research/mimc_stark/fft.py

53 lines
1.8 KiB
Python
Raw Permalink Normal View History

2018-07-04 09:33:51 +00:00
def _simple_ft(vals, modulus, roots_of_unity):
L = len(roots_of_unity)
o = []
2018-07-04 09:33:51 +00:00
for i in range(L):
last = 0
2018-07-04 09:33:51 +00:00
for j in range(L):
last += vals[j] * roots_of_unity[(i*j)%L]
o.append(last % modulus)
return o
2018-07-04 09:33:51 +00:00
def _fft(vals, modulus, roots_of_unity):
2018-08-21 23:36:01 +00:00
if len(vals) <= 4:
#return vals
return _simple_ft(vals, modulus, roots_of_unity)
L = _fft(vals[::2], modulus, roots_of_unity[::2])
R = _fft(vals[1::2], modulus, roots_of_unity[::2])
o = [0 for i in vals]
for i, (x, y) in enumerate(zip(L, R)):
y_times_root = y*roots_of_unity[i]
o[i] = (x+y_times_root) % modulus
o[i+len(L)] = (x-y_times_root) % modulus
return o
def fft(vals, modulus, root_of_unity, inv=False):
# Build up roots of unity
rootz = [1, root_of_unity]
while rootz[-1] != 1:
rootz.append((rootz[-1] * root_of_unity) % modulus)
# Fill in vals with zeroes if needed
if len(rootz) > len(vals) + 1:
vals = vals + [0] * (len(rootz) - len(vals) - 1)
if inv:
# Inverse FFT
invlen = pow(len(vals), modulus-2, modulus)
2018-07-04 09:33:51 +00:00
return [(x*invlen) % modulus for x in
_fft(vals, modulus, rootz[:0:-1])]
else:
# Regular FFT
2018-07-04 09:33:51 +00:00
return _fft(vals, modulus, rootz[:-1])
def mul_polys(a, b, modulus, root_of_unity):
2018-08-21 23:36:01 +00:00
rootz = [1, root_of_unity]
while rootz[-1] != 1:
rootz.append((rootz[-1] * root_of_unity) % modulus)
if len(rootz) > len(a) + 1:
a = a + [0] * (len(rootz) - len(a) - 1)
if len(rootz) > len(b) + 1:
b = b + [0] * (len(rootz) - len(b) - 1)
x1 = _fft(a, modulus, rootz[:-1])
x2 = _fft(b, modulus, rootz[:-1])
return _fft([(v1*v2)%modulus for v1,v2 in zip(x1,x2)],
modulus, rootz[:0:-1])