Gaëtan Renaudeau b5985cf690 Refactor bezier implementation from bezier-easing library
Summary:fast & accurate implementation
See https://github.com/gre/bezier-easing
the library is embedded in React Native

fixes #6207 & to follow #6340 (or to replace it)
cc vjeux

tests
 ---

[the lib tests](https://github.com/gre/bezier-easing/blob/master/test/test.js) ensure the library is accurate.
It is tested that the library have a precision better than ±0.000001 .

performance
 ---

On my macbook pro, [the lib benchmark](https://github.com/gre/bezier-easing/blob/master/benchmark.js) have:

```
BezierEasing: instanciation x 1,043,725 ops/sec ±1.46% (82 runs sampled)
BezierEasing: call x 7,866,642 ops/sec ±0.93% (85 runs sampled)
BezierEasing: instanciation + call x 803,051 ops/sec ±1.58% (74 runs sampled)
```
Closes https://github.com/facebook/react-native/pull/6433

Differential Revision: D3045854

Pulled By: vjeux

fb-gh-sync-id: b3c5dba19195a6719967b4fdc8ef940cc067b1f4
shipit-source-id: b3c5dba19195a6719967b4fdc8ef940cc067b1f4
2016-03-12 14:13:22 -08:00

107 lines
3.5 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* https://github.com/gre/bezier-easing
* BezierEasing - use bezier curve for transition easing function
* by Gaëtan Renaudeau 2014 - 2015 MIT License
*
* @providesModule bezier
*/
// These values are established by empiricism with tests (tradeoff: performance VS precision)
var NEWTON_ITERATIONS = 4;
var NEWTON_MIN_SLOPE = 0.001;
var SUBDIVISION_PRECISION = 0.0000001;
var SUBDIVISION_MAX_ITERATIONS = 10;
var kSplineTableSize = 11;
var kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);
var float32ArraySupported = typeof Float32Array === 'function';
function A (aA1, aA2) { return 1.0 - 3.0 * aA2 + 3.0 * aA1; }
function B (aA1, aA2) { return 3.0 * aA2 - 6.0 * aA1; }
function C (aA1) { return 3.0 * aA1; }
// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.
function calcBezier (aT, aA1, aA2) { return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; }
// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.
function getSlope (aT, aA1, aA2) { return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); }
function binarySubdivide (aX, aA, aB, mX1, mX2) {
var currentX, currentT, i = 0;
do {
currentT = aA + (aB - aA) / 2.0;
currentX = calcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
} else {
aA = currentT;
}
} while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
return currentT;
}
function newtonRaphsonIterate (aX, aGuessT, mX1, mX2) {
for (var i = 0; i < NEWTON_ITERATIONS; ++i) {
var currentSlope = getSlope(aGuessT, mX1, mX2);
if (currentSlope === 0.0) {
return aGuessT;
}
var currentX = calcBezier(aGuessT, mX1, mX2) - aX;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
module.exports = function bezier (mX1, mY1, mX2, mY2) {
if (!(0 <= mX1 && mX1 <= 1 && 0 <= mX2 && mX2 <= 1)) { // eslint-disable-line yoda
throw new Error('bezier x values must be in [0, 1] range');
}
// Precompute samples table
var sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);
if (mX1 !== mY1 || mX2 !== mY2) {
for (var i = 0; i < kSplineTableSize; ++i) {
sampleValues[i] = calcBezier(i * kSampleStepSize, mX1, mX2);
}
}
function getTForX (aX) {
var intervalStart = 0.0;
var currentSample = 1;
var lastSample = kSplineTableSize - 1;
for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {
intervalStart += kSampleStepSize;
}
--currentSample;
// Interpolate to provide an initial guess for t
var dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);
var guessForT = intervalStart + dist * kSampleStepSize;
var initialSlope = getSlope(guessForT, mX1, mX2);
if (initialSlope >= NEWTON_MIN_SLOPE) {
return newtonRaphsonIterate(aX, guessForT, mX1, mX2);
} else if (initialSlope === 0.0) {
return guessForT;
} else {
return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, mX1, mX2);
}
}
return function BezierEasing (x) {
if (mX1 === mY1 && mX2 === mY2) {
return x; // linear
}
// Because JavaScript number are imprecise, we should guarantee the extremes are right.
if (x === 0) {
return 0;
}
if (x === 1) {
return 1;
}
return calcBezier(getTForX(x), mY1, mY2);
};
};