mirror of
https://github.com/status-im/react-native.git
synced 2025-01-28 10:14:49 +00:00
f22e86e18d
Reviewed By: javache Differential Revision: D3561358 fbshipit-source-id: 894367bf2e019e5f9fbd40d34ef2752f26645b90
1813 lines
76 KiB
C
1813 lines
76 KiB
C
/**
|
|
* Copyright (c) 2014-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD-style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "CSSLayout.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#include <float.h>
|
|
#define isnan _isnan
|
|
|
|
/* define fmaxf if < VC12 */
|
|
#if _MSC_VER < 1800
|
|
__forceinline const float fmaxf(const float a, const float b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#define POSITIVE_FLEX_IS_AUTO 0
|
|
|
|
int gCurrentGenerationCount = 0;
|
|
|
|
bool layoutNodeInternal(css_node_t* node, float availableWidth, float availableHeight, css_direction_t parentDirection,
|
|
css_measure_mode_t widthMeasureMode, css_measure_mode_t heightMeasureMode, bool performLayout, char* reason);
|
|
|
|
bool isUndefined(float value) {
|
|
return isnan(value);
|
|
}
|
|
|
|
static bool eq(float a, float b) {
|
|
if (isUndefined(a)) {
|
|
return isUndefined(b);
|
|
}
|
|
return fabs(a - b) < 0.0001;
|
|
}
|
|
|
|
void init_css_node(css_node_t* node) {
|
|
node->style.align_items = CSS_ALIGN_STRETCH;
|
|
node->style.align_content = CSS_ALIGN_FLEX_START;
|
|
|
|
node->style.direction = CSS_DIRECTION_INHERIT;
|
|
node->style.flex_direction = CSS_FLEX_DIRECTION_COLUMN;
|
|
|
|
node->style.overflow = CSS_OVERFLOW_VISIBLE;
|
|
|
|
// Some of the fields default to undefined and not 0
|
|
node->style.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.minDimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.minDimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.maxDimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.maxDimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.position[CSS_LEFT] = CSS_UNDEFINED;
|
|
node->style.position[CSS_TOP] = CSS_UNDEFINED;
|
|
node->style.position[CSS_RIGHT] = CSS_UNDEFINED;
|
|
node->style.position[CSS_BOTTOM] = CSS_UNDEFINED;
|
|
|
|
node->style.margin[CSS_START] = CSS_UNDEFINED;
|
|
node->style.margin[CSS_END] = CSS_UNDEFINED;
|
|
node->style.padding[CSS_START] = CSS_UNDEFINED;
|
|
node->style.padding[CSS_END] = CSS_UNDEFINED;
|
|
node->style.border[CSS_START] = CSS_UNDEFINED;
|
|
node->style.border[CSS_END] = CSS_UNDEFINED;
|
|
|
|
node->layout.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->layout.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
// Such that the comparison is always going to be false
|
|
node->layout.last_parent_direction = (css_direction_t)-1;
|
|
node->layout.should_update = true;
|
|
node->layout.next_cached_measurements_index = 0;
|
|
|
|
node->layout.measured_dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
node->layout.cached_layout.width_measure_mode = (css_measure_mode_t)-1;
|
|
node->layout.cached_layout.height_measure_mode = (css_measure_mode_t)-1;
|
|
}
|
|
|
|
css_node_t* new_css_node() {
|
|
css_node_t* node = (css_node_t*)calloc(1, sizeof(*node));
|
|
init_css_node(node);
|
|
return node;
|
|
}
|
|
|
|
void free_css_node(css_node_t* node) {
|
|
free(node);
|
|
}
|
|
|
|
static void indent(int n) {
|
|
for (int i = 0; i < n; ++i) {
|
|
printf(" ");
|
|
}
|
|
}
|
|
|
|
static void print_number_0(const char* str, float number) {
|
|
if (!eq(number, 0)) {
|
|
printf("%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static void print_number_nan(const char* str, float number) {
|
|
if (!isnan(number)) {
|
|
printf("%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static bool four_equal(float four[4]) {
|
|
return
|
|
eq(four[0], four[1]) &&
|
|
eq(four[0], four[2]) &&
|
|
eq(four[0], four[3]);
|
|
}
|
|
|
|
|
|
static void print_css_node_rec(
|
|
css_node_t* node,
|
|
css_print_options_t options,
|
|
int level
|
|
) {
|
|
indent(level);
|
|
printf("{");
|
|
|
|
if (node->print) {
|
|
node->print(node->context);
|
|
}
|
|
|
|
if (options & CSS_PRINT_LAYOUT) {
|
|
printf("layout: {");
|
|
printf("width: %g, ", node->layout.dimensions[CSS_WIDTH]);
|
|
printf("height: %g, ", node->layout.dimensions[CSS_HEIGHT]);
|
|
printf("top: %g, ", node->layout.position[CSS_TOP]);
|
|
printf("left: %g", node->layout.position[CSS_LEFT]);
|
|
printf("}, ");
|
|
}
|
|
|
|
if (options & CSS_PRINT_STYLE) {
|
|
if (node->style.flex_direction == CSS_FLEX_DIRECTION_COLUMN) {
|
|
printf("flexDirection: 'column', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
printf("flexDirection: 'column-reverse', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW) {
|
|
printf("flexDirection: 'row', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE) {
|
|
printf("flexDirection: 'row-reverse', ");
|
|
}
|
|
|
|
if (node->style.justify_content == CSS_JUSTIFY_CENTER) {
|
|
printf("justifyContent: 'center', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_FLEX_END) {
|
|
printf("justifyContent: 'flex-end', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_AROUND) {
|
|
printf("justifyContent: 'space-around', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_BETWEEN) {
|
|
printf("justifyContent: 'space-between', ");
|
|
}
|
|
|
|
if (node->style.align_items == CSS_ALIGN_CENTER) {
|
|
printf("alignItems: 'center', ");
|
|
} else if (node->style.align_items == CSS_ALIGN_FLEX_END) {
|
|
printf("alignItems: 'flex-end', ");
|
|
} else if (node->style.align_items == CSS_ALIGN_STRETCH) {
|
|
printf("alignItems: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.align_content == CSS_ALIGN_CENTER) {
|
|
printf("alignContent: 'center', ");
|
|
} else if (node->style.align_content == CSS_ALIGN_FLEX_END) {
|
|
printf("alignContent: 'flex-end', ");
|
|
} else if (node->style.align_content == CSS_ALIGN_STRETCH) {
|
|
printf("alignContent: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.align_self == CSS_ALIGN_FLEX_START) {
|
|
printf("alignSelf: 'flex-start', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_CENTER) {
|
|
printf("alignSelf: 'center', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_FLEX_END) {
|
|
printf("alignSelf: 'flex-end', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_STRETCH) {
|
|
printf("alignSelf: 'stretch', ");
|
|
}
|
|
|
|
print_number_nan("flex", node->style.flex);
|
|
|
|
if (node->style.overflow == CSS_OVERFLOW_HIDDEN) {
|
|
printf("overflow: 'hidden', ");
|
|
} else if (node->style.overflow == CSS_OVERFLOW_VISIBLE) {
|
|
printf("overflow: 'visible', ");
|
|
}
|
|
|
|
if (four_equal(node->style.margin)) {
|
|
print_number_0("margin", node->style.margin[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("marginLeft", node->style.margin[CSS_LEFT]);
|
|
print_number_0("marginRight", node->style.margin[CSS_RIGHT]);
|
|
print_number_0("marginTop", node->style.margin[CSS_TOP]);
|
|
print_number_0("marginBottom", node->style.margin[CSS_BOTTOM]);
|
|
print_number_0("marginStart", node->style.margin[CSS_START]);
|
|
print_number_0("marginEnd", node->style.margin[CSS_END]);
|
|
}
|
|
|
|
if (four_equal(node->style.padding)) {
|
|
print_number_0("padding", node->style.padding[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("paddingLeft", node->style.padding[CSS_LEFT]);
|
|
print_number_0("paddingRight", node->style.padding[CSS_RIGHT]);
|
|
print_number_0("paddingTop", node->style.padding[CSS_TOP]);
|
|
print_number_0("paddingBottom", node->style.padding[CSS_BOTTOM]);
|
|
print_number_0("paddingStart", node->style.padding[CSS_START]);
|
|
print_number_0("paddingEnd", node->style.padding[CSS_END]);
|
|
}
|
|
|
|
if (four_equal(node->style.border)) {
|
|
print_number_0("borderWidth", node->style.border[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("borderLeftWidth", node->style.border[CSS_LEFT]);
|
|
print_number_0("borderRightWidth", node->style.border[CSS_RIGHT]);
|
|
print_number_0("borderTopWidth", node->style.border[CSS_TOP]);
|
|
print_number_0("borderBottomWidth", node->style.border[CSS_BOTTOM]);
|
|
print_number_0("borderStartWidth", node->style.border[CSS_START]);
|
|
print_number_0("borderEndWidth", node->style.border[CSS_END]);
|
|
}
|
|
|
|
print_number_nan("width", node->style.dimensions[CSS_WIDTH]);
|
|
print_number_nan("height", node->style.dimensions[CSS_HEIGHT]);
|
|
print_number_nan("maxWidth", node->style.maxDimensions[CSS_WIDTH]);
|
|
print_number_nan("maxHeight", node->style.maxDimensions[CSS_HEIGHT]);
|
|
print_number_nan("minWidth", node->style.minDimensions[CSS_WIDTH]);
|
|
print_number_nan("minHeight", node->style.minDimensions[CSS_HEIGHT]);
|
|
|
|
if (node->style.position_type == CSS_POSITION_ABSOLUTE) {
|
|
printf("position: 'absolute', ");
|
|
}
|
|
|
|
print_number_nan("left", node->style.position[CSS_LEFT]);
|
|
print_number_nan("right", node->style.position[CSS_RIGHT]);
|
|
print_number_nan("top", node->style.position[CSS_TOP]);
|
|
print_number_nan("bottom", node->style.position[CSS_BOTTOM]);
|
|
}
|
|
|
|
if (options & CSS_PRINT_CHILDREN && node->children_count > 0) {
|
|
printf("children: [\n");
|
|
for (int i = 0; i < node->children_count; ++i) {
|
|
print_css_node_rec(node->get_child(node->context, i), options, level + 1);
|
|
}
|
|
indent(level);
|
|
printf("]},\n");
|
|
} else {
|
|
printf("},\n");
|
|
}
|
|
}
|
|
|
|
void print_css_node(css_node_t* node, css_print_options_t options) {
|
|
print_css_node_rec(node, options, 0);
|
|
}
|
|
|
|
static css_position_t leading[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_RIGHT
|
|
};
|
|
static css_position_t trailing[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_RIGHT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_LEFT
|
|
};
|
|
static css_position_t pos[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_RIGHT
|
|
};
|
|
static css_dimension_t dim[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_HEIGHT,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_HEIGHT,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_WIDTH,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_WIDTH
|
|
};
|
|
|
|
static bool isRowDirection(css_flex_direction_t flex_direction) {
|
|
return flex_direction == CSS_FLEX_DIRECTION_ROW ||
|
|
flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE;
|
|
}
|
|
|
|
static bool isColumnDirection(css_flex_direction_t flex_direction) {
|
|
return flex_direction == CSS_FLEX_DIRECTION_COLUMN ||
|
|
flex_direction == CSS_FLEX_DIRECTION_COLUMN_REVERSE;
|
|
}
|
|
|
|
static bool isFlexBasisAuto(css_node_t* node) {
|
|
#if POSITIVE_FLEX_IS_AUTO
|
|
// All flex values are auto.
