mirror of
https://github.com/status-im/research.git
synced 2025-01-28 07:44:58 +00:00
26 lines
1.0 KiB
Python
26 lines
1.0 KiB
Python
|
data = [[float(y) for y in x.strip().split(', ')] for x in open('block_datadump.csv').readlines()]
|
||
|
|
||
|
for i in range(0, 2283416, 200000):
|
||
|
print 'Checking 200k blocks from %d' % i
|
||
|
dataset = []
|
||
|
totuncles, totuncreward = 0, 0
|
||
|
for num, uncs, uncrew, uncgas, txs, gas, length, zeroes in data[i:i+200000]:
|
||
|
dataset.append([gas, 0])
|
||
|
for i in range(int(uncs)):
|
||
|
dataset.append([uncgas / uncs * 1.0, 1])
|
||
|
totuncles += uncs
|
||
|
totuncreward += uncrew
|
||
|
print 'Average uncle reward:', totuncreward * 1.0 / totuncles
|
||
|
print 'Average nephew reward:', totuncles * 5 / 32. / len(dataset)
|
||
|
|
||
|
mean_x = sum([x[0] for x in dataset]) * 1.0 / len(dataset)
|
||
|
mean_y = sum([x[1] for x in dataset]) * 1.0 / len(dataset)
|
||
|
print 'Average gas used:', mean_x
|
||
|
print 'Average uncle rate:', mean_y
|
||
|
|
||
|
covar = sum([(x[0] - mean_x) * (x[1] - mean_y) for x in dataset])
|
||
|
var = sum([(x[0] - mean_x) ** 2 for x in dataset])
|
||
|
|
||
|
print 'm = ', covar / var
|
||
|
print 'b = ', mean_y - mean_x * (covar / var)
|