research/stability/fit.py

123 lines
3.7 KiB
Python
Raw Normal View History

2014-11-09 18:18:48 +00:00
import spread
import math
import random
o = spread.declutter(spread.load('diff_and_price.csv'))
diffs = [float(q[2]) for q in o][::-1]
prices = [float(q[1]) for q in o][::-1]
def simple_estimator(fac):
o = [1]
for i in range(1, len(diffs)):
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac)
return o
def minimax_estimator(fac):
o = [1]
for i in range(1, len(diffs)):
if diffs[i] * 1.0 / diffs[i-1] > fac:
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac)
elif diffs[i] > diffs[i-1]:
o.append(o[-1])
else:
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1])
return o
def diff_estimator(fac, dw, mf):
o = [1]
derivs = [0] * 14
for i in range(14, len(diffs)):
derivs.append(diffs[i] - diffs[i - 14])
for i in range(0, 14):
derivs[i] = derivs[14]
vals = [max(diffs[i] + derivs[i] * dw, diffs[i] * mf) for i in range(len(diffs))]
for i in range(1, len(diffs)):
if vals[i] * 1.0 / vals[i-1] > fac:
o.append(o[-1] * vals[i] * 1.0 / vals[i-1] / fac)
elif vals[i] > vals[i-1]:
o.append(o[-1])
else:
o.append(o[-1] * vals[i] * 1.0 / vals[i-1])
return o
def ndiff_estimator(*args):
fac, dws, mf = args[0], args[1:-1], args[-1]
o = [1]
ds = [diffs]
for dw in dws:
derivs = [0] * 14
for i in range(14, len(diffs)):
derivs.append(ds[-1][i] - ds[-1][i - 14])
for i in range(0, 14):
derivs[i] = derivs[14]
ds.append(derivs)
vals = []
for i in range(len(diffs)):
q = ds[0][i] + sum([ds[j+1][i] * dws[j] for j in range(len(dws))])
vals.append(max(q, ds[0][i] * mf))
for i in range(1, len(diffs)):
if vals[i] * 1.0 / vals[i-1] > fac:
o.append(o[-1] * vals[i] * 1.0 / vals[i-1] / fac)
elif vals[i] > vals[i-1]:
o.append(o[-1])
else:
o.append(o[-1] * vals[i] * 1.0 / vals[i-1])
return o
def dual_threshold_estimator(fac1, fac2, dmul):
o = [1]
derivs = [0] * 14
for i in range(14, len(diffs)):
derivs.append(diffs[i] - diffs[i - 14])
for i in range(0, 14):
derivs[i] = derivs[14]
for i in range(1, len(diffs)):
if diffs[i] * 1.0 / diffs[i-1] > fac1 and derivs[i] * 1.0 / derivs[i-1] > fac2:
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1] / fac1 * (1 + (derivs[i] / derivs[i-1] - fac2) * dmul))
elif diffs[i] > diffs[i-1]:
o.append(o[-1])
else:
o.append(o[-1] * diffs[i] * 1.0 / diffs[i-1])
return o
def evaluate_estimates(estimates, crossvalidate=False):
sz = len(prices) if crossvalidate else 780
sqdiffsum = 0
# compute average
tot = 0
for i in range(sz):
tot += math.log(prices[i] / estimates[i])
avg = 2.718281828459 ** (tot * 1.0 / sz)
for i in range(1, sz):
sqdiffsum += math.log(prices[i] / estimates[i] / avg) ** 2
return sqdiffsum
# Simulated annealing optimizer
def optimize(producer, floors, ceilings, rate=0.7):
vals = [f*0.5+c*0.5 for f, c in zip(floors, ceilings)]
y = evaluate_estimates(producer(*vals))
for i in range(1, 5000):
stepsizes = [(f*0.5-c*0.5) / i**rate for f, c in zip(floors, ceilings)]
steps = [(random.random() * 2 - 1) * s for s in stepsizes]
newvals = [max(mi, min(ma, v+s)) for v, s, mi, ma in zip(vals, steps, floors, ceilings)]
newy = evaluate_estimates(producer(*newvals))
if newy < y:
vals = newvals
y = newy
if not i % 1000:
print i, vals, y
return vals
def score(producer, *vals):
return evaluate_estimates(producer(*vals), True)