|
|
(void) node;
|
|
return true;
|
|
#else
|
|
// A flex value > 0 implies a basis of zero.
|
|
return node->style.flex <= 0;
|
|
#endif
|
|
}
|
|
|
|
static float getFlexGrowFactor(css_node_t* node) {
|
|
// Flex grow is implied by positive values for flex.
|
|
if (node->style.flex > 0) {
|
|
return node->style.flex;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static float getFlexShrinkFactor(css_node_t* node) {
|
|
#if POSITIVE_FLEX_IS_AUTO
|
|
// A flex shrink factor of 1 is implied by non-zero values for flex.
|
|
if (node->style.flex != 0) {
|
|
return 1;
|
|
}
|
|
#else
|
|
// A flex shrink factor of 1 is implied by negative values for flex.
|
|
if (node->style.flex < 0) {
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static float getLeadingMargin(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) && !isUndefined(node->style.margin[CSS_START])) {
|
|
return node->style.margin[CSS_START];
|
|
}
|
|
|
|
return node->style.margin[leading[axis]];
|
|
}
|
|
|
|
static float getTrailingMargin(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) && !isUndefined(node->style.margin[CSS_END])) {
|
|
return node->style.margin[CSS_END];
|
|
}
|
|
|
|
return node->style.margin[trailing[axis]];
|
|
}
|
|
|
|
static float getLeadingPadding(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.padding[CSS_START]) &&
|
|
node->style.padding[CSS_START] >= 0) {
|
|
return node->style.padding[CSS_START];
|
|
}
|
|
|
|
if (node->style.padding[leading[axis]] >= 0) {
|
|
return node->style.padding[leading[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getTrailingPadding(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.padding[CSS_END]) &&
|
|
node->style.padding[CSS_END] >= 0) {
|
|
return node->style.padding[CSS_END];
|
|
}
|
|
|
|
if (node->style.padding[trailing[axis]] >= 0) {
|
|
return node->style.padding[trailing[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getLeadingBorder(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.border[CSS_START]) &&
|
|
node->style.border[CSS_START] >= 0) {
|
|
return node->style.border[CSS_START];
|
|
}
|
|
|
|
if (node->style.border[leading[axis]] >= 0) {
|
|
return node->style.border[leading[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getTrailingBorder(css_node_t* node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.border[CSS_END]) &&
|
|
node->style.border[CSS_END] >= 0) {
|
|
return node->style.border[CSS_END];
|
|
}
|
|
|
|
if (node->style.border[trailing[axis]] >= 0) {
|
|
return node->style.border[trailing[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getLeadingPaddingAndBorder(css_node_t* node, css_flex_direction_t axis) {
|
|
return getLeadingPadding(node, axis) + getLeadingBorder(node, axis);
|
|
}
|
|
|
|
static float getTrailingPaddingAndBorder(css_node_t* node, css_flex_direction_t axis) {
|
|
return getTrailingPadding(node, axis) + getTrailingBorder(node, axis);
|
|
}
|
|
|
|
static float getMarginAxis(css_node_t* node, css_flex_direction_t axis) {
|
|
return getLeadingMargin(node, axis) + getTrailingMargin(node, axis);
|
|
}
|
|
|
|
static float getPaddingAndBorderAxis(css_node_t* node, css_flex_direction_t axis) {
|
|
return getLeadingPaddingAndBorder(node, axis) + getTrailingPaddingAndBorder(node, axis);
|
|
}
|
|
|
|
static css_align_t getAlignItem(css_node_t* node, css_node_t* child) {
|
|
if (child->style.align_self != CSS_ALIGN_AUTO) {
|
|
return child->style.align_self;
|
|
}
|
|
return node->style.align_items;
|
|
}
|
|
|
|
static css_direction_t resolveDirection(css_node_t* node, css_direction_t parentDirection) {
|
|
css_direction_t direction = node->style.direction;
|
|
|
|
if (direction == CSS_DIRECTION_INHERIT) {
|
|
direction = parentDirection > CSS_DIRECTION_INHERIT ? parentDirection : CSS_DIRECTION_LTR;
|
|
}
|
|
|
|
return direction;
|
|
}
|
|
|
|
static css_flex_direction_t getFlexDirection(css_node_t* node) {
|
|
return node->style.flex_direction;
|
|
}
|
|
|
|
static css_flex_direction_t resolveAxis(css_flex_direction_t flex_direction, css_direction_t direction) {
|
|
if (direction == CSS_DIRECTION_RTL) {
|
|
if (flex_direction == CSS_FLEX_DIRECTION_ROW) {
|
|
return CSS_FLEX_DIRECTION_ROW_REVERSE;
|
|
} else if (flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE) {
|
|
return CSS_FLEX_DIRECTION_ROW;
|
|
}
|
|
}
|
|
|
|
return flex_direction;
|
|
}
|
|
|
|
static css_flex_direction_t getCrossFlexDirection(css_flex_direction_t flex_direction, css_direction_t direction) {
|
|
if (isColumnDirection(flex_direction)) {
|
|
return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction);
|
|
} else {
|
|
return CSS_FLEX_DIRECTION_COLUMN;
|
|
}
|
|
}
|
|
|
|
static float getFlex(css_node_t* node) {
|
|
return node->style.flex;
|
|
}
|
|
|
|
static bool isFlex(css_node_t* node) {
|
|
return (
|
|
node->style.position_type == CSS_POSITION_RELATIVE &&
|
|
getFlex(node) != 0
|
|
);
|
|
}
|
|
|
|
static bool isFlexWrap(css_node_t* node) {
|
|
return node->style.flex_wrap == CSS_WRAP;
|
|
}
|
|
|
|
static float getDimWithMargin(css_node_t* node, css_flex_direction_t axis) {
|
|
return node->layout.measured_dimensions[dim[axis]] +
|
|
getLeadingMargin(node, axis) +
|
|
getTrailingMargin(node, axis);
|
|
}
|
|
|
|
static bool isStyleDimDefined(css_node_t* node, css_flex_direction_t axis) {
|
|
float value = node->style.dimensions[dim[axis]];
|
|
return !isUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static bool isLayoutDimDefined(css_node_t* node, css_flex_direction_t axis) {
|
|
float value = node->layout.measured_dimensions[dim[axis]];
|
|
return !isUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static bool isPosDefined(css_node_t* node, css_position_t position) {
|
|
return !isUndefined(node->style.position[position]);
|
|
}
|
|
|
|
static bool isMeasureDefined(css_node_t* node) {
|
|
return node->measure;
|
|
}
|
|
|
|
static float getPosition(css_node_t* node, css_position_t position) {
|
|
float result = node->style.position[position];
|
|
if (!isUndefined(result)) {
|
|
return result;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static float boundAxisWithinMinAndMax(css_node_t* node, css_flex_direction_t axis, float value) {
|
|
float min = CSS_UNDEFINED;
|
|
float max = CSS_UNDEFINED;
|
|
|
|
if (isColumnDirection(axis)) {
|
|
min = node->style.minDimensions[CSS_HEIGHT];
|
|
max = node->style.maxDimensions[CSS_HEIGHT];
|
|
} else if (isRowDirection(axis)) {
|
|
min = node->style.minDimensions[CSS_WIDTH];
|
|
max = node->style.maxDimensions[CSS_WIDTH];
|
|
}
|
|
|
|
float boundValue = value;
|
|
|
|
if (!isUndefined(max) && max >= 0.0 && boundValue > max) {
|
|
boundValue = max;
|
|
}
|
|
if (!isUndefined(min) && min >= 0.0 && boundValue < min) {
|
|
boundValue = min;
|
|
}
|
|
|
|
return boundValue;
|
|
}
|
|
|
|
// Like boundAxisWithinMinAndMax but also ensures that the value doesn't go below the
|
|
// padding and border amount.
|
|
static float boundAxis(css_node_t* node, css_flex_direction_t axis, float value) {
|
|
return fmaxf(boundAxisWithinMinAndMax(node, axis, value), getPaddingAndBorderAxis(node, axis));
|
|
}
|
|
|
|
static void setTrailingPosition(css_node_t* node, css_node_t* child, css_flex_direction_t axis) {
|
|
float size = child->style.position_type == CSS_POSITION_ABSOLUTE ?
|
|
0 :
|
|
child->layout.measured_dimensions[dim[axis]];
|
|
child->layout.position[trailing[axis]] = node->layout.measured_dimensions[dim[axis]] - size - child->layout.position[pos[axis]];
|
|
}
|
|
|
|
// If both left and right are defined, then use left. Otherwise return
|
|
// +left or -right depending on which is defined.
