Small fix

This commit is contained in:
Vitalik Buterin 2017-07-06 20:37:02 -04:00
parent 7550aff389
commit 4b6ec5f97c
1 changed files with 1 additions and 1 deletions

View File

@ -62,7 +62,7 @@ In general, it is certainly feasible to design a consensus mechanism where we ca
However, with the right bounds we can still prevent such an attack from being profitable. Consider the case where $p=1$, and where the attacker must maintain a $50\%$ share of active participants to exert $r > 1$ griefing (note that at the $50\%$ boundary, the \textit{proportional loss ratio} $r$ and the \textit{griefing factor} are the same value). The next question is, does the attacker remove some of their own participants to keep their share at $50\%$, or do all of the participants controlled by the attacker stay?
In the first case, as long as $r \le 1$, no matter how high $r$ is, the attacker's revenue must still decrease, or in the worst case where $r = \infty$, the attacker's revenue will be unchanged. In the second case, we note that the size of the participant set will decline more slowly - specifically, $x = \frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{1}{d+p}}$. Suppose $r \le 2$, and $p \le 1$. Then:
In the first case, as long as $p \le 1$, no matter how high $r$ is, the attacker's revenue must still decrease, or in the worst case where $r = \infty$, the attacker's revenue will be unchanged. In the second case, we note that the size of the participant set will decline more slowly - specifically, $x = \frac{1}{2} + \frac{1}{2} * (1-h)^{\frac{1}{d+p}}$. Suppose $r \le 2$, and $p \le 1$. Then:
$\frac{1-\frac{h}{r}}{x^p}$