, 512, modulus)
|
||||
|
||||
def test_stark():
|
||||
INPUT = 3
|
||||
LOGSTEPS = 13
|
||||
LOGPRECISION = 16
|
||||
|
||||
# Full STARK test
|
||||
proof = mk_mimc_proof(INPUT, LOGSTEPS, LOGPRECISION)
|
||||
p_root, d_root, k_root, b_root, l_root, branches, fri_proof = proof
|
||||
L1 = bin_length(compress_branches(branches))
|
||||
L2 = bin_length(compress_fri(fri_proof))
|
||||
print("Approx proof length: %d (branches), %d (FRI proof), %d (total)" % (L1, L2, L1 + L2))
|
||||
root_of_unity = pow(7, (modulus-1)//2**LOGPRECISION, modulus)
|
||||
subroot = pow(7, (modulus-1)//2**LOGSTEPS, modulus)
|
||||
skips = 2**(LOGPRECISION - LOGSTEPS)
|
||||
assert verify_mimc_proof(3, LOGSTEPS, LOGPRECISION, mimc(3, LOGSTEPS, LOGPRECISION), proof)
|
17
mimc_stark/utils.py
Normal file
17
mimc_stark/utils.py
Normal file
@ -0,0 +1,17 @@
|
||||
from merkle_tree import blake
|
||||
|
||||
# Get the set of powers of R, until but not including when the powers
|
||||
# loop back to 1
|
||||
def get_power_cycle(r, modulus):
|
||||
o = [1, r]
|
||||
while o[-1] != 1:
|
||||
o.append((o[-1] * r) % modulus)
|
||||
return o[:-1]
|
||||
|
||||
# Extract pseudorandom indices from entropy
|
||||
def get_pseudorandom_indices(seed, modulus, count):
|
||||
assert modulus < 2**24
|
||||
data = seed
|
||||
while len(data) < 4 * count:
|
||||
data += blake(data[-32:])
|
||||
return [int.from_bytes(data[i: i+4], 'big') % modulus for i in range(0, count * 4, 4)]
|
Loading…
x
Reference in New Issue
Block a user