|
|
static float getRelativePosition(css_node_t* node, css_flex_direction_t axis) {
|
|
float lead = node->style.position[leading[axis]];
|
|
if (!isUndefined(lead)) {
|
|
return lead;
|
|
}
|
|
return -getPosition(node, trailing[axis]);
|
|
}
|
|
|
|
static void setPosition(css_node_t* node, css_direction_t direction) {
|
|
css_flex_direction_t mainAxis = resolveAxis(getFlexDirection(node), direction);
|
|
css_flex_direction_t crossAxis = getCrossFlexDirection(mainAxis, direction);
|
|
|
|
node->layout.position[leading[mainAxis]] = getLeadingMargin(node, mainAxis) +
|
|
getRelativePosition(node, mainAxis);
|
|
node->layout.position[trailing[mainAxis]] = getTrailingMargin(node, mainAxis) +
|
|
getRelativePosition(node, mainAxis);
|
|
node->layout.position[leading[crossAxis]] = getLeadingMargin(node, crossAxis) +
|
|
getRelativePosition(node, crossAxis);
|
|
node->layout.position[trailing[crossAxis]] = getTrailingMargin(node, crossAxis) +
|
|
getRelativePosition(node, crossAxis);
|
|
}
|
|
|
|
//
|
|
// This is the main routine that implements a subset of the flexbox layout algorithm
|
|
// described in the W3C CSS documentation: https://www.w3.org/TR/css3-flexbox/.
|
|
//
|
|
// Limitations of this algorithm, compared to the full standard:
|
|
// * Display property is always assumed to be 'flex' except for Text nodes, which
|
|
// are assumed to be 'inline-flex'.
|
|
// * The 'zIndex' property (or any form of z ordering) is not supported. Nodes are
|
|
// stacked in document order.
|
|
// * The 'order' property is not supported. The order of flex items is always defined
|
|
// by document order.
|
|
// * The 'visibility' property is always assumed to be 'visible'. Values of 'collapse'
|
|
// and 'hidden' are not supported.
|
|
// * The 'wrap' property supports only 'nowrap' (which is the default) or 'wrap'. The
|
|
// rarely-used 'wrap-reverse' is not supported.
|
|
// * Rather than allowing arbitrary combinations of flexGrow, flexShrink and
|
|
// flexBasis, this algorithm supports only the three most common combinations:
|
|
// flex: 0 is equiavlent to flex: 0 0 auto
|
|
// flex: n (where n is a positive value) is equivalent to flex: n 1 auto
|
|
// If POSITIVE_FLEX_IS_AUTO is 0, then it is equivalent to flex: n 0 0
|
|
// This is faster because the content doesn't need to be measured, but it's
|
|
// less flexible because the basis is always 0 and can't be overriden with
|
|
// the width/height attributes.
|
|
// flex: -1 (or any negative value) is equivalent to flex: 0 1 auto
|
|
// * Margins cannot be specified as 'auto'. They must be specified in terms of pixel
|
|
// values, and the default value is 0.
|
|
// * The 'baseline' value is not supported for alignItems and alignSelf properties.
|
|
// * Values of width, maxWidth, minWidth, height, maxHeight and minHeight must be
|
|
// specified as pixel values, not as percentages.
|
|
// * There is no support for calculation of dimensions based on intrinsic aspect ratios
|
|
// (e.g. images).
|
|
// * There is no support for forced breaks.
|
|
// * It does not support vertical inline directions (top-to-bottom or bottom-to-top text).
|
|
//
|
|
// Deviations from standard:
|
|
// * Section 4.5 of the spec indicates that all flex items have a default minimum
|
|
// main size. For text blocks, for example, this is the width of the widest word.
|
|
// Calculating the minimum width is expensive, so we forego it and assume a default
|
|
// minimum main size of 0.
|
|
// * Min/Max sizes in the main axis are not honored when resolving flexible lengths.
|
|
// * The spec indicates that the default value for 'flexDirection' is 'row', but
|
|
// the algorithm below assumes a default of 'column'.
|
|
//
|
|
// Input parameters:
|
|
// - node: current node to be sized and layed out
|
|
// - availableWidth & availableHeight: available size to be used for sizing the node
|
|
// or CSS_UNDEFINED if the size is not available; interpretation depends on layout
|
|
// flags
|
|
// - parentDirection: the inline (text) direction within the parent (left-to-right or
|
|
// right-to-left)
|
|
// - widthMeasureMode: indicates the sizing rules for the width (see below for explanation)
|
|
// - heightMeasureMode: indicates the sizing rules for the height (see below for explanation)
|
|
// - performLayout: specifies whether the caller is interested in just the dimensions
|
|
// of the node or it requires the entire node and its subtree to be layed out
|
|
// (with final positions)
|
|
//
|
|
// Details:
|
|
// This routine is called recursively to lay out subtrees of flexbox elements. It uses the
|
|
// information in node.style, which is treated as a read-only input. It is responsible for
|
|
// setting the layout.direction and layout.measured_dimensions fields for the input node as well
|
|
// as the layout.position and layout.line_index fields for its child nodes. The
|
|
// layout.measured_dimensions field includes any border or padding for the node but does
|
|
// not include margins.
|
|
//
|
|
// The spec describes four different layout modes: "fill available", "max content", "min content",
|
|
// and "fit content". Of these, we don't use "min content" because we don't support default
|
|
// minimum main sizes (see above for details). Each of our measure modes maps to a layout mode
|
|
// from the spec (https://www.w3.org/TR/css3-sizing/#terms):
|
|
// - CSS_MEASURE_MODE_UNDEFINED: max content
|
|
// - CSS_MEASURE_MODE_EXACTLY: fill available
|
|
// - CSS_MEASURE_MODE_AT_MOST: fit content
|
|
//
|
|
// When calling layoutNodeImpl and layoutNodeInternal, if the caller passes an available size of
|
|
// undefined then it must also pass a measure mode of CSS_MEASURE_MODE_UNDEFINED in that dimension.
|
|
//
|
|
static void layoutNodeImpl(css_node_t* node, float availableWidth, float availableHeight,
|
|
css_direction_t parentDirection, css_measure_mode_t widthMeasureMode, css_measure_mode_t heightMeasureMode, bool performLayout) {
|
|
|
|
assert(isUndefined(availableWidth) ? widthMeasureMode == CSS_MEASURE_MODE_UNDEFINED : true); // availableWidth is indefinite so widthMeasureMode must be CSS_MEASURE_MODE_UNDEFINED
|
|
assert(isUndefined(availableHeight) ? heightMeasureMode == CSS_MEASURE_MODE_UNDEFINED : true); // availableHeight is indefinite so heightMeasureMode must be CSS_MEASURE_MODE_UNDEFINED
|
|
|
|
float paddingAndBorderAxisRow = getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
|
|
float paddingAndBorderAxisColumn = getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
float marginAxisRow = getMarginAxis(node, CSS_FLEX_DIRECTION_ROW);
|
|
float marginAxisColumn = getMarginAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
|
|
// Set the resolved resolution in the node's layout.
|
|
css_direction_t direction = resolveDirection(node, parentDirection);
|
|
node->layout.direction = direction;
|
|
|
|
// For content (text) nodes, determine the dimensions based on the text contents.
|
|
if (isMeasureDefined(node)) {
|
|
float innerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
|
|
float innerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
|
|
|
|
if (widthMeasureMode == CSS_MEASURE_MODE_EXACTLY && heightMeasureMode == CSS_MEASURE_MODE_EXACTLY) {
|
|
|
|
// Don't bother sizing the text if both dimensions are already defined.
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
|
|
} else if (innerWidth <= 0 || innerHeight <= 0) {
|
|
|
|
// Don't bother sizing the text if there's no horizontal or vertical space.
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
|
|
} else {
|
|
|
|
// Measure the text under the current constraints.
|
|
css_dim_t measureDim = node->measure(
|
|
node->context,
|
|
|
|
innerWidth,
|
|
widthMeasureMode,
|
|
innerHeight,
|
|
heightMeasureMode
|
|
);
|
|
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW,
|
|
(widthMeasureMode == CSS_MEASURE_MODE_UNDEFINED || widthMeasureMode == CSS_MEASURE_MODE_AT_MOST) ?
|
|
measureDim.dimensions[CSS_WIDTH] + paddingAndBorderAxisRow :
|
|
availableWidth - marginAxisRow);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN,
|
|
(heightMeasureMode == CSS_MEASURE_MODE_UNDEFINED || heightMeasureMode == CSS_MEASURE_MODE_AT_MOST) ?
|
|
measureDim.dimensions[CSS_HEIGHT] + paddingAndBorderAxisColumn :
|
|
availableHeight - marginAxisColumn);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// For nodes with no children, use the available values if they were provided, or
|
|
// the minimum size as indicated by the padding and border sizes.
|
|
int childCount = node->children_count;
|
|
if (childCount == 0) {
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW,
|
|
(widthMeasureMode == CSS_MEASURE_MODE_UNDEFINED || widthMeasureMode == CSS_MEASURE_MODE_AT_MOST) ?
|
|
paddingAndBorderAxisRow :
|
|
availableWidth - marginAxisRow);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN,
|
|
(heightMeasureMode == CSS_MEASURE_MODE_UNDEFINED || heightMeasureMode == CSS_MEASURE_MODE_AT_MOST) ?
|
|
paddingAndBorderAxisColumn :
|
|
availableHeight - marginAxisColumn);
|
|
return;
|
|
}
|
|
|
|
// If we're not being asked to perform a full layout, we can handle a number of common
|
|
// cases here without incurring the cost of the remaining function.
|
|
if (!performLayout) {
|
|
// If we're being asked to size the content with an at most constraint but there is no available width,
|
|
// the measurement will always be zero.
|
|
if (widthMeasureMode == CSS_MEASURE_MODE_AT_MOST && availableWidth <= 0 &&
|
|
heightMeasureMode == CSS_MEASURE_MODE_AT_MOST && availableHeight <= 0) {
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
|
|
return;
|
|
}
|
|
|
|
if (widthMeasureMode == CSS_MEASURE_MODE_AT_MOST && availableWidth <= 0) {
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, isUndefined(availableHeight) ? 0 : (availableHeight - marginAxisColumn));
|
|
return;
|
|
}
|
|
|
|
if (heightMeasureMode == CSS_MEASURE_MODE_AT_MOST && availableHeight <= 0) {
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, isUndefined(availableWidth) ? 0 : (availableWidth - marginAxisRow));
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
|
|
return;
|
|
}
|
|
|
|
// If we're being asked to use an exact width/height, there's no need to measure the children.
