realm-js/parser/parser.cpp

345 lines
11 KiB
C++

////////////////////////////////////////////////////////////////////////////
//
// Copyright 2015 Realm Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////
#include "parser.hpp"
#include <iostream>
#include <pegtl.hh>
#include <pegtl/analyze.hh>
#include <pegtl/trace.hh>
using namespace pegtl;
namespace realm {
namespace parser {
// strings
struct unicode : list< seq< one< 'u' >, rep< 4, must< xdigit > > >, one< '\\' > > {};
struct escaped_char : one< '"', '\'', '\\', '/', 'b', 'f', 'n', 'r', 't', '0' > {};
struct escaped : sor< escaped_char, unicode > {};
struct unescaped : utf8::range< 0x20, 0x10FFFF > {};
struct chars : if_then_else< one< '\\' >, must< escaped >, unescaped > {};
struct dq_string_content : until< at< one< '"' > >, must< chars > > {};
struct dq_string : seq< one< '"' >, must< dq_string_content >, any > {};
struct sq_string_content : until< at< one< '\'' > >, must< chars > > {};
struct sq_string : seq< one< '\'' >, must< sq_string_content >, any > {};
// numbers
struct minus : opt< one< '-' > > {};
struct dot : one< '.' > {};
struct float_num : sor<
seq< plus< digit >, dot, star< digit > >,
seq< star< digit >, dot, plus< digit > >
> {};
struct hex_num : seq< one< '0' >, one< 'x', 'X' >, plus< xdigit > > {};
struct int_num : plus< digit > {};
struct number : seq< minus, sor< float_num, hex_num, int_num > > {};
struct true_value : pegtl_istring_t("true") {};
struct false_value : pegtl_istring_t("false") {};
// key paths
struct key_path : list< seq< sor< alpha, one< '_' > >, star< sor< alnum, one< '_', '-' > > > >, one< '.' > > {};
// argument
struct argument_index : plus< digit > {};
struct argument : seq< one< '$' >, must< argument_index > > {};
// expressions and operators
struct expr : sor< dq_string, sq_string, number, argument, true_value, false_value, key_path > {};
struct eq : sor< two< '=' >, one< '=' > > {};
struct noteq : pegtl::string< '!', '=' > {};
struct lteq : pegtl::string< '<', '=' > {};
struct lt : one< '<' > {};
struct gteq : pegtl::string< '>', '=' > {};
struct gt : one< '>' > {};
struct contains : pegtl_istring_t("contains") {};
struct begins : pegtl_istring_t("beginswith") {};
struct ends : pegtl_istring_t("endswith") {};
template<typename A, typename B>
struct pad_plus : seq< plus< B >, A, plus< B > > {};
struct padded_oper : pad_plus< sor< contains, begins, ends >, blank > {};
struct symbolic_oper : pad< sor< eq, noteq, lteq, lt, gteq, gt >, blank > {};
// predicates
struct comparison_pred : seq< expr, sor< padded_oper, symbolic_oper >, expr > {};
struct pred;
struct group_pred : if_must< one< '(' >, pad< pred, blank >, one< ')' > > {};
struct true_pred : pegtl_istring_t("truepredicate") {};
struct false_pred : pegtl_istring_t("falsepredicate") {};
struct not_pre : seq< sor< one< '!' >, pegtl_istring_t("not") > > {};
struct atom_pred : seq< opt< not_pre >, pad< sor< group_pred, true_pred, false_pred, comparison_pred >, blank > > {};
struct and_op : pad< sor< two< '&' >, pegtl_istring_t("and") >, blank > {};
struct or_op : pad< sor< two< '|' >, pegtl_istring_t("or") >, blank > {};
struct or_ext : if_must< or_op, pred > {};
struct and_ext : if_must< and_op, pred > {};
struct and_pred : seq< atom_pred, star< and_ext > > {};
struct pred : seq< and_pred, star< or_ext > > {};
// state
struct ParserState
{
std::vector<Predicate *> group_stack;
Predicate *current_group()
{
return group_stack.back();
}
Predicate *last_predicate()
{
Predicate *pred = current_group();
while (pred->type != Predicate::Type::Comparison && pred->cpnd.sub_predicates.size()) {
pred = &pred->cpnd.sub_predicates.back();
}
return pred;
}
void add_predicate_to_current_group(Predicate::Type type)
{
current_group()->cpnd.sub_predicates.emplace_back(type, negate_next);
negate_next = false;
if (current_group()->cpnd.sub_predicates.size() > 1) {
if (next_type == Predicate::Type::Or) {
apply_or();
}
else {
apply_and();
}
}
}
bool negate_next = false;
Predicate::Type next_type = Predicate::Type::And;
void add_expression(Expression && exp)
{
Predicate *current = last_predicate();
if (current->type == Predicate::Type::Comparison && current->cmpr.expr[1].type == parser::Expression::Type::None) {
current->cmpr.expr[1] = std::move(exp);
}
else {
add_predicate_to_current_group(Predicate::Type::Comparison);
last_predicate()->cmpr.expr[0] = std::move(exp);
}
}
void apply_or()
{
Predicate *group = current_group();
if (group->type == Predicate::Type::Or) {
return;
}
// convert to OR
group->type = Predicate::Type::Or;
if (group->cpnd.sub_predicates.size() > 2) {
// split the current group into an AND group ORed with the last subpredicate
Predicate new_sub(Predicate::Type::And);
