react-native/ReactKit/Layout/Layout.c

818 lines
30 KiB
C

/**
* @generated SignedSource<<ebd198356f7097798f4891c0fff583cf>>
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
* !! This file is a check-in from github! !!
* !! !!
* !! You should not modify this file directly. Instead: !!
* !! 1) Go to https://github.com/facebook/css-layout !!
* !! 2) Make a pull request and get it merged !!
* !! 3) Execute ./import.sh to pull in the latest version !!
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*
* Copyright (c) 2014, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "Layout.h"
bool isUndefined(float value) {
return isnan(value);
}
static bool eq(float a, float b) {
if (isUndefined(a)) {
return isUndefined(b);
}
return fabs(a - b) < 0.0001;
}
void init_css_node(css_node_t *node) {
node->style.align_items = CSS_ALIGN_STRETCH;
// Some of the fields default to undefined and not 0
node->style.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
node->style.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
node->style.position[CSS_LEFT] = CSS_UNDEFINED;
node->style.position[CSS_TOP] = CSS_UNDEFINED;
node->style.position[CSS_RIGHT] = CSS_UNDEFINED;
node->style.position[CSS_BOTTOM] = CSS_UNDEFINED;
node->layout.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
node->layout.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
// Such that the comparison is always going to be false
node->layout.last_requested_dimensions[CSS_WIDTH] = -1;
node->layout.last_requested_dimensions[CSS_HEIGHT] = -1;
node->layout.last_parent_max_width = -1;
node->layout.should_update = true;
}
css_node_t *new_css_node() {
css_node_t *node = calloc(1, sizeof(*node));
init_css_node(node);
return node;
}
void free_css_node(css_node_t *node) {
free(node);
}
static void indent(int n) {
for (int i = 0; i < n; ++i) {
printf(" ");
}
}
static void print_number_0(const char *str, float number) {
if (!eq(number, 0)) {
printf("%s: %g, ", str, number);
}
}
static void print_number_nan(const char *str, float number) {
if (!isnan(number)) {
printf("%s: %g, ", str, number);
}
}
static bool four_equal(float four[4]) {
return
eq(four[0], four[1]) &&
eq(four[0], four[2]) &&
eq(four[0], four[3]);
}
static void print_css_node_rec(
css_node_t *node,
css_print_options_t options,
int level
) {
indent(level);
printf("{");
if (node->print) {
node->print(node->context);
}
if (options & CSS_PRINT_LAYOUT) {
printf("layout: {");
printf("width: %g, ", node->layout.dimensions[CSS_WIDTH]);
printf("height: %g, ", node->layout.dimensions[CSS_HEIGHT]);
printf("top: %g, ", node->layout.position[CSS_TOP]);
printf("left: %g", node->layout.position[CSS_LEFT]);
printf("}, ");
}
if (options & CSS_PRINT_STYLE) {
if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW) {
printf("flexDirection: 'row', ");
}
if (node->style.justify_content == CSS_JUSTIFY_CENTER) {
printf("justifyContent: 'center', ");
} else if (node->style.justify_content == CSS_JUSTIFY_FLEX_END) {
printf("justifyContent: 'flex-end', ");
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_AROUND) {
printf("justifyContent: 'space-around', ");
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_BETWEEN) {
printf("justifyContent: 'space-between', ");
}
if (node->style.align_items == CSS_ALIGN_CENTER) {
printf("alignItems: 'center', ");
} else if (node->style.align_items == CSS_ALIGN_FLEX_END) {
printf("alignItems: 'flex-end', ");
} else if (node->style.align_items == CSS_ALIGN_STRETCH) {
printf("alignItems: 'stretch', ");
}
if (node->style.align_self == CSS_ALIGN_FLEX_START) {
printf("alignSelf: 'flex-start', ");
} else if (node->style.align_self == CSS_ALIGN_CENTER) {
printf("alignSelf: 'center', ");
} else if (node->style.align_self == CSS_ALIGN_FLEX_END) {
printf("alignSelf: 'flex-end', ");
} else if (node->style.align_self == CSS_ALIGN_STRETCH) {
printf("alignSelf: 'stretch', ");
}
print_number_nan("flex", node->style.flex);
if (four_equal(node->style.margin)) {
print_number_0("margin", node->style.margin[CSS_LEFT]);
} else {
print_number_0("marginLeft", node->style.margin[CSS_LEFT]);
print_number_0("marginRight", node->style.margin[CSS_RIGHT]);
print_number_0("marginTop", node->style.margin[CSS_TOP]);
print_number_0("marginBottom", node->style.margin[CSS_BOTTOM]);
}
if (four_equal(node->style.padding)) {
print_number_0("padding", node->style.margin[CSS_LEFT]);
} else {
print_number_0("paddingLeft", node->style.padding[CSS_LEFT]);
print_number_0("paddingRight", node->style.padding[CSS_RIGHT]);
print_number_0("paddingTop", node->style.padding[CSS_TOP]);
print_number_0("paddingBottom", node->style.padding[CSS_BOTTOM]);
}
if (four_equal(node->style.border)) {