|
|
if (widthMeasureMode == CSS_MEASURE_MODE_EXACTLY && heightMeasureMode == CSS_MEASURE_MODE_EXACTLY) {
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// STEP 1: CALCULATE VALUES FOR REMAINDER OF ALGORITHM
|
|
css_flex_direction_t mainAxis = resolveAxis(getFlexDirection(node), direction);
|
|
css_flex_direction_t crossAxis = getCrossFlexDirection(mainAxis, direction);
|
|
bool isMainAxisRow = isRowDirection(mainAxis);
|
|
css_justify_t justifyContent = node->style.justify_content;
|
|
bool isNodeFlexWrap = isFlexWrap(node);
|
|
|
|
css_node_t* firstAbsoluteChild = NULL;
|
|
css_node_t* currentAbsoluteChild = NULL;
|
|
|
|
float leadingPaddingAndBorderMain = getLeadingPaddingAndBorder(node, mainAxis);
|
|
float trailingPaddingAndBorderMain = getTrailingPaddingAndBorder(node, mainAxis);
|
|
float leadingPaddingAndBorderCross = getLeadingPaddingAndBorder(node, crossAxis);
|
|
float paddingAndBorderAxisMain = getPaddingAndBorderAxis(node, mainAxis);
|
|
float paddingAndBorderAxisCross = getPaddingAndBorderAxis(node, crossAxis);
|
|
|
|
css_measure_mode_t measureModeMainDim = isMainAxisRow ? widthMeasureMode : heightMeasureMode;
|
|
css_measure_mode_t measureModeCrossDim = isMainAxisRow ? heightMeasureMode : widthMeasureMode;
|
|
|
|
// STEP 2: DETERMINE AVAILABLE SIZE IN MAIN AND CROSS DIRECTIONS
|
|
float availableInnerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
|
|
float availableInnerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
|
|
float availableInnerMainDim = isMainAxisRow ? availableInnerWidth : availableInnerHeight;
|
|
float availableInnerCrossDim = isMainAxisRow ? availableInnerHeight : availableInnerWidth;
|
|
|
|
// STEP 3: DETERMINE FLEX BASIS FOR EACH ITEM
|
|
css_node_t* child;
|
|
int i;
|
|
float childWidth;
|
|
float childHeight;
|
|
css_measure_mode_t childWidthMeasureMode;
|
|
css_measure_mode_t childHeightMeasureMode;
|
|
for (i = 0; i < childCount; i++) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (performLayout) {
|
|
// Set the initial position (relative to the parent).
|
|
css_direction_t childDirection = resolveDirection(child, direction);
|
|
setPosition(child, childDirection);
|
|
}
|
|
|
|
// Absolute-positioned children don't participate in flex layout. Add them
|
|
// to a list that we can process later.
|
|
if (child->style.position_type == CSS_POSITION_ABSOLUTE) {
|
|
|
|
// Store a private linked list of absolutely positioned children
|
|
// so that we can efficiently traverse them later.
|
|
if (firstAbsoluteChild == NULL) {
|
|
firstAbsoluteChild = child;
|
|
}
|
|
if (currentAbsoluteChild != NULL) {
|
|
currentAbsoluteChild->next_child = child;
|
|
}
|
|
currentAbsoluteChild = child;
|
|
child->next_child = NULL;
|
|
} else {
|
|
|
|
if (isMainAxisRow && isStyleDimDefined(child, CSS_FLEX_DIRECTION_ROW)) {
|
|
|
|
// The width is definite, so use that as the flex basis.
|
|
child->layout.flex_basis = fmaxf(child->style.dimensions[CSS_WIDTH], getPaddingAndBorderAxis(child, CSS_FLEX_DIRECTION_ROW));
|
|
} else if (!isMainAxisRow && isStyleDimDefined(child, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
|
|
// The height is definite, so use that as the flex basis.
|
|
child->layout.flex_basis = fmaxf(child->style.dimensions[CSS_HEIGHT], getPaddingAndBorderAxis(child, CSS_FLEX_DIRECTION_COLUMN));
|
|
} else if (!isFlexBasisAuto(child) && !isUndefined(availableInnerMainDim)) {
|
|
|
|
// If the basis isn't 'auto', it is assumed to be zero.
|
|
child->layout.flex_basis = fmaxf(0, getPaddingAndBorderAxis(child, mainAxis));
|
|
} else {
|
|
|
|
// Compute the flex basis and hypothetical main size (i.e. the clamped flex basis).
|
|
childWidth = CSS_UNDEFINED;
|
|
childHeight = CSS_UNDEFINED;
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
|
|
if (isStyleDimDefined(child, CSS_FLEX_DIRECTION_ROW)) {
|
|
childWidth = child->style.dimensions[CSS_WIDTH] + getMarginAxis(child, CSS_FLEX_DIRECTION_ROW);
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
if (isStyleDimDefined(child, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
childHeight = child->style.dimensions[CSS_HEIGHT] + getMarginAxis(child, CSS_FLEX_DIRECTION_COLUMN);
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
|
|
// According to the spec, if the main size is not definite and the
|
|
// child's inline axis is parallel to the main axis (i.e. it's
|
|
// horizontal), the child should be sized using "UNDEFINED" in
|
|
// the main size. Otherwise use "AT_MOST" in the cross axis.
|
|
if (!isMainAxisRow && isUndefined(childWidth) && !isUndefined(availableInnerWidth)) {
|
|
childWidth = availableInnerWidth;
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
|
|
// The W3C spec doesn't say anything about the 'overflow' property,
|
|
// but all major browsers appear to implement the following logic.
|
|
if (node->style.overflow == CSS_OVERFLOW_HIDDEN) {
|
|
if (isMainAxisRow && isUndefined(childHeight) && !isUndefined(availableInnerHeight)) {
|
|
childHeight = availableInnerHeight;
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
}
|
|
|
|
// If child has no defined size in the cross axis and is set to stretch, set the cross
|
|
// axis to be measured exactly with the available inner width
|
|
if (!isMainAxisRow &&
|
|
!isUndefined(availableInnerWidth) &&
|
|
!isStyleDimDefined(child, CSS_FLEX_DIRECTION_ROW) &&
|
|
widthMeasureMode == CSS_MEASURE_MODE_EXACTLY &&
|
|
getAlignItem(node, child) == CSS_ALIGN_STRETCH) {
|
|
childWidth = availableInnerWidth;
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
if (isMainAxisRow &&
|
|
!isUndefined(availableInnerHeight) &&
|
|
!isStyleDimDefined(child, CSS_FLEX_DIRECTION_COLUMN) &&
|
|
heightMeasureMode == CSS_MEASURE_MODE_EXACTLY &&
|
|
getAlignItem(node, child) == CSS_ALIGN_STRETCH) {
|
|
childHeight = availableInnerHeight;
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
|
|
// Measure the child
|
|
layoutNodeInternal(child, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, false, "measure");
|
|
|
|
child->layout.flex_basis = fmaxf(isMainAxisRow ? child->layout.measured_dimensions[CSS_WIDTH] : child->layout.measured_dimensions[CSS_HEIGHT], getPaddingAndBorderAxis(child, mainAxis));
|
|
}
|
|
}
|
|
}
|
|
|
|
// STEP 4: COLLECT FLEX ITEMS INTO FLEX LINES
|
|
|
|
// Indexes of children that represent the first and last items in the line.
|
|
int startOfLineIndex = 0;
|
|
int endOfLineIndex = 0;
|
|
|
|
// Number of lines.
|
|
int lineCount = 0;
|
|
|
|
// Accumulated cross dimensions of all lines so far.
|
|
float totalLineCrossDim = 0;
|
|
|
|
// Max main dimension of all the lines.
|
|
float maxLineMainDim = 0;
|
|
|
|
while (endOfLineIndex < childCount) {
|
|
|
|
// Number of items on the currently line. May be different than the difference
|
|
// between start and end indicates because we skip over absolute-positioned items.
|
|
int itemsOnLine = 0;
|
|
|
|
// sizeConsumedOnCurrentLine is accumulation of the dimensions and margin
|
|
// of all the children on the current line. This will be used in order to
|
|
// either set the dimensions of the node if none already exist or to compute
|
|
// the remaining space left for the flexible children.
|
|
float sizeConsumedOnCurrentLine = 0;
|
|
|
|
float totalFlexGrowFactors = 0;
|
|
float totalFlexShrinkScaledFactors = 0;
|
|
|
|
i = startOfLineIndex;
|
|
|
|
// Maintain a linked list of the child nodes that can shrink and/or grow.
|
|
css_node_t* firstRelativeChild = NULL;
|
|
css_node_t* currentRelativeChild = NULL;
|
|
|
|
// Add items to the current line until it's full or we run out of items.
|
|
while (i < childCount) {
|
|
child = node->get_child(node->context, i);
|
|
child->line_index = lineCount;
|
|
|
|
if (child->style.position_type != CSS_POSITION_ABSOLUTE) {
|
|
float outerFlexBasis = child->layout.flex_basis + getMarginAxis(child, mainAxis);
|
|
|
|
// If this is a multi-line flow and this item pushes us over the available size, we've
|
|
// hit the end of the current line. Break out of the loop and lay out the current line.
|
|
if (sizeConsumedOnCurrentLine + outerFlexBasis > availableInnerMainDim && isNodeFlexWrap && itemsOnLine > 0) {
|
|
break;
|
|
}
|
|
|
|
sizeConsumedOnCurrentLine += outerFlexBasis;
|
|
itemsOnLine++;
|
|
|
|
if (isFlex(child)) {
|
|
totalFlexGrowFactors += getFlexGrowFactor(child);
|
|
|
|
// Unlike the grow factor, the shrink factor is scaled relative to the child
|
|
// dimension.
|
|
totalFlexShrinkScaledFactors += getFlexShrinkFactor(child) * child->layout.flex_basis;
|
|
}
|
|
|
|
// Store a private linked list of children that need to be layed out.