new_sub.cpnd.sub_predicates = std::move(group->cpnd.sub_predicates);
group->cpnd.sub_predicates = { new_sub, std::move(new_sub.cpnd.sub_predicates.back()) };
group->cpnd.sub_predicates[0].cpnd.sub_predicates.pop_back();
}
}
void apply_and()
{
if (current_group()->type == Predicate::Type::And) {
return;
}
auto &sub_preds = current_group()->cpnd.sub_predicates;
auto second_last = sub_preds.end() - 2;
if (second_last->type == Predicate::Type::And && !second_last->negate) {
// make a new and group populated with the last two predicates
second_last->cpnd.sub_predicates.push_back(std::move(sub_preds.back()));
sub_preds.pop_back();
}
else {
// otherwise combine last two into a new AND group
Predicate pred(Predicate::Type::And);
pred.cpnd.sub_predicates.insert(pred.cpnd.sub_predicates.begin(), second_last, sub_preds.end());
sub_preds.erase(second_last, sub_preds.end());
sub_preds.emplace_back(std::move(pred));
}
}
};
// rules
template< typename Rule >
struct action : nothing< Rule > {};
#ifdef REALM_PARSER_PRINT_TOKENS
#define DEBUG_PRINT_TOKEN(string) std::cout << string << std::endl
#else
#define DEBUG_PRINT_TOKEN(string)
#endif
template<> struct action< and_op >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN("<and>");
state.next_type = Predicate::Type::And;
}
};
template<> struct action< or_op >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN("<or>");
state.next_type = Predicate::Type::Or;
}
};
#define EXPRESSION_ACTION(rule, type) \
template<> struct action< rule > { \
static void apply( const input & in, ParserState & state ) { \
DEBUG_PRINT_TOKEN(in.string()); \
state.add_expression(Expression{type, in.string()}); }};
EXPRESSION_ACTION(dq_string_content, Expression::Type::String)
EXPRESSION_ACTION(sq_string_content, Expression::Type::String)
EXPRESSION_ACTION(key_path, Expression::Type::KeyPath)
EXPRESSION_ACTION(number, Expression::Type::Number)
EXPRESSION_ACTION(true_value, Expression::Type::True)
EXPRESSION_ACTION(false_value, Expression::Type::False)
EXPRESSION_ACTION(argument_index, Expression::Type::Argument)
template<> struct action< true_pred >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN(in.string());
state.current_group()->cpnd.sub_predicates.emplace_back(Predicate::Type::True);
}
};
template<> struct action< false_pred >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN(in.string());
state.current_group()->cpnd.sub_predicates.emplace_back(Predicate::Type::False);
}
};
#define OPERATOR_ACTION(rule, oper) \
template<> struct action< rule > { \
static void apply( const input & in, ParserState & state ) { \
DEBUG_PRINT_TOKEN(in.string()); \
state.last_predicate()->cmpr.op = oper; }};
OPERATOR_ACTION(eq, Predicate::Operator::Equal)
OPERATOR_ACTION(noteq, Predicate::Operator::NotEqual)
OPERATOR_ACTION(gteq, Predicate::Operator::GreaterThanOrEqual)
OPERATOR_ACTION(gt, Predicate::Operator::GreaterThan)
OPERATOR_ACTION(lteq, Predicate::Operator::LessThanOrEqual)
OPERATOR_ACTION(lt, Predicate::Operator::LessThan)
OPERATOR_ACTION(begins, Predicate::Operator::BeginsWith)
OPERATOR_ACTION(ends, Predicate::Operator::EndsWith)
OPERATOR_ACTION(contains, Predicate::Operator::Contains)
template<> struct action< one< '(' > >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN("<begin_group>");
state.add_predicate_to_current_group(Predicate::Type::And);
state.group_stack.push_back(state.last_predicate());
}
};
template<> struct action< group_pred >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN("<end_group>");
state.group_stack.pop_back();
}
};
template<> struct action< not_pre >
{
static void apply( const input & in, ParserState & state )
{
DEBUG_PRINT_TOKEN("<not>");
state.negate_next = true;
}
};
template< typename Rule >
struct error_message_control : pegtl::normal< Rule >
{
static const std::string error_message;
template< typename Input, typename ... States >
static void raise( const Input & in, States && ... )
{
throw pegtl::parse_error( error_message, in );
}
};
template<>
const std::string error_message_control< chars >::error_message = "Invalid characters in string constant.";
template< typename Rule>
const std::string error_message_control< Rule >::error_message = "Invalid predicate.";
Predicate parse(const std::string &query)
{
DEBUG_PRINT_TOKEN(query);
Predicate out_predicate(Predicate::Type::And);
ParserState state;
state.group_stack.push_back(&out_predicate);
pegtl::parse< must< pred, eof >, action, error_message_control >(query, query, state);
if (out_predicate.type == Predicate::Type::And && out_predicate.cpnd.sub_predicates.size() == 1) {
return std::move(out_predicate.cpnd.sub_predicates.back());
}
return std::move(out_predicate);
}
void analyzeGrammar()
{
analyze<pred>();
}
}}