//////////////////////////////////////////////////////////////////////////// // // Copyright 2015 Realm Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // //////////////////////////////////////////////////////////////////////////// #include "parser.hpp" #include #include #include #include using namespace pegtl; namespace realm { namespace parser { // strings struct unicode : list< seq< one< 'u' >, rep< 4, must< xdigit > > >, one< '\\' > > {}; struct escaped_char : one< '"', '\'', '\\', '/', 'b', 'f', 'n', 'r', 't', '0' > {}; struct escaped : sor< escaped_char, unicode > {}; struct unescaped : utf8::range< 0x20, 0x10FFFF > {}; struct chars : if_then_else< one< '\\' >, must< escaped >, unescaped > {}; struct dq_string_content : until< at< one< '"' > >, must< chars > > {}; struct dq_string : seq< one< '"' >, must< dq_string_content >, any > {}; struct sq_string_content : until< at< one< '\'' > >, must< chars > > {}; struct sq_string : seq< one< '\'' >, must< sq_string_content >, any > {}; // numbers struct minus : opt< one< '-' > > {}; struct dot : one< '.' > {}; struct float_num : sor< seq< plus< digit >, dot, star< digit > >, seq< star< digit >, dot, plus< digit > > > {}; struct hex_num : seq< one< '0' >, one< 'x', 'X' >, plus< xdigit > > {}; struct int_num : plus< digit > {}; struct number : seq< minus, sor< float_num, hex_num, int_num > > {}; struct true_value : pegtl_istring_t("true") {}; struct false_value : pegtl_istring_t("false") {}; // key paths struct key_path : list< seq< sor< alpha, one< '_' > >, star< sor< alnum, one< '_', '-' > > > >, one< '.' > > {}; // argument struct argument_index : plus< digit > {}; struct argument : seq< one< '$' >, must< argument_index > > {}; // expressions and operators struct expr : sor< dq_string, sq_string, number, argument, true_value, false_value, key_path > {}; struct eq : sor< two< '=' >, one< '=' > > {}; struct noteq : pegtl::string< '!', '=' > {}; struct lteq : pegtl::string< '<', '=' > {}; struct lt : one< '<' > {}; struct gteq : pegtl::string< '>', '=' > {}; struct gt : one< '>' > {}; struct contains : pegtl_istring_t("contains") {}; struct begins : pegtl_istring_t("beginswith") {}; struct ends : pegtl_istring_t("endswith") {}; template struct pad_plus : seq< plus< B >, A, plus< B > > {}; struct padded_oper : pad_plus< sor< contains, begins, ends >, blank > {}; struct symbolic_oper : pad< sor< eq, noteq, lteq, lt, gteq, gt >, blank > {}; // predicates struct comparison_pred : seq< expr, sor< padded_oper, symbolic_oper >, expr > {}; struct pred; struct group_pred : if_must< one< '(' >, pad< pred, blank >, one< ')' > > {}; struct true_pred : pegtl_istring_t("truepredicate") {}; struct false_pred : pegtl_istring_t("falsepredicate") {}; struct not_pre : seq< sor< one< '!' >, pegtl_istring_t("not") > > {}; struct atom_pred : seq< opt< not_pre >, pad< sor< group_pred, true_pred, false_pred, comparison_pred >, blank > > {}; struct and_op : pad< sor< two< '&' >, pegtl_istring_t("and") >, blank > {}; struct or_op : pad< sor< two< '|' >, pegtl_istring_t("or") >, blank > {}; struct or_ext : if_must< or_op, pred > {}; struct and_ext : if_must< and_op, pred > {}; struct and_pred : seq< atom_pred, star< and_ext > > {}; struct pred : seq< and_pred, star< or_ext > > {}; // state struct ParserState { std::vector predicate_stack; Predicate ¤t() { return *predicate_stack.back(); } bool negate_next = false; void addExpression(Expression && exp) { if (current().type == Predicate::Type::Comparison) { current().cmpr.expr[1] = std::move(exp); predicate_stack.pop_back(); } else { Predicate p(Predicate::Type::Comparison); p.cmpr.expr[0] = std::move(exp); if (negate_next) { p.negate = true; negate_next = false; } current().cpnd.sub_predicates.emplace_back(std::move(p)); predicate_stack.push_back(¤t().cpnd.sub_predicates.back()); } } }; // rules template< typename Rule > struct action : nothing< Rule > {}; #ifdef REALM_PARSER_PRINT_TOKENS #define DEBUG_PRINT_TOKEN(string) std::cout << string << std::endl #else #define DEBUG_PRINT_TOKEN(string) #endif template<> struct action< and_ext > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(""); // if we were put into an OR group we need to rearrange auto ¤t = state.current(); if (current.type == Predicate::Type::Or) { auto &sub_preds = state.current().cpnd.sub_predicates; auto &second_last = sub_preds[sub_preds.size()-2]; if (second_last.type == Predicate::Type::And) { // if we are in an OR group and second to last predicate group is // an AND group then move the last predicate