|
|
if (firstRelativeChild == NULL) {
|
|
firstRelativeChild = child;
|
|
}
|
|
if (currentRelativeChild != NULL) {
|
|
currentRelativeChild->next_child = child;
|
|
}
|
|
currentRelativeChild = child;
|
|
child->next_child = NULL;
|
|
}
|
|
|
|
i++;
|
|
endOfLineIndex++;
|
|
}
|
|
|
|
// If we don't need to measure the cross axis, we can skip the entire flex step.
|
|
bool canSkipFlex = !performLayout && measureModeCrossDim == CSS_MEASURE_MODE_EXACTLY;
|
|
|
|
// In order to position the elements in the main axis, we have two
|
|
// controls. The space between the beginning and the first element
|
|
// and the space between each two elements.
|
|
float leadingMainDim = 0;
|
|
float betweenMainDim = 0;
|
|
|
|
// STEP 5: RESOLVING FLEXIBLE LENGTHS ON MAIN AXIS
|
|
// Calculate the remaining available space that needs to be allocated.
|
|
// If the main dimension size isn't known, it is computed based on
|
|
// the line length, so there's no more space left to distribute.
|
|
float remainingFreeSpace = 0;
|
|
if (!isUndefined(availableInnerMainDim)) {
|
|
remainingFreeSpace = availableInnerMainDim - sizeConsumedOnCurrentLine;
|
|
} else if (sizeConsumedOnCurrentLine < 0) {
|
|
// availableInnerMainDim is indefinite which means the node is being sized based on its content.
|
|
// sizeConsumedOnCurrentLine is negative which means the node will allocate 0 pixels for
|
|
// its content. Consequently, remainingFreeSpace is 0 - sizeConsumedOnCurrentLine.
|
|
remainingFreeSpace = -sizeConsumedOnCurrentLine;
|
|
}
|
|
|
|
float originalRemainingFreeSpace = remainingFreeSpace;
|
|
float deltaFreeSpace = 0;
|
|
|
|
if (!canSkipFlex) {
|
|
float childFlexBasis;
|
|
float flexShrinkScaledFactor;
|
|
float flexGrowFactor;
|
|
float baseMainSize;
|
|
float boundMainSize;
|
|
|
|
// Do two passes over the flex items to figure out how to distribute the remaining space.
|
|
// The first pass finds the items whose min/max constraints trigger, freezes them at those
|
|
// sizes, and excludes those sizes from the remaining space. The second pass sets the size
|
|
// of each flexible item. It distributes the remaining space amongst the items whose min/max
|
|
// constraints didn't trigger in pass 1. For the other items, it sets their sizes by forcing
|
|
// their min/max constraints to trigger again.
|
|
//
|
|
// This two pass approach for resolving min/max constraints deviates from the spec. The
|
|
// spec (https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths) describes a process
|
|
// that needs to be repeated a variable number of times. The algorithm implemented here
|
|
// won't handle all cases but it was simpler to implement and it mitigates performance
|
|
// concerns because we know exactly how many passes it'll do.
|
|
|
|
// First pass: detect the flex items whose min/max constraints trigger
|
|
float deltaFlexShrinkScaledFactors = 0;
|
|
float deltaFlexGrowFactors = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != NULL) {
|
|
childFlexBasis = currentRelativeChild->layout.flex_basis;
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = getFlexShrinkFactor(currentRelativeChild) * childFlexBasis;
|
|
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
baseMainSize = childFlexBasis +
|
|
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor;
|
|
boundMainSize = boundAxis(currentRelativeChild, mainAxis, baseMainSize);
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining, this item's
|
|
// min/max constraints should also trigger in the second pass resulting in the
|
|
// item's size calculation being identical in the first and second passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexShrinkScaledFactors -= flexShrinkScaledFactor;
|
|
}
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = getFlexGrowFactor(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
baseMainSize = childFlexBasis +
|
|
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor;
|
|
boundMainSize = boundAxis(currentRelativeChild, mainAxis, baseMainSize);
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining, this item's
|
|
// min/max constraints should also trigger in the second pass resulting in the
|
|
// item's size calculation being identical in the first and second passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexGrowFactors -= flexGrowFactor;
|
|
}
|
|
}
|
|
}
|
|
|
|
currentRelativeChild = currentRelativeChild->next_child;
|
|
}
|
|
|
|
totalFlexShrinkScaledFactors += deltaFlexShrinkScaledFactors;
|
|
totalFlexGrowFactors += deltaFlexGrowFactors;
|
|
remainingFreeSpace += deltaFreeSpace;
|
|
|
|
// Second pass: resolve the sizes of the flexible items
|
|
deltaFreeSpace = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != NULL) {
|
|
childFlexBasis = currentRelativeChild->layout.flex_basis;
|
|
float updatedMainSize = childFlexBasis;
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = getFlexShrinkFactor(currentRelativeChild) * childFlexBasis;
|
|
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
updatedMainSize = boundAxis(currentRelativeChild, mainAxis, childFlexBasis +
|
|
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor);
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = getFlexGrowFactor(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
updatedMainSize = boundAxis(currentRelativeChild, mainAxis, childFlexBasis +
|
|
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor);
|
|
}
|
|
}
|
|
|
|
deltaFreeSpace -= updatedMainSize - childFlexBasis;
|
|
|
|
if (isMainAxisRow) {
|
|
childWidth = updatedMainSize + getMarginAxis(currentRelativeChild, CSS_FLEX_DIRECTION_ROW);
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
|
|
if (!isUndefined(availableInnerCrossDim) &&
|
|
!isStyleDimDefined(currentRelativeChild, CSS_FLEX_DIRECTION_COLUMN) &&
|
|
heightMeasureMode == CSS_MEASURE_MODE_EXACTLY &&
|
|
getAlignItem(node, currentRelativeChild) == CSS_ALIGN_STRETCH) {
|
|
childHeight = availableInnerCrossDim;
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (!isStyleDimDefined(currentRelativeChild, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
childHeight = availableInnerCrossDim;
|
|
childHeightMeasureMode = isUndefined(childHeight) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_AT_MOST;
|
|
} else {
|
|
childHeight = currentRelativeChild->style.dimensions[CSS_HEIGHT] + getMarginAxis(currentRelativeChild, CSS_FLEX_DIRECTION_COLUMN);
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
} else {
|
|
childHeight = updatedMainSize + getMarginAxis(currentRelativeChild, CSS_FLEX_DIRECTION_COLUMN);
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
|
|
if (!isUndefined(availableInnerCrossDim) &&
|
|
!isStyleDimDefined(currentRelativeChild, CSS_FLEX_DIRECTION_ROW) &&
|
|
widthMeasureMode == CSS_MEASURE_MODE_EXACTLY &&
|
|
getAlignItem(node, currentRelativeChild) == CSS_ALIGN_STRETCH) {
|
|
childWidth = availableInnerCrossDim;
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (!isStyleDimDefined(currentRelativeChild, CSS_FLEX_DIRECTION_ROW)) {
|
|
childWidth = availableInnerCrossDim;
|
|
childWidthMeasureMode = isUndefined(childWidth) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_AT_MOST;
|
|
} else {
|
|
childWidth = currentRelativeChild->style.dimensions[CSS_WIDTH] + getMarginAxis(currentRelativeChild, CSS_FLEX_DIRECTION_ROW);
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
}
|
|
}
|
|
|
|
bool requiresStretchLayout = !isStyleDimDefined(currentRelativeChild, crossAxis) &&
|
|
getAlignItem(node, currentRelativeChild) == CSS_ALIGN_STRETCH;
|
|
|
|
// Recursively call the layout algorithm for this child with the updated main size.
|
|
layoutNodeInternal(currentRelativeChild, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, performLayout && !requiresStretchLayout, "flex");
|
|
|
|
currentRelativeChild = currentRelativeChild->next_child;
|
|
}
|
|
}
|
|
|
|
remainingFreeSpace = originalRemainingFreeSpace + deltaFreeSpace;
|
|
|
|
// STEP 6: MAIN-AXIS JUSTIFICATION & CROSS-AXIS SIZE DETERMINATION
|
|
|
|
// At this point, all the children have their dimensions set in the main axis.
|
|
// Their dimensions are also set in the cross axis with the exception of items
|
|
// that are aligned "stretch". We need to compute these stretch values and
|
|
// set the final positions.
|
|
|
|
// If we are using "at most" rules in the main axis, we won't distribute
|
|
// any remaining space at this point.
|
|
if (measureModeMainDim == CSS_MEASURE_MODE_AT_MOST) {
|
|
remainingFreeSpace = 0;
|
|
}
|
|
|
|
// Use justifyContent to figure out how to allocate the remaining space
|
|
// available in the main axis.
|
|
if (justifyContent != CSS_JUSTIFY_FLEX_START) {
|
|
if (justifyContent == CSS_JUSTIFY_CENTER) {
|
|
leadingMainDim = remainingFreeSpace / 2;
|
|
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
|
|
leadingMainDim = remainingFreeSpace;
|
|
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
|
|
remainingFreeSpace = fmaxf(remainingFreeSpace, 0);
|
|
if (itemsOnLine > 1) {
|
|
betweenMainDim = remainingFreeSpace / (itemsOnLine - 1);
|
|
} else {
|
|
betweenMainDim = 0;
|
|
}
|
|
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
|
|
// Space on the edges is half of the space between elements
|
|
betweenMainDim = remainingFreeSpace / itemsOnLine;
|
|
leadingMainDim = betweenMainDim / 2;
|
|
}
|
|
}
|
|
|
|
float mainDim = leadingPaddingAndBorderMain + leadingMainDim;
|
|
float crossDim = 0;
|
|
|
|
for (i = startOfLineIndex; i < endOfLineIndex; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (child->style.position_type == CSS_POSITION_ABSOLUTE &&
|
|
isPosDefined(child, leading[mainAxis])) {
|
|
if (performLayout) {
|
|
// In case the child is position absolute and has left/top being
|
|
// defined, we override the position to whatever the user said
|
|
// (and margin/border).
|
|
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
|
|
getLeadingBorder(node, mainAxis) +
|
|
getLeadingMargin(child, mainAxis);
|
|
}
|
|
} else {
|
|
if (performLayout) {
|
|
// If the child is position absolute (without top/left) or relative,
|
|
// we put it at the current accumulated offset.