print_number_0("borderWidth", node->style.border[CSS_LEFT]);
} else {
print_number_0("borderLeftWidth", node->style.border[CSS_LEFT]);
print_number_0("borderRightWidth", node->style.border[CSS_RIGHT]);
print_number_0("borderTopWidth", node->style.border[CSS_TOP]);
print_number_0("borderBottomWidth", node->style.border[CSS_BOTTOM]);
}
print_number_nan("width", node->style.dimensions[CSS_WIDTH]);
print_number_nan("height", node->style.dimensions[CSS_HEIGHT]);
if (node->style.position_type == CSS_POSITION_ABSOLUTE) {
printf("position: 'absolute', ");
}
print_number_nan("left", node->style.position[CSS_LEFT]);
print_number_nan("right", node->style.position[CSS_RIGHT]);
print_number_nan("top", node->style.position[CSS_TOP]);
print_number_nan("bottom", node->style.position[CSS_BOTTOM]);
}
if (options & CSS_PRINT_CHILDREN && node->children_count > 0) {
printf("children: [\n");
for (int i = 0; i < node->children_count; ++i) {
print_css_node_rec(node->get_child(node->context, i), options, level + 1);
}
indent(level);
printf("]},\n");
} else {
printf("},\n");
}
}
void print_css_node(css_node_t *node, css_print_options_t options) {
print_css_node_rec(node, options, 0);
}
static css_position_t leading[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT
};
static css_position_t trailing[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_BOTTOM,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_RIGHT
};
static css_position_t pos[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT
};
static css_dimension_t dim[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_HEIGHT,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_WIDTH
};
static float getMargin(css_node_t *node, int location) {
return node->style.margin[location];
}
static float getPadding(css_node_t *node, int location) {
if (node->style.padding[location] >= 0) {
return node->style.padding[location];
}
return 0;
}
static float getBorder(css_node_t *node, int location) {
if (node->style.border[location] >= 0) {
return node->style.border[location];
}
return 0;
}
static float getPaddingAndBorder(css_node_t *node, int location) {
return getPadding(node, location) + getBorder(node, location);
}
static float getMarginAxis(css_node_t *node, css_flex_direction_t axis) {
return getMargin(node, leading[axis]) + getMargin(node, trailing[axis]);
}
static float getPaddingAndBorderAxis(css_node_t *node, css_flex_direction_t axis) {
return getPaddingAndBorder(node, leading[axis]) + getPaddingAndBorder(node, trailing[axis]);
}
static css_position_type_t getPositionType(css_node_t *node) {
return node->style.position_type;
}
static css_justify_t getJustifyContent(css_node_t *node) {
return node->style.justify_content;
}
static css_align_t getAlignItem(css_node_t *node, css_node_t *child) {
if (child->style.align_self != CSS_ALIGN_AUTO) {
return child->style.align_self;
}
return node->style.align_items;
}
static css_flex_direction_t getFlexDirection(css_node_t *node) {
return node->style.flex_direction;
}
static float getFlex(css_node_t *node) {
return node->style.flex;
}
static bool isFlex(css_node_t *node) {
return (
getPositionType(node) == CSS_POSITION_RELATIVE &&
getFlex(node) > 0
);
}
static bool isFlexWrap(css_node_t *node) {
return node->style.flex_wrap == CSS_WRAP;
}
static float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) {
return node->layout.dimensions[dim[axis]] +
getMargin(node, leading[axis]) +
getMargin(node, trailing[axis]);
}
static bool isDimDefined(css_node_t *node, css_flex_direction_t axis) {
return !isUndefined(node->style.dimensions[dim[axis]]);
}
static bool isPosDefined(css_node_t *node, css_position_t position) {
return !isUndefined(node->style.position[position]);
}
static bool isMeasureDefined(css_node_t *node) {
return node->measure;
}
static float getPosition(css_node_t *node, css_position_t position) {
float result = node->style.position[position];
if (!isUndefined(result)) {
return result;
}
return 0;
}
// When the user specifically sets a value for width or height
static void setDimensionFromStyle(css_node_t *node, css_flex_direction_t axis) {
// The parent already computed us a width or height. We just skip it
if (!isUndefined(node->layout.dimensions[dim[axis]])) {
return;
}
// We only run if there's a width or height defined
if (!isDimDefined(node, axis)) {
return;
}
// The dimensions can never be smaller than the padding and border
node->layout.dimensions[dim[axis]] = fmaxf(
node->style.dimensions[dim[axis]],
getPaddingAndBorderAxis(node, axis)
);
}
// If both left and right are defined, then use left. Otherwise return
// +left or -right depending on which is defined.
