Fixed a few bugs in the pairing but not all of them

This commit is contained in:
vub 2016-12-24 14:06:58 -05:00
parent 05aa71bb1b
commit 4b3e13de37
2 changed files with 19 additions and 3 deletions

View File

@ -14,6 +14,8 @@ G2 = (FQ2([4, 0]), FQ2([16893045765507297706785249332518927989146279141265438554
# Check that a point is on the curve defined by y**2 == x**3 + b
def is_on_curve(pt, b):
if pt is None:
return True
x, y = pt
return y**2 - x**3 == b
@ -81,3 +83,10 @@ def twist(pt):
# Check that the twist creates a point that is on the curve
assert is_on_curve(twist(G2), b12)
# Check that the G12 curve works fine
G12 = twist(G2)
assert add(add(double(G12), G12), G12) == double(double(G12))
assert double(G12) != G12
assert add(multiply(G12, 9), multiply(G12, 5)) == add(multiply(G12, 12), multiply(G12, 2))

View File

@ -4,11 +4,12 @@ from bn128_curve import double, add, multiply, is_on_curve, twist, b, b2, b12, c
from bn128_field_elements import field_modulus, FQ, FQ2, FQ12
ate_loop_count = 29793968203157093288
log_ate_loop_count = 64
log_ate_loop_count = 63
# Create a function representing the line between P1 and P2,
# and evaluate it at T
def linefunc(P1, P2, T):
assert P1 and P2 and T # No points-at-infinity allowed, sorry
x1, y1 = P1
x2, y2 = P2
xt, yt = T
@ -28,27 +29,33 @@ def cast_point_to_fq12(pt):
return (FQ12([x.n] + [0] * 11), FQ12([y.n] + [0] * 11))
# Check consistency of the "line function"
one, two, three, negone = G1, double(G1), multiply(G1, 3), multiply(G1, curve_order - 1)
one, two, three = G1, double(G1), multiply(G1, 3)
negone, negtwo, negthree = multiply(G1, curve_order - 1), multiply(G1, curve_order - 2), multiply(G1, curve_order - 3)
assert linefunc(one, two, one) == FQ(0)
assert linefunc(one, two, two) == FQ(0)
assert linefunc(one, two, three) != FQ(0)
assert linefunc(one, two, negthree) == FQ(0)
assert linefunc(one, negone, one) == FQ(0)
assert linefunc(one, negone, negone) == FQ(0)
assert linefunc(one, negone, two) != FQ(0)
assert linefunc(one, one, one) == FQ(0)
assert linefunc(one, one, two) != FQ(0)
assert linefunc(one, one, negtwo) == FQ(0)
# Main miller loop
def miller_loop(Q, P):
if Q is None or P is None:
return FQ12.one()
R = Q
f = FQ12.one()
for i in range(log_ate_loop_count, -1, -1):
f = f * f / linefunc(R, R, P)
f = f * f * linefunc(R, R, P)
R = double(R)
if ate_loop_count & (2**i):
f = f * linefunc(R, Q, P)
R = add(R, Q)
assert R == multiply(Q, ate_loop_count)
Q1 = (Q[0] ** field_modulus, Q[1] ** field_modulus)
nQ2 = (Q[0] ** (field_modulus ** 2), -Q[1] ** (field_modulus ** 2))
f = f * linefunc(R, Q1, P)