Valentin Shergin 9842e39019 Fabric: folly::dynamic was replaced with RawValue in prop-parsing infra
Summary:
Our long-term plan is to completely illuminate `jsi::Value`-to-`folly::dynamic` serialization step in prop parsing process improving performance and memory pressure. At the same time, we don't want to introduce a hard dependency in application code to JSI because it exposes direct access to VM and prevents parsing some data that come *NOT* from JSVM.
RawValue is an extremely light-weight (hopefully fully optimized-out) abstraction that provides limited JSON-like and C++-idiomatic interface.

The current particular implementation is still using `folly::dynamic` inside, but I have fully JSI-powered one which will replace the current one right after we figure out how to deal with folly::dynamic-specific callsites. Or we can implement RawValue in a hybrid manner if a code-size implication of that will be minimal.

Reviewed By: JoshuaGross, mdvacca

Differential Revision: D13962466

fbshipit-source-id: e848522fd242f21e9e771773f2103f1c1d9d7f21
2019-02-06 16:34:46 -08:00

183 lines
5.2 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <folly/dynamic.h>
#include <react/core/RawProps.h>
#include <react/graphics/Color.h>
#include <react/graphics/Geometry.h>
namespace facebook {
namespace react {
#pragma mark - Color
inline void fromRawValue(const RawValue &value, SharedColor &result) {
float red;
float green;
float blue;
float alpha;
if (value.hasType<int>()) {
auto argb = (int64_t)value;
auto ratio = 256.f;
alpha = ((argb >> 24) & 0xFF) / ratio;
red = ((argb >> 16) & 0xFF) / ratio;
green = ((argb >> 8) & 0xFF) / ratio;
blue = (argb & 0xFF) / ratio;
} else if (value.hasType<std::vector<float>>()) {
auto items = (std::vector<float>)value;
auto length = items.size();
assert(length == 3 || length == 4);
red = items.at(0);
green = items.at(1);
blue = items.at(2);
alpha = length == 4 ? items.at(3) : 1.0;
} else {
abort();
}
result = colorFromComponents({red, green, blue, alpha});
}
#ifdef ANDROID
inline folly::dynamic toDynamic(const SharedColor &color) {
ColorComponents components = colorComponentsFromColor(color);
auto ratio = 256.f;
return (
((int)(components.alpha * ratio) & 0xff) << 24 |
((int)(components.red * ratio) & 0xff) << 16 |
((int)(components.green * ratio) & 0xff) << 8 |
((int)(components.blue * ratio) & 0xff));
}
#endif
inline std::string toString(const SharedColor &value) {
ColorComponents components = colorComponentsFromColor(value);
auto ratio = 256.f;
return "rgba(" + folly::to<std::string>(round(components.red * ratio)) +
", " + folly::to<std::string>(round(components.green * ratio)) + ", " +
folly::to<std::string>(round(components.blue * ratio)) + ", " +
folly::to<std::string>(round(components.alpha * ratio)) + ")";
}
#pragma mark - Geometry
inline void fromRawValue(const RawValue &value, Point &result) {
if (value.hasType<std::unordered_map<std::string, Float>>()) {
auto map = (std::unordered_map<std::string, Float>)value;
result = {map.at("x"), map.at("y")};
return;
}
if (value.hasType<std::vector<Float>>()) {
auto array = (std::vector<Float>)value;
assert(array.size() == 2);
result = {array.at(0), array.at(1)};
return;
}
abort();
}
inline void fromRawValue(const RawValue &value, Size &result) {
if (value.hasType<std::unordered_map<std::string, Float>>()) {
auto map = (std::unordered_map<std::string, Float>)value;
result = {map.at("width"), map.at("height")};
return;
}
if (value.hasType<std::vector<Float>>()) {
auto array = (std::vector<Float>)value;
assert(array.size() == 2);
result = {array.at(0), array.at(1)};
return;
}
abort();
}
inline void fromRawValue(const RawValue &value, EdgeInsets &result) {
if (value.hasType<Float>()) {
auto number = (Float)value;
result = {number, number, number, number};
}
if (value.hasType<std::unordered_map<std::string, Float>>()) {
auto map = (std::unordered_map<std::string, Float>)value;
result = {map.at("top"), map.at("left"), map.at("bottom"), map.at("right")};
return;
}
if (value.hasType<std::vector<Float>>()) {
auto array = (std::vector<Float>)value;
assert(array.size() == 4);
result = {array.at(0), array.at(1), array.at(2), array.at(3)};
return;
}
abort();
}
inline void fromRawValue(const RawValue &value, CornerInsets &result) {
if (value.hasType<Float>()) {
auto number = (Float)value;
result = {number, number, number, number};
}
if (value.hasType<std::unordered_map<std::string, Float>>()) {
auto map = (std::unordered_map<std::string, Float>)value;
result = {map.at("topLeft"),
map.at("topRight"),
map.at("bottomLeft"),
map.at("bottomRight")};
return;
}
if (value.hasType<std::vector<Float>>()) {
auto array = (std::vector<Float>)value;
assert(array.size() == 4);
result = {array.at(0), array.at(1), array.at(2), array.at(3)};
return;
}
abort();
}
inline std::string toString(const Point &point) {
return "{" + folly::to<std::string>(point.x) + ", " +
folly::to<std::string>(point.y) + "}";
}
inline std::string toString(const Size &size) {
return "{" + folly::to<std::string>(size.width) + ", " +
folly::to<std::string>(size.height) + "}";
}
inline std::string toString(const Rect &rect) {
return "{" + toString(rect.origin) + ", " + toString(rect.size) + "}";
}
inline std::string toString(const EdgeInsets &edgeInsets) {
return "{" + folly::to<std::string>(edgeInsets.left) + ", " +
folly::to<std::string>(edgeInsets.top) + ", " +
folly::to<std::string>(edgeInsets.right) + ", " +
folly::to<std::string>(edgeInsets.bottom) + "}";
}
inline std::string toString(const CornerInsets &cornerInsets) {
return "{" + folly::to<std::string>(cornerInsets.topLeft) + ", " +
folly::to<std::string>(cornerInsets.topRight) + ", " +
folly::to<std::string>(cornerInsets.bottomLeft) + ", " +
folly::to<std::string>(cornerInsets.bottomRight) + "}";
}
} // namespace react
} // namespace facebook