inside second_last.cpnd.sub_predicates.push_back(std::move(sub_preds.back())); sub_preds.pop_back(); } else { // otherwise combine last two into a new AND group Predicate pred(Predicate::Type::And); pred.cpnd.sub_predicates.emplace_back(std::move(second_last)); pred.cpnd.sub_predicates.emplace_back(std::move(sub_preds.back())); sub_preds.pop_back(); sub_preds.pop_back(); sub_preds.push_back(std::move(pred)); } } } }; template<> struct action< or_ext > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(""); // if already an OR group do nothing auto ¤t = state.current(); if (current.type == Predicate::Type::Or) { return; } // if only two predicates in the group, then convert to OR auto &sub_preds = state.current().cpnd.sub_predicates; if (sub_preds.size()) { current.type = Predicate::Type::Or; return; } // split the current group into to groups which are ORed together Predicate pred1(Predicate::Type::And), pred2(Predicate::Type::And); pred1.cpnd.sub_predicates.insert(sub_preds.begin(), sub_preds.back()); pred2.cpnd.sub_predicates.push_back(std::move(sub_preds.back())); current.type = Predicate::Type::Or; sub_preds.clear(); sub_preds.emplace_back(std::move(pred1)); sub_preds.emplace_back(std::move(pred2)); } }; #define EXPRESSION_ACTION(rule, type) \ template<> struct action< rule > { \ static void apply( const input & in, ParserState & state ) { \ DEBUG_PRINT_TOKEN(in.string()); \ state.addExpression(Expression(type, in.string())); }}; EXPRESSION_ACTION(dq_string_content, Expression::Type::String) EXPRESSION_ACTION(sq_string_content, Expression::Type::String) EXPRESSION_ACTION(key_path, Expression::Type::KeyPath) EXPRESSION_ACTION(number, Expression::Type::Number) EXPRESSION_ACTION(true_value, Expression::Type::True) EXPRESSION_ACTION(false_value, Expression::Type::False) EXPRESSION_ACTION(argument_index, Expression::Type::Argument) template<> struct action< true_pred > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(in.string()); state.current().cpnd.sub_predicates.emplace_back(Predicate::Type::True); } }; template<> struct action< false_pred > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(in.string()); state.current().cpnd.sub_predicates.emplace_back(Predicate::Type::False); } }; #define OPERATOR_ACTION(rule, oper) \ template<> struct action< rule > { \ static void apply( const input & in, ParserState & state ) { \ DEBUG_PRINT_TOKEN(in.string()); \ state.current().cmpr.op = oper; }}; OPERATOR_ACTION(eq, Predicate::Operator::Equal) OPERATOR_ACTION(noteq, Predicate::Operator::NotEqual) OPERATOR_ACTION(gteq, Predicate::Operator::GreaterThanOrEqual) OPERATOR_ACTION(gt, Predicate::Operator::GreaterThan) OPERATOR_ACTION(lteq, Predicate::Operator::LessThanOrEqual) OPERATOR_ACTION(lt, Predicate::Operator::LessThan) OPERATOR_ACTION(begins, Predicate::Operator::BeginsWith) OPERATOR_ACTION(ends, Predicate::Operator::EndsWith) OPERATOR_ACTION(contains, Predicate::Operator::Contains) template<> struct action< one< '(' > > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(""); Predicate group(Predicate::Type::And); if (state.negate_next) { group.negate = true; state.negate_next = false; } state.current().cpnd.sub_predicates.emplace_back(std::move(group)); state.predicate_stack.push_back(&state.current().cpnd.sub_predicates.back()); } }; template<> struct action< group_pred > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(""); state.predicate_stack.pop_back(); } }; template<> struct action< not_pre > { static void apply( const input & in, ParserState & state ) { DEBUG_PRINT_TOKEN(""); state.negate_next = true; } }; template< typename Rule > struct error_message_control : pegtl::normal< Rule > { static const std::string error_message; template< typename Input, typename ... States > static void raise( const Input & in, States && ... ) { throw pegtl::parse_error( error_message, in ); } }; template<> const std::string error_message_control< chars >::error_message = "Invalid characters in string constant."; template< typename Rule> const std::string error_message_control< Rule >::error_message = "Invalid predicate."; Predicate parse(const std::string &query) { Predicate out_predicate(Predicate::Type::And); ParserState state; state.predicate_stack.push_back(&out_predicate); pegtl::parse< must< pred, eof >, action, error_message_control >(query, query, state); if (out_predicate.type == Predicate::Type::And && out_predicate.cpnd.sub_predicates.size() == 1) { return std::move(out_predicate.cpnd.sub_predicates.back()); } return std::move(out_predicate); } }}