|
|
child->layout.position[pos[mainAxis]] += mainDim;
|
|
}
|
|
|
|
// Now that we placed the element, we need to update the variables.
|
|
// We need to do that only for relative elements. Absolute elements
|
|
// do not take part in that phase.
|
|
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
|
if (canSkipFlex) {
|
|
// If we skipped the flex step, then we can't rely on the measuredDims because
|
|
// they weren't computed. This means we can't call getDimWithMargin.
|
|
mainDim += betweenMainDim + getMarginAxis(child, mainAxis) + child->layout.flex_basis;
|
|
crossDim = availableInnerCrossDim;
|
|
} else {
|
|
// The main dimension is the sum of all the elements dimension plus
|
|
// the spacing.
|
|
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
|
|
|
|
// The cross dimension is the max of the elements dimension since there
|
|
// can only be one element in that cross dimension.
|
|
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mainDim += trailingPaddingAndBorderMain;
|
|
|
|
float containerCrossAxis = availableInnerCrossDim;
|
|
if (measureModeCrossDim == CSS_MEASURE_MODE_UNDEFINED || measureModeCrossDim == CSS_MEASURE_MODE_AT_MOST) {
|
|
// Compute the cross axis from the max cross dimension of the children.
|
|
containerCrossAxis = boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) - paddingAndBorderAxisCross;
|
|
|
|
if (measureModeCrossDim == CSS_MEASURE_MODE_AT_MOST) {
|
|
containerCrossAxis = fminf(containerCrossAxis, availableInnerCrossDim);
|
|
}
|
|
}
|
|
|
|
// If there's no flex wrap, the cross dimension is defined by the container.
|
|
if (!isNodeFlexWrap && measureModeCrossDim == CSS_MEASURE_MODE_EXACTLY) {
|
|
crossDim = availableInnerCrossDim;
|
|
}
|
|
|
|
// Clamp to the min/max size specified on the container.
|
|
crossDim = boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) - paddingAndBorderAxisCross;
|
|
|
|
// STEP 7: CROSS-AXIS ALIGNMENT
|
|
// We can skip child alignment if we're just measuring the container.
|
|
if (performLayout) {
|
|
for (i = startOfLineIndex; i < endOfLineIndex; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (child->style.position_type == CSS_POSITION_ABSOLUTE) {
|
|
// If the child is absolutely positioned and has a top/left/bottom/right
|
|
// set, override all the previously computed positions to set it correctly.
|
|
if (isPosDefined(child, leading[crossAxis])) {
|
|
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
|
|
getLeadingBorder(node, crossAxis) +
|
|
getLeadingMargin(child, crossAxis);
|
|
} else {
|
|
child->layout.position[pos[crossAxis]] = leadingPaddingAndBorderCross +
|
|
getLeadingMargin(child, crossAxis);
|
|
}
|
|
} else {
|
|
float leadingCrossDim = leadingPaddingAndBorderCross;
|
|
|
|
// For a relative children, we're either using alignItems (parent) or
|
|
// alignSelf (child) in order to determine the position in the cross axis
|
|
css_align_t alignItem = getAlignItem(node, child);
|
|
|
|
// If the child uses align stretch, we need to lay it out one more time, this time
|
|
// forcing the cross-axis size to be the computed cross size for the current line.
|
|
if (alignItem == CSS_ALIGN_STRETCH) {
|
|
childWidth = child->layout.measured_dimensions[CSS_WIDTH] + getMarginAxis(child, CSS_FLEX_DIRECTION_ROW);
|
|
childHeight = child->layout.measured_dimensions[CSS_HEIGHT] + getMarginAxis(child, CSS_FLEX_DIRECTION_COLUMN);
|
|
bool isCrossSizeDefinite = false;
|
|
|
|
if (isMainAxisRow) {
|
|
isCrossSizeDefinite = isStyleDimDefined(child, CSS_FLEX_DIRECTION_COLUMN);
|
|
childHeight = crossDim;
|
|
} else {
|
|
isCrossSizeDefinite = isStyleDimDefined(child, CSS_FLEX_DIRECTION_ROW);
|
|
childWidth = crossDim;
|
|
}
|
|
|
|
// If the child defines a definite size for its cross axis, there's no need to stretch.
|
|
if (!isCrossSizeDefinite) {
|
|
childWidthMeasureMode = isUndefined(childWidth) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_EXACTLY;
|
|
childHeightMeasureMode = isUndefined(childHeight) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_EXACTLY;
|
|
layoutNodeInternal(child, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, true, "stretch");
|
|
}
|
|
} else if (alignItem != CSS_ALIGN_FLEX_START) {
|
|
float remainingCrossDim = containerCrossAxis - getDimWithMargin(child, crossAxis);
|
|
|
|
if (alignItem == CSS_ALIGN_CENTER) {
|
|
leadingCrossDim += remainingCrossDim / 2;
|
|
} else { // CSS_ALIGN_FLEX_END
|
|
leadingCrossDim += remainingCrossDim;
|
|
}
|
|
}
|
|
|
|
// And we apply the position
|
|
child->layout.position[pos[crossAxis]] += totalLineCrossDim + leadingCrossDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
totalLineCrossDim += crossDim;
|
|
maxLineMainDim = fmaxf(maxLineMainDim, mainDim);
|
|
|
|
// Reset variables for new line.
|
|
lineCount++;
|
|
startOfLineIndex = endOfLineIndex;
|
|
endOfLineIndex = startOfLineIndex;
|
|
}
|
|
|
|
// STEP 8: MULTI-LINE CONTENT ALIGNMENT
|
|
if (lineCount > 1 && performLayout && !isUndefined(availableInnerCrossDim)) {
|
|
float remainingAlignContentDim = availableInnerCrossDim - totalLineCrossDim;
|
|
|
|
float crossDimLead = 0;
|
|
float currentLead = leadingPaddingAndBorderCross;
|
|
|
|
css_align_t alignContent = node->style.align_content;
|
|
if (alignContent == CSS_ALIGN_FLEX_END) {
|
|
currentLead += remainingAlignContentDim;
|
|
} else if (alignContent == CSS_ALIGN_CENTER) {
|
|
currentLead += remainingAlignContentDim / 2;
|
|
} else if (alignContent == CSS_ALIGN_STRETCH) {
|
|
if (availableInnerCrossDim > totalLineCrossDim) {
|
|
crossDimLead = (remainingAlignContentDim / lineCount);
|
|
}
|
|
}
|
|
|
|
int endIndex = 0;
|
|
for (i = 0; i < lineCount; ++i) {
|
|
int startIndex = endIndex;
|
|
int j;
|
|
|
|
// compute the line's height and find the endIndex
|
|
float lineHeight = 0;
|
|
for (j = startIndex; j < childCount; ++j) {
|
|
child = node->get_child(node->context, j);
|
|
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
|
continue;
|
|
}
|
|
if (child->line_index != i) {
|
|
break;
|
|
}
|
|
if (isLayoutDimDefined(child, crossAxis)) {
|
|
lineHeight = fmaxf(lineHeight,
|
|
child->layout.measured_dimensions[dim[crossAxis]] + getMarginAxis(child, crossAxis));
|
|
}
|
|
}
|
|
endIndex = j;
|
|
lineHeight += crossDimLead;
|
|
|
|
if (performLayout) {
|
|
for (j = startIndex; j < endIndex; ++j) {
|
|
child = node->get_child(node->context, j);
|
|
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
|
continue;
|
|
}
|
|
|
|
css_align_t alignContentAlignItem = getAlignItem(node, child);
|
|
if (alignContentAlignItem == CSS_ALIGN_FLEX_START) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis);
|
|
} else if (alignContentAlignItem == CSS_ALIGN_FLEX_END) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + lineHeight - getTrailingMargin(child, crossAxis) - child->layout.measured_dimensions[dim[crossAxis]];
|
|
} else if (alignContentAlignItem == CSS_ALIGN_CENTER) {
|
|
childHeight = child->layout.measured_dimensions[dim[crossAxis]];
|
|
child->layout.position[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2;
|
|
} else if (alignContentAlignItem == CSS_ALIGN_STRETCH) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis);
|
|
// TODO(prenaux): Correctly set the height of items with indefinite
|
|
// (auto) crossAxis dimension.
|
|
}
|
|
}
|
|
}
|
|
|
|
currentLead += lineHeight;
|
|
}
|
|
}
|
|
|
|
// STEP 9: COMPUTING FINAL DIMENSIONS
|
|
node->layout.measured_dimensions[CSS_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
|
|
node->layout.measured_dimensions[CSS_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
|
|
|
|
// If the user didn't specify a width or height for the node, set the
|
|
// dimensions based on the children.
|
|
if (measureModeMainDim == CSS_MEASURE_MODE_UNDEFINED) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measured_dimensions[dim[mainAxis]] = boundAxis(node, mainAxis, maxLineMainDim);
|
|
} else if (measureModeMainDim == CSS_MEASURE_MODE_AT_MOST) {
|
|
node->layout.measured_dimensions[dim[mainAxis]] = fmaxf(
|
|
fminf(availableInnerMainDim + paddingAndBorderAxisMain,
|
|
boundAxisWithinMinAndMax(node, mainAxis, maxLineMainDim)),
|
|
paddingAndBorderAxisMain);
|
|
}
|
|
|
|
if (measureModeCrossDim == CSS_MEASURE_MODE_UNDEFINED) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measured_dimensions[dim[crossAxis]] = boundAxis(node, crossAxis, totalLineCrossDim + paddingAndBorderAxisCross);
|
|
} else if (measureModeCrossDim == CSS_MEASURE_MODE_AT_MOST) {
|
|
node->layout.measured_dimensions[dim[crossAxis]] = fmaxf(
|
|
fminf(availableInnerCrossDim + paddingAndBorderAxisCross,
|
|
boundAxisWithinMinAndMax(node, crossAxis, totalLineCrossDim + paddingAndBorderAxisCross)),
|
|
paddingAndBorderAxisCross);
|
|
}
|
|
|
|
// STEP 10: SETTING TRAILING POSITIONS FOR CHILDREN
|
|
if (performLayout) {
|
|
bool needsMainTrailingPos = false;
|
|
bool needsCrossTrailingPos = false;
|
|
|
|
if (mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
|
|
mainAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
needsMainTrailingPos = true;
|
|
}
|
|
|
|
if (crossAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
|
|
crossAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
needsCrossTrailingPos = true;
|
|
}
|
|
|
|
// Set trailing position if necessary.
