2017-04-17 13:35:50 +00:00
|
|
|
modulus_poly = [1, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 1, 0, 1, 0, 0, 1,
|
|
|
|
1]
|
|
|
|
modulus_poly_as_int = sum([(v << i) for i, v in enumerate(modulus_poly)])
|
|
|
|
degree = len(modulus_poly) - 1
|
|
|
|
|
|
|
|
two_to_the_degree = 2**degree
|
|
|
|
two_to_the_degree_m1 = 2**degree - 1
|
|
|
|
|
|
|
|
def galoistpl(a):
|
|
|
|
# 2 is not a primitive root, so we have to use 3 as our logarithm base
|
|
|
|
if a * 2 < two_to_the_degree:
|
|
|
|
return (a * 2) ^ a
|
|
|
|
else:
|
|
|
|
return (a * 2) ^ a ^ modulus_poly_as_int
|
|
|
|
|
|
|
|
# Precomputing a log table for increased speed of addition and multiplication
|
|
|
|
glogtable = [0] * (two_to_the_degree)
|
|
|
|
gexptable = []
|
|
|
|
v = 1
|
|
|
|
for i in range(two_to_the_degree_m1):
|
|
|
|
glogtable[v] = i
|
|
|
|
gexptable.append(v)
|
|
|
|
v = galoistpl(v)
|
|
|
|
|
|
|
|
gexptable += gexptable + gexptable
|
|
|
|
|
|
|
|
# Add two values in the Galois field
|
|
|
|
def galois_add(x, y):
|
|
|
|
return x ^ y
|
|
|
|
|
|
|
|
# In binary fields, addition and subtraction are the same thing
|
|
|
|
galois_sub = galois_add
|
|
|
|
|
|
|
|
# Multiply two values in the Galois field
|
|
|
|
def galois_mul(x, y):
|
|
|
|
return 0 if x*y == 0 else gexptable[glogtable[x] + glogtable[y]]
|
|
|
|
|
|
|
|
# Divide two values in the Galois field
|
|
|
|
def galois_div(x, y):
|
|
|
|
return 0 if x == 0 else gexptable[(glogtable[x] - glogtable[y]) % two_to_the_degree_m1]
|
|
|
|
|
|
|
|
# Evaluate a polynomial at a point
|
|
|
|
def eval_poly_at(p, x):
|
|
|
|
if x == 0:
|
|
|
|
return p[0]
|
|
|
|
y = 0
|
|
|
|
logx = glogtable[x]
|
|
|
|
for i, p_coeff in enumerate(p):
|
|
|
|
if p_coeff:
|
|
|
|
# Add x**i * coeff
|
|
|
|
y ^= gexptable[(logx * i + glogtable[p_coeff]) % two_to_the_degree_m1]
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
# Given p+1 y values and x values with no errors, recovers the original
|
|
|
|
# p+1 degree polynomial.
|
|
|
|
# Lagrange interpolation works roughly in the following way.
|
|
|
|
# 1. Suppose you have a set of points, eg. x = [1, 2, 3], y = [2, 5, 10]
|
|
|
|
# 2. For each x, generate a polynomial which equals its corresponding
|
|
|
|
# y coordinate at that point and 0 at all other points provided.
|
|
|
|
# 3. Add these polynomials together.
|
|
|
|
|
|
|
|
def lagrange_interp(pieces, xs):
|
|
|
|
# Generate master numerator polynomial, eg. (x - x1) * (x - x2) * ... * (x - xn)
|
|
|
|
root = [1]
|
|
|
|
for x in xs:
|
|
|
|
logx = glogtable[x]
|
|
|
|
root.insert(0, 0)
|
|
|
|
for j in range(len(root)-1):
|
|
|
|
if root[j+1] and x:
|
|
|
|
root[j] ^= gexptable[glogtable[root[j+1]] + logx]
|
2017-04-23 12:10:21 +00:00
|
|
|
#print(root)
|
2017-04-17 13:35:50 +00:00
|
|
|
assert len(root) == len(pieces) + 1
|
2017-04-23 12:10:21 +00:00
|
|
|
# print(root)
|
2017-04-17 13:35:50 +00:00
|
|
|
# Generate per-value numerator polynomials, eg. for x=x2,
|
|
|
|
# (x - x1) * (x - x3) * ... * (x - xn), by dividing the master
|
|
|
|
# polynomial back by each x coordinate
|
|
|
|
nums = []
|
|
|
|
for x in xs:
|
|
|
|
output = [0] * (len(root) - 2) + [1]
|
|
|
|
logx = glogtable[x]
|
|
|
|
for j in range(len(root) - 2, 0, -1):
|
|
|
|
if output[j] and x:
|
|
|
|
output[j-1] = root[j] ^ gexptable[glogtable[output[j]] + logx]
|
|
|
|
else:
|
|
|
|
output[j-1] = root[j]
|
|
|
|
assert len(output) == len(pieces)
|
|
|
|
nums.append(output)
|
2017-04-23 12:10:21 +00:00
|
|
|
#print(nums)
|
2017-04-17 13:35:50 +00:00
|
|
|
# Generate denominators by evaluating numerator polys at each x
|
|
|
|
denoms = [eval_poly_at(nums[i], xs[i]) for i in range(len(xs))]
|
|
|
|
# Generate output polynomial, which is the sum of the per-value numerator
|
|
|
|
# polynomials rescaled to have the right y values
|
|
|
|
b = [0 for p in pieces]
|
|
|
|
for i in range(len(xs)):
|
|
|
|
log_yslice = glogtable[pieces[i]] - glogtable[denoms[i]] + two_to_the_degree_m1
|
|
|
|
for j in range(len(pieces)):
|
|
|
|
if nums[i][j] and pieces[i]:
|
|
|
|
b[j] ^= gexptable[glogtable[nums[i][j]] + log_yslice]
|
|
|
|
return b
|
|
|
|
|
|
|
|
|
|
|
|
a = 124
|
|
|
|
b = 8932
|
|
|
|
c = 12415
|
|
|
|
|
|
|
|
assert galois_mul(galois_add(a, b), c) == galois_add(galois_mul(a, c), galois_mul(b, c))
|