static float getRelativePosition(css_node_t *node, css_flex_direction_t axis) {
float lead = node->style.position[leading[axis]];
if (!isUndefined(lead)) {
return lead;
}
return -getPosition(node, trailing[axis]);
}
static void layoutNodeImpl(css_node_t *node, float parentMaxWidth) {
/** START_GENERATED **/
css_flex_direction_t mainAxis = getFlexDirection(node);
css_flex_direction_t crossAxis = mainAxis == CSS_FLEX_DIRECTION_ROW ?
CSS_FLEX_DIRECTION_COLUMN :
CSS_FLEX_DIRECTION_ROW;
// Handle width and height style attributes
setDimensionFromStyle(node, mainAxis);
setDimensionFromStyle(node, crossAxis);
// The position is set by the parent, but we need to complete it with a
// delta composed of the margin and left/top/right/bottom
node->layout.position[leading[mainAxis]] += getMargin(node, leading[mainAxis]) +
getRelativePosition(node, mainAxis);
node->layout.position[leading[crossAxis]] += getMargin(node, leading[crossAxis]) +
getRelativePosition(node, crossAxis);
if (isMeasureDefined(node)) {
float width = CSS_UNDEFINED;
if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
width = node->style.dimensions[CSS_WIDTH];
} else if (!isUndefined(node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]])) {
width = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]];
} else {
width = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW);
}
width -= getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
// We only need to give a dimension for the text if we haven't got any
// for it computed yet. It can either be from the style attribute or because
// the element is flexible.
bool isRowUndefined = !isDimDefined(node, CSS_FLEX_DIRECTION_ROW) &&
isUndefined(node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]]);
bool isColumnUndefined = !isDimDefined(node, CSS_FLEX_DIRECTION_COLUMN) &&
isUndefined(node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]);
// Let's not measure the text if we already know both dimensions
if (isRowUndefined || isColumnUndefined) {
css_dim_t measure_dim = node->measure(
node->context,
width
);
if (isRowUndefined) {
node->layout.dimensions[CSS_WIDTH] = measure_dim.dimensions[CSS_WIDTH] +
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
if (isColumnUndefined) {
node->layout.dimensions[CSS_HEIGHT] = measure_dim.dimensions[CSS_HEIGHT] +
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
}
}
return;
}
// Pre-fill some dimensions straight from the parent
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
// Pre-fill cross axis dimensions when the child is using stretch before
// we call the recursive layout pass
if (getAlignItem(node, child) == CSS_ALIGN_STRETCH &&
getPositionType(child) == CSS_POSITION_RELATIVE &&
!isUndefined(node->layout.dimensions[dim[crossAxis]]) &&
!isDimDefined(child, crossAxis)) {
child->layout.dimensions[dim[crossAxis]] = fmaxf(
node->layout.dimensions[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
} else if (getPositionType(child) == CSS_POSITION_ABSOLUTE) {
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
// left and right or top and bottom).
for (int ii = 0; ii < 2; ii++) {
css_flex_direction_t axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node->layout.dimensions[dim[axis]]) &&
!isDimDefined(child, axis) &&
isPosDefined(child, leading[axis]) &&
isPosDefined(child, trailing[axis])) {
child->layout.dimensions[dim[axis]] = fmaxf(
node->layout.dimensions[dim[axis]] -
getPaddingAndBorderAxis(node, axis) -
getMarginAxis(child, axis) -
getPosition(child, leading[axis]) -
getPosition(child, trailing[axis]),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, axis)
);
}
}
}
}
float definedMainDim = CSS_UNDEFINED;
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
definedMainDim = node->layout.dimensions[dim[mainAxis]] -
getPaddingAndBorderAxis(node, mainAxis);
}
// We want to execute the next two loops one per line with flex-wrap
int startLine = 0;
int endLine = 0;
int nextLine = 0;
// We aggregate the total dimensions of the container in those two variables
float linesCrossDim = 0;
float linesMainDim = 0;
while (endLine != node->children_count) {
// <Loop A> Layout non flexible children and count children by type
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
float mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
int flexibleChildrenCount = 0;
float totalFlexible = 0;
int nonFlexibleChildrenCount = 0;
for (int i = startLine; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
float nextContentDim = 0;
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node->
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
float maxWidth = CSS_UNDEFINED;
if (mainAxis == CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// This is the main recursive call. We layout non flexible children.
