mirror of
https://github.com/status-im/react-native.git
synced 2025-01-16 20:44:10 +00:00
303428ea28
Reviewed By: lucasr Differential Revision: D3167760 fb-gh-sync-id: f4f13bcb09a2d8b2db2764bd31fa8cbd8edb484b fbshipit-source-id: f4f13bcb09a2d8b2db2764bd31fa8cbd8edb484b
1336 lines
50 KiB
C
1336 lines
50 KiB
C
/**
|
|
*
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* !! This file is a check-in from github! !!
|
|
* !! !!
|
|
* !! You should not modify this file directly. Instead: !!
|
|
* !! 1) Go to https://github.com/facebook/css-layout !!
|
|
* !! 2) Make a pull request and get it merged !!
|
|
* !! 3) Copy the file from github to here !!
|
|
* !! (don't forget to keep this header) !!
|
|
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
* @generated
|
|
*
|
|
* Copyright (c) 2014, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD-style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
// in concatenated header, don't include Layout.h it's already at the top
|
|
#ifndef CSS_LAYOUT_IMPLEMENTATION
|
|
#include "Layout.h"
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#include <float.h>
|
|
#define isnan _isnan
|
|
|
|
/* define fmaxf if < VC12 */
|
|
#if _MSC_VER < 1800
|
|
__forceinline const float fmaxf(const float a, const float b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
bool isUndefined(float value) {
|
|
return isnan(value);
|
|
}
|
|
|
|
static bool eq(float a, float b) {
|
|
if (isUndefined(a)) {
|
|
return isUndefined(b);
|
|
}
|
|
return fabs(a - b) < 0.0001;
|
|
}
|
|
|
|
void init_css_node(css_node_t *node) {
|
|
node->style.align_items = CSS_ALIGN_STRETCH;
|
|
node->style.align_content = CSS_ALIGN_FLEX_START;
|
|
|
|
node->style.direction = CSS_DIRECTION_INHERIT;
|
|
node->style.flex_direction = CSS_FLEX_DIRECTION_COLUMN;
|
|
|
|
// Some of the fields default to undefined and not 0
|
|
node->style.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.minDimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.minDimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.maxDimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->style.maxDimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
node->style.position[CSS_LEFT] = CSS_UNDEFINED;
|
|
node->style.position[CSS_TOP] = CSS_UNDEFINED;
|
|
node->style.position[CSS_RIGHT] = CSS_UNDEFINED;
|
|
node->style.position[CSS_BOTTOM] = CSS_UNDEFINED;
|
|
|
|
node->style.margin[CSS_START] = CSS_UNDEFINED;
|
|
node->style.margin[CSS_END] = CSS_UNDEFINED;
|
|
node->style.padding[CSS_START] = CSS_UNDEFINED;
|
|
node->style.padding[CSS_END] = CSS_UNDEFINED;
|
|
node->style.border[CSS_START] = CSS_UNDEFINED;
|
|
node->style.border[CSS_END] = CSS_UNDEFINED;
|
|
|
|
node->layout.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->layout.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
|
|
// Such that the comparison is always going to be false
|
|
node->layout.last_requested_dimensions[CSS_WIDTH] = -1;
|
|
node->layout.last_requested_dimensions[CSS_HEIGHT] = -1;
|
|
node->layout.last_parent_max_width = -1;
|
|
node->layout.last_parent_max_height = -1;
|
|
node->layout.last_direction = (css_direction_t)-1;
|
|
node->layout.should_update = true;
|
|
}
|
|
|
|
css_node_t *new_css_node() {
|
|
css_node_t *node = (css_node_t *)calloc(1, sizeof(*node));
|
|
init_css_node(node);
|
|
return node;
|
|
}
|
|
|
|
void free_css_node(css_node_t *node) {
|
|
free(node);
|
|
}
|
|
|
|
static void indent(int n) {
|
|
for (int i = 0; i < n; ++i) {
|
|
printf(" ");
|
|
}
|
|
}
|
|
|
|
static void print_number_0(const char *str, float number) {
|
|
if (!eq(number, 0)) {
|
|
printf("%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static void print_number_nan(const char *str, float number) {
|
|
if (!isnan(number)) {
|
|
printf("%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static bool four_equal(float four[4]) {
|
|
return
|
|
eq(four[0], four[1]) &&
|
|
eq(four[0], four[2]) &&
|
|
eq(four[0], four[3]);
|
|
}
|
|
|
|
|
|
static void print_css_node_rec(
|
|
css_node_t *node,
|
|
css_print_options_t options,
|
|
int level
|
|
) {
|
|
indent(level);
|
|
printf("{");
|
|
|
|
if (node->print) {
|
|
node->print(node->context);
|
|
}
|
|
|
|
if (options & CSS_PRINT_LAYOUT) {
|
|
printf("layout: {");
|
|
printf("width: %g, ", node->layout.dimensions[CSS_WIDTH]);
|
|
printf("height: %g, ", node->layout.dimensions[CSS_HEIGHT]);
|
|
printf("top: %g, ", node->layout.position[CSS_TOP]);
|
|
printf("left: %g", node->layout.position[CSS_LEFT]);
|
|
printf("}, ");
|
|
}
|
|
|
|