|
|
if (needsMainTrailingPos || needsCrossTrailingPos) {
|
|
for (i = 0; i < childCount; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (needsMainTrailingPos) {
|
|
setTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
if (needsCrossTrailingPos) {
|
|
setTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// STEP 11: SIZING AND POSITIONING ABSOLUTE CHILDREN
|
|
currentAbsoluteChild = firstAbsoluteChild;
|
|
while (currentAbsoluteChild != NULL) {
|
|
// Now that we know the bounds of the container, perform layout again on the
|
|
// absolutely-positioned children.
|
|
if (performLayout) {
|
|
|
|
childWidth = CSS_UNDEFINED;
|
|
childHeight = CSS_UNDEFINED;
|
|
|
|
if (isStyleDimDefined(currentAbsoluteChild, CSS_FLEX_DIRECTION_ROW)) {
|
|
childWidth = currentAbsoluteChild->style.dimensions[CSS_WIDTH] + getMarginAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_ROW);
|
|
} else {
|
|
// If the child doesn't have a specified width, compute the width based on the left/right offsets if they're defined.
|
|
if (isPosDefined(currentAbsoluteChild, CSS_LEFT) && isPosDefined(currentAbsoluteChild, CSS_RIGHT)) {
|
|
childWidth = node->layout.measured_dimensions[CSS_WIDTH] -
|
|
(getLeadingBorder(node, CSS_FLEX_DIRECTION_ROW) + getTrailingBorder(node, CSS_FLEX_DIRECTION_ROW)) -
|
|
(currentAbsoluteChild->style.position[CSS_LEFT] + currentAbsoluteChild->style.position[CSS_RIGHT]);
|
|
childWidth = boundAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_ROW, childWidth);
|
|
}
|
|
}
|
|
|
|
if (isStyleDimDefined(currentAbsoluteChild, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
childHeight = currentAbsoluteChild->style.dimensions[CSS_HEIGHT] + getMarginAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_COLUMN);
|
|
} else {
|
|
// If the child doesn't have a specified height, compute the height based on the top/bottom offsets if they're defined.
|
|
if (isPosDefined(currentAbsoluteChild, CSS_TOP) && isPosDefined(currentAbsoluteChild, CSS_BOTTOM)) {
|
|
childHeight = node->layout.measured_dimensions[CSS_HEIGHT] -
|
|
(getLeadingBorder(node, CSS_FLEX_DIRECTION_COLUMN) + getTrailingBorder(node, CSS_FLEX_DIRECTION_COLUMN)) -
|
|
(currentAbsoluteChild->style.position[CSS_TOP] + currentAbsoluteChild->style.position[CSS_BOTTOM]);
|
|
childHeight = boundAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_COLUMN, childHeight);
|
|
}
|
|
}
|
|
|
|
// If we're still missing one or the other dimension, measure the content.
|
|
if (isUndefined(childWidth) || isUndefined(childHeight)) {
|
|
childWidthMeasureMode = isUndefined(childWidth) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_EXACTLY;
|
|
childHeightMeasureMode = isUndefined(childHeight) ? CSS_MEASURE_MODE_UNDEFINED : CSS_MEASURE_MODE_EXACTLY;
|
|
|
|
// According to the spec, if the main size is not definite and the
|
|
// child's inline axis is parallel to the main axis (i.e. it's
|
|
// horizontal), the child should be sized using "UNDEFINED" in
|
|
// the main size. Otherwise use "AT_MOST" in the cross axis.
|
|
if (!isMainAxisRow && isUndefined(childWidth) && !isUndefined(availableInnerWidth)) {
|
|
childWidth = availableInnerWidth;
|
|
childWidthMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
|
|
// The W3C spec doesn't say anything about the 'overflow' property,
|
|
// but all major browsers appear to implement the following logic.
|
|
if (node->style.overflow == CSS_OVERFLOW_HIDDEN) {
|
|
if (isMainAxisRow && isUndefined(childHeight) && !isUndefined(availableInnerHeight)) {
|
|
childHeight = availableInnerHeight;
|
|
childHeightMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
}
|
|
|
|
layoutNodeInternal(currentAbsoluteChild, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, false, "abs-measure");
|
|
childWidth = currentAbsoluteChild->layout.measured_dimensions[CSS_WIDTH] + getMarginAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_ROW);
|
|
childHeight = currentAbsoluteChild->layout.measured_dimensions[CSS_HEIGHT] + getMarginAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_COLUMN);
|
|
}
|
|
|
|
layoutNodeInternal(currentAbsoluteChild, childWidth, childHeight, direction, CSS_MEASURE_MODE_EXACTLY, CSS_MEASURE_MODE_EXACTLY, true, "abs-layout");
|
|
|
|
if (isPosDefined(currentAbsoluteChild, trailing[CSS_FLEX_DIRECTION_ROW]) &&
|
|
!isPosDefined(currentAbsoluteChild, leading[CSS_FLEX_DIRECTION_ROW])) {
|
|
currentAbsoluteChild->layout.position[leading[CSS_FLEX_DIRECTION_ROW]] =
|
|
node->layout.measured_dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
|
|
currentAbsoluteChild->layout.measured_dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
|
|
getPosition(currentAbsoluteChild, trailing[CSS_FLEX_DIRECTION_ROW]);
|
|
}
|
|
|
|
if (isPosDefined(currentAbsoluteChild, trailing[CSS_FLEX_DIRECTION_COLUMN]) &&
|
|
!isPosDefined(currentAbsoluteChild, leading[CSS_FLEX_DIRECTION_COLUMN])) {
|
|
currentAbsoluteChild->layout.position[leading[CSS_FLEX_DIRECTION_COLUMN]] =
|
|
node->layout.measured_dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] -
|
|
currentAbsoluteChild->layout.measured_dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] -
|
|
getPosition(currentAbsoluteChild, trailing[CSS_FLEX_DIRECTION_COLUMN]);
|
|
}
|
|
}
|
|
|
|
currentAbsoluteChild = currentAbsoluteChild->next_child;
|
|
}
|
|
}
|
|
|
|
int gDepth = 0;
|
|
bool gPrintTree = false;
|
|
bool gPrintChanges = false;
|
|
bool gPrintSkips = false;
|
|
|
|
static const char* spacer = " ";
|
|
|
|
static const char* getSpacer(unsigned long level) {
|
|
unsigned long spacerLen = strlen(spacer);
|
|
if (level > spacerLen) {
|
|
level = spacerLen;
|
|
}
|
|
return &spacer[spacerLen - level];
|
|
}
|
|
|
|
static const char* getModeName(css_measure_mode_t mode, bool performLayout) {
|
|
const char* kMeasureModeNames[CSS_MEASURE_MODE_COUNT] = {
|
|
"UNDEFINED",
|
|
"EXACTLY",
|
|
"AT_MOST"
|
|
};
|
|
const char* kLayoutModeNames[CSS_MEASURE_MODE_COUNT] = {
|
|
"LAY_UNDEFINED",
|
|
"LAY_EXACTLY",
|
|
"LAY_AT_MOST"
|
|
};
|
|
|
|
if (mode >= CSS_MEASURE_MODE_COUNT) {
|
|
return "";
|
|
}
|
|
|
|
return performLayout? kLayoutModeNames[mode] : kMeasureModeNames[mode];
|
|
}
|
|
|
|
static bool canUseCachedMeasurement(
|
|
bool is_text_node,
|
|
float available_width,
|
|
float available_height,
|
|
float margin_row,
|
|
float margin_column,
|
|
css_measure_mode_t width_measure_mode,
|
|
css_measure_mode_t height_measure_mode,
|
|
css_cached_measurement_t cached_layout) {
|
|
|
|
bool is_height_same =
|
|
(cached_layout.height_measure_mode == CSS_MEASURE_MODE_UNDEFINED && height_measure_mode == CSS_MEASURE_MODE_UNDEFINED) ||
|
|
(cached_layout.height_measure_mode == height_measure_mode && eq(cached_layout.available_height, available_height));
|
|
|
|
bool is_width_same =
|
|
(cached_layout.width_measure_mode == CSS_MEASURE_MODE_UNDEFINED && width_measure_mode == CSS_MEASURE_MODE_UNDEFINED) ||
|
|
(cached_layout.width_measure_mode == width_measure_mode && eq(cached_layout.available_width, available_width));
|
|
|
|
if (is_height_same && is_width_same) {
|
|
return true;
|
|
}
|
|
|
|
bool is_height_valid =
|
|
(cached_layout.height_measure_mode == CSS_MEASURE_MODE_UNDEFINED && height_measure_mode == CSS_MEASURE_MODE_AT_MOST && cached_layout.computed_height <= (available_height - margin_column)) ||
|
|
(height_measure_mode == CSS_MEASURE_MODE_EXACTLY && eq(cached_layout.computed_height, available_height - margin_column));
|
|
|
|
if (is_width_same && is_height_valid) {
|
|
return true;
|
|
}
|
|
|
|
bool is_width_valid =
|
|
(cached_layout.width_measure_mode == CSS_MEASURE_MODE_UNDEFINED && width_measure_mode == CSS_MEASURE_MODE_AT_MOST && cached_layout.computed_width <= (available_width - margin_row)) ||
|
|
(width_measure_mode == CSS_MEASURE_MODE_EXACTLY && eq(cached_layout.computed_width, available_width - margin_row));
|
|
|
|
if (is_height_same && is_width_valid) {
|
|
return true;
|
|
}
|
|
|
|
if (is_height_valid && is_width_valid) {
|
|
return true;
|
|
}
|
|
|
|
// We know this to be text so we can apply some more specialized heuristics.
|
|
if (is_text_node) {
|
|
if (is_width_same) {
|
|
if (height_measure_mode == CSS_MEASURE_MODE_UNDEFINED) {
|
|
// Width is the same and height is not restricted. Re-use cahced value.