if (nextLine == 0) {
layoutNode(child, maxWidth);
}
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
}
// The element we are about to add would make us go to the next line
if (isFlexWrap(node) &&
!isUndefined(node->layout.dimensions[dim[mainAxis]]) &&
mainContentDim + nextContentDim > definedMainDim) {
nextLine = i + 1;
break;
}
nextLine = 0;
mainContentDim += nextContentDim;
endLine = i + 1;
}
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
// The remaining available space that needs to be allocated
float remainingMainDim = 0;
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
remainingMainDim = definedMainDim - mainContentDim;
} else {
remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
}
// If there are flexible children in the mix, they are going to fill the
// remaining space
if (flexibleChildrenCount != 0) {
float flexibleMainDim = remainingMainDim / totalFlexible;
// The non flexible children can overflow the container, in this case
// we should just assume that there is no space available.
if (flexibleMainDim < 0) {
flexibleMainDim = 0;
}
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
float maxWidth = CSS_UNDEFINED;
if (mainAxis == CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
}
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
css_justify_t justifyContent = getJustifyContent(node);
if (justifyContent == CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent == CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
float crossDim = 0;
float mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child->layout.position[pos[mainAxis]] += mainDim;
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
}
}
float containerMainAxis = node->layout.dimensions[dim[mainAxis]];
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
containerMainAxis = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
float containerCrossAxis = node->layout.dimensions[dim[crossAxis]];
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
containerCrossAxis = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
float leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
css_align_t alignItem = getAlignItem(node, child);
if (alignItem == CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem == CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child->layout.dimensions[dim[crossAxis]] = fmaxf(
containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child->layout.position[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
}
}
linesCrossDim += crossDim;
linesMainDim = fmaxf(linesMainDim, mainDim);
startLine = endLine;
}
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
node->layout.dimensions[dim[mainAxis]] = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
linesMainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
node->layout.dimensions[dim[crossAxis]] = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
linesCrossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop E> Calculate dimensions for absolutely positioned elements
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE) {
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
// left and right or top and bottom).
for (int ii = 0; ii < 2; ii++) {
css_flex_direction_t axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node->layout.dimensions[dim[axis]]) &&
!isDimDefined(child, axis) &&
isPosDefined(child, leading[axis]) &&
isPosDefined(child, trailing[axis])) {
child->layout.dimensions[dim[axis]] = fmaxf(
node->layout.dimensions[dim[axis]] -
getPaddingAndBorderAxis(node, axis) -
getMarginAxis(child, axis) -
getPosition(child, leading[axis]) -
getPosition(child, trailing[axis]),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, axis)
);
}
}
for (int ii = 0; ii < 2; ii++) {
css_flex_direction_t axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (isPosDefined(child, trailing[axis]) &&
!isPosDefined(child, leading[axis])) {
child->layout.position[leading[axis]] =
node->layout.dimensions[dim[axis]] -
child->layout.dimensions[dim[axis]] -
getPosition(child, trailing[axis]);
}
}
}
}
/** END_GENERATED **/
}
void layoutNode(css_node_t *node, float parentMaxWidth) {
css_layout_t *layout = &node->layout;
layout->should_update = true;
bool skipLayout =
!node->is_dirty(node->context) &&
eq(layout->last_requested_dimensions[CSS_WIDTH], layout->dimensions[CSS_WIDTH]) &&
eq(layout->last_requested_dimensions[CSS_HEIGHT], layout->dimensions[CSS_HEIGHT]) &&
eq(layout->last_parent_max_width, parentMaxWidth);
if (skipLayout) {
layout->dimensions[CSS_WIDTH] = layout->last_dimensions[CSS_WIDTH];
layout->dimensions[CSS_HEIGHT] = layout->last_dimensions[CSS_HEIGHT];
layout->position[CSS_TOP] = layout->last_position[CSS_TOP];
layout->position[CSS_LEFT] = layout->last_position[CSS_LEFT];
} else {
layout->last_requested_dimensions[CSS_WIDTH] = layout->dimensions[CSS_WIDTH];
layout->last_requested_dimensions[CSS_HEIGHT] = layout->dimensions[CSS_HEIGHT];
layout->last_parent_max_width = parentMaxWidth;
layoutNodeImpl(node, parentMaxWidth);
layout->last_dimensions[CSS_WIDTH] = layout->dimensions[CSS_WIDTH];
layout->last_dimensions[CSS_HEIGHT] = layout->dimensions[CSS_HEIGHT];
layout->last_position[CSS_TOP] = layout->position[CSS_TOP];
layout->last_position[CSS_LEFT] = layout->position[CSS_LEFT];
}
}