|
|
return true;
|
|
}
|
|
|
|
if (height_measure_mode == CSS_MEASURE_MODE_AT_MOST &&
|
|
cached_layout.computed_height < (available_height - margin_column)) {
|
|
// Width is the same and height restriction is greater than the cached height. Re-use cached value.
|
|
return true;
|
|
}
|
|
|
|
// Width is the same but height restriction imposes smaller height than previously measured.
|
|
// Update the cached value to respect the new height restriction.
|
|
cached_layout.computed_height = available_height - margin_column;
|
|
return true;
|
|
}
|
|
|
|
if (cached_layout.width_measure_mode == CSS_MEASURE_MODE_UNDEFINED) {
|
|
if (width_measure_mode == CSS_MEASURE_MODE_UNDEFINED ||
|
|
(width_measure_mode == CSS_MEASURE_MODE_AT_MOST &&
|
|
cached_layout.computed_width <= (available_width - margin_row))) {
|
|
// Previsouly this text was measured with no width restriction, if width is now restricted
|
|
// but to a larger value than the previsouly measured width we can re-use the measurement
|
|
// as we know it will fit.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// This is a wrapper around the layoutNodeImpl function. It determines
|
|
// whether the layout request is redundant and can be skipped.
|
|
//
|
|
// Parameters:
|
|
// Input parameters are the same as layoutNodeImpl (see above)
|
|
// Return parameter is true if layout was performed, false if skipped
|
|
//
|
|
bool layoutNodeInternal(css_node_t* node, float availableWidth, float availableHeight,
|
|
css_direction_t parentDirection, css_measure_mode_t widthMeasureMode, css_measure_mode_t heightMeasureMode, bool performLayout, char* reason) {
|
|
css_layout_t* layout = &node->layout;
|
|
|
|
gDepth++;
|
|
|
|
bool needToVisitNode = (node->is_dirty(node->context) && layout->generation_count != gCurrentGenerationCount) ||
|
|
layout->last_parent_direction != parentDirection;
|
|
|
|
if (needToVisitNode) {
|
|
// Invalidate the cached results.
|
|
layout->next_cached_measurements_index = 0;
|
|
layout->cached_layout.width_measure_mode = (css_measure_mode_t)-1;
|
|
layout->cached_layout.height_measure_mode = (css_measure_mode_t)-1;
|
|
}
|
|
|
|
css_cached_measurement_t* cachedResults = NULL;
|
|
|
|
// Determine whether the results are already cached. We maintain a separate
|
|
// cache for layouts and measurements. A layout operation modifies the positions
|
|
// and dimensions for nodes in the subtree. The algorithm assumes that each node
|
|
// gets layed out a maximum of one time per tree layout, but multiple measurements
|
|
// may be required to resolve all of the flex dimensions.
|
|
// We handle nodes with measure functions specially here because they are the most
|
|
// expensive to measure, so it's worth avoiding redundant measurements if at all possible.
|
|
if (isMeasureDefined(node)) {
|
|
float marginAxisRow = getMarginAxis(node, CSS_FLEX_DIRECTION_ROW);
|
|
float marginAxisColumn = getMarginAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
|
|
// First, try to use the layout cache.
|
|
if (canUseCachedMeasurement(node->is_text_node && node->is_text_node(node->context), availableWidth, availableHeight, marginAxisRow, marginAxisColumn,
|
|
widthMeasureMode, heightMeasureMode, layout->cached_layout)) {
|
|
cachedResults = &layout->cached_layout;
|
|
} else {
|
|
// Try to use the measurement cache.
|
|
for (int i = 0; i < layout->next_cached_measurements_index; i++) {
|
|
if (canUseCachedMeasurement(node->is_text_node && node->is_text_node(node->context), availableWidth, availableHeight, marginAxisRow, marginAxisColumn,
|
|
widthMeasureMode, heightMeasureMode, layout->cached_measurements[i])) {
|
|
cachedResults = &layout->cached_measurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (performLayout) {
|
|
if (eq(layout->cached_layout.available_width, availableWidth) &&
|
|
eq(layout->cached_layout.available_height, availableHeight) &&
|
|
layout->cached_layout.width_measure_mode == widthMeasureMode &&
|
|
layout->cached_layout.height_measure_mode == heightMeasureMode) {
|
|
|
|
cachedResults = &layout->cached_layout;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < layout->next_cached_measurements_index; i++) {
|
|
if (eq(layout->cached_measurements[i].available_width, availableWidth) &&
|
|
eq(layout->cached_measurements[i].available_height, availableHeight) &&
|
|
layout->cached_measurements[i].width_measure_mode == widthMeasureMode &&
|
|
layout->cached_measurements[i].height_measure_mode == heightMeasureMode) {
|
|
|
|
cachedResults = &layout->cached_measurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!needToVisitNode && cachedResults != NULL) {
|
|
layout->measured_dimensions[CSS_WIDTH] = cachedResults->computed_width;
|
|
layout->measured_dimensions[CSS_HEIGHT] = cachedResults->computed_height;
|
|
|
|
if (gPrintChanges && gPrintSkips) {
|
|
printf("%s%d.{[skipped] ", getSpacer(gDepth), gDepth);
|
|
if (node->print) {
|
|
node->print(node->context);
|
|
}
|
|
printf("wm: %s, hm: %s, aw: %f ah: %f => d: (%f, %f) %s\n",
|
|
getModeName(widthMeasureMode, performLayout),
|
|
getModeName(heightMeasureMode, performLayout),
|
|
availableWidth, availableHeight,
|
|
cachedResults->computed_width, cachedResults->computed_height, reason);
|
|
}
|
|
} else {
|
|
|
|
if (gPrintChanges) {
|
|
printf("%s%d.{%s", getSpacer(gDepth), gDepth, needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node->context);
|
|
}
|
|
printf("wm: %s, hm: %s, aw: %f ah: %f %s\n",
|
|
getModeName(widthMeasureMode, performLayout),
|
|
getModeName(heightMeasureMode, performLayout),
|
|
availableWidth, availableHeight, reason);
|
|
}
|
|
|
|
layoutNodeImpl(node, availableWidth, availableHeight, parentDirection, widthMeasureMode, heightMeasureMode, performLayout);
|
|
|
|
if (gPrintChanges) {
|
|
printf("%s%d.}%s", getSpacer(gDepth), gDepth, needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node->context);
|
|
}
|
|
printf("wm: %s, hm: %s, d: (%f, %f) %s\n",
|
|
getModeName(widthMeasureMode, performLayout),
|
|
getModeName(heightMeasureMode, performLayout),
|
|
layout->measured_dimensions[CSS_WIDTH], layout->measured_dimensions[CSS_HEIGHT], reason);
|
|
}
|
|
|
|
layout->last_parent_direction = parentDirection;
|
|
|
|
if (cachedResults == NULL) {
|
|
if (layout->next_cached_measurements_index == CSS_MAX_CACHED_RESULT_COUNT) {
|
|
if (gPrintChanges) {
|
|
printf("Out of cache entries!\n");
|
|
}
|
|
layout->next_cached_measurements_index = 0;
|
|
}
|
|
|
|
css_cached_measurement_t* newCacheEntry;
|
|
if (performLayout) {
|
|
// Use the single layout cache entry.
|
|
newCacheEntry = &layout->cached_layout;
|
|
} else {
|
|
// Allocate a new measurement cache entry.
|
|
newCacheEntry = &layout->cached_measurements[layout->next_cached_measurements_index];
|
|
layout->next_cached_measurements_index++;
|
|
}
|
|
|
|
newCacheEntry->available_width = availableWidth;
|
|
newCacheEntry->available_height = availableHeight;
|
|
newCacheEntry->width_measure_mode = widthMeasureMode;
|
|
newCacheEntry->height_measure_mode = heightMeasureMode;
|
|
newCacheEntry->computed_width = layout->measured_dimensions[CSS_WIDTH];
|
|
newCacheEntry->computed_height = layout->measured_dimensions[CSS_HEIGHT];
|
|
}
|
|
}
|
|
|
|
if (performLayout) {
|
|
node->layout.dimensions[CSS_WIDTH] = node->layout.measured_dimensions[CSS_WIDTH];
|
|
node->layout.dimensions[CSS_HEIGHT] = node->layout.measured_dimensions[CSS_HEIGHT];
|
|
layout->should_update = true;
|
|
}
|
|
|
|
gDepth--;
|
|
layout->generation_count = gCurrentGenerationCount;
|
|
return (needToVisitNode || cachedResults == NULL);
|
|
}
|
|
|
|
void layoutNode(css_node_t* node, float availableWidth, float availableHeight, css_direction_t parentDirection) {
|
|
// Increment the generation count. This will force the recursive routine to visit
|
|
// all dirty nodes at least once. Subsequent visits will be skipped if the input
|
|
// parameters don't change.
|
|
gCurrentGenerationCount++;
|
|
|
|
css_measure_mode_t widthMeasureMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
css_measure_mode_t heightMeasureMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
|
|
if (!isUndefined(availableWidth)) {
|
|
widthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (isStyleDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
|
|
availableWidth = node->style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] + getMarginAxis(node, CSS_FLEX_DIRECTION_ROW);
|
|
widthMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (node->style.maxDimensions[CSS_WIDTH] >= 0.0) {
|
|
availableWidth = node->style.maxDimensions[CSS_WIDTH];
|
|
widthMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
|
|
if (!isUndefined(availableHeight)) {
|
|
heightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (isStyleDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
availableHeight = node->style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] + getMarginAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
heightMeasureMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (node->style.maxDimensions[CSS_HEIGHT] >= 0.0) {
|
|
availableHeight = node->style.maxDimensions[CSS_HEIGHT];
|
|
heightMeasureMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
|
|
if (layoutNodeInternal(node, availableWidth, availableHeight, parentDirection, widthMeasureMode, heightMeasureMode, true, "initial")) {
|
|
|
|
setPosition(node, node->layout.direction);
|
|
|
|
if (gPrintTree) {
|
|
print_css_node(node, CSS_PRINT_LAYOUT | CSS_PRINT_CHILDREN | CSS_PRINT_STYLE);
|
|
}
|
|
}
|
|
}
|