if (options & CSS_PRINT_STYLE) {
|
|
if (node->style.flex_direction == CSS_FLEX_DIRECTION_COLUMN) {
|
|
printf("flexDirection: 'column', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
printf("flexDirection: 'columnReverse', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW) {
|
|
printf("flexDirection: 'row', ");
|
|
} else if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE) {
|
|
printf("flexDirection: 'rowReverse', ");
|
|
}
|
|
|
|
if (node->style.justify_content == CSS_JUSTIFY_CENTER) {
|
|
printf("justifyContent: 'center', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_FLEX_END) {
|
|
printf("justifyContent: 'flex-end', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_AROUND) {
|
|
printf("justifyContent: 'space-around', ");
|
|
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_BETWEEN) {
|
|
printf("justifyContent: 'space-between', ");
|
|
}
|
|
|
|
if (node->style.align_items == CSS_ALIGN_CENTER) {
|
|
printf("alignItems: 'center', ");
|
|
} else if (node->style.align_items == CSS_ALIGN_FLEX_END) {
|
|
printf("alignItems: 'flex-end', ");
|
|
} else if (node->style.align_items == CSS_ALIGN_STRETCH) {
|
|
printf("alignItems: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.align_content == CSS_ALIGN_CENTER) {
|
|
printf("alignContent: 'center', ");
|
|
} else if (node->style.align_content == CSS_ALIGN_FLEX_END) {
|
|
printf("alignContent: 'flex-end', ");
|
|
} else if (node->style.align_content == CSS_ALIGN_STRETCH) {
|
|
printf("alignContent: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.align_self == CSS_ALIGN_FLEX_START) {
|
|
printf("alignSelf: 'flex-start', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_CENTER) {
|
|
printf("alignSelf: 'center', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_FLEX_END) {
|
|
printf("alignSelf: 'flex-end', ");
|
|
} else if (node->style.align_self == CSS_ALIGN_STRETCH) {
|
|
printf("alignSelf: 'stretch', ");
|
|
}
|
|
|
|
print_number_nan("flex", node->style.flex);
|
|
|
|
if (four_equal(node->style.margin)) {
|
|
print_number_0("margin", node->style.margin[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("marginLeft", node->style.margin[CSS_LEFT]);
|
|
print_number_0("marginRight", node->style.margin[CSS_RIGHT]);
|
|
print_number_0("marginTop", node->style.margin[CSS_TOP]);
|
|
print_number_0("marginBottom", node->style.margin[CSS_BOTTOM]);
|
|
print_number_0("marginStart", node->style.margin[CSS_START]);
|
|
print_number_0("marginEnd", node->style.margin[CSS_END]);
|
|
}
|
|
|
|
if (four_equal(node->style.padding)) {
|
|
print_number_0("padding", node->style.margin[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("paddingLeft", node->style.padding[CSS_LEFT]);
|
|
print_number_0("paddingRight", node->style.padding[CSS_RIGHT]);
|
|
print_number_0("paddingTop", node->style.padding[CSS_TOP]);
|
|
print_number_0("paddingBottom", node->style.padding[CSS_BOTTOM]);
|
|
print_number_0("paddingStart", node->style.padding[CSS_START]);
|
|
print_number_0("paddingEnd", node->style.padding[CSS_END]);
|
|
}
|
|
|
|
if (four_equal(node->style.border)) {
|
|
print_number_0("borderWidth", node->style.border[CSS_LEFT]);
|
|
} else {
|
|
print_number_0("borderLeftWidth", node->style.border[CSS_LEFT]);
|
|
print_number_0("borderRightWidth", node->style.border[CSS_RIGHT]);
|
|
print_number_0("borderTopWidth", node->style.border[CSS_TOP]);
|
|
print_number_0("borderBottomWidth", node->style.border[CSS_BOTTOM]);
|
|
print_number_0("borderStartWidth", node->style.border[CSS_START]);
|
|
print_number_0("borderEndWidth", node->style.border[CSS_END]);
|
|
}
|
|
|
|
print_number_nan("width", node->style.dimensions[CSS_WIDTH]);
|
|
print_number_nan("height", node->style.dimensions[CSS_HEIGHT]);
|
|
|
|
if (node->style.position_type == CSS_POSITION_ABSOLUTE) {
|
|
printf("position: 'absolute', ");
|
|
}
|
|
|
|
print_number_nan("left", node->style.position[CSS_LEFT]);
|
|
print_number_nan("right", node->style.position[CSS_RIGHT]);
|
|
print_number_nan("top", node->style.position[CSS_TOP]);
|
|
print_number_nan("bottom", node->style.position[CSS_BOTTOM]);
|
|
}
|
|
|
|
if (options & CSS_PRINT_CHILDREN && node->children_count > 0) {
|
|
printf("children: [\n");
|
|
for (int i = 0; i < node->children_count; ++i) {
|
|
print_css_node_rec(node->get_child(node->context, i), options, level + 1);
|
|
}
|
|
indent(level);
|
|
printf("]},\n");
|
|
} else {
|
|
printf("},\n");
|
|
}
|
|
}
|
|
|
|
void print_css_node(css_node_t *node, css_print_options_t options) {
|
|
print_css_node_rec(node, options, 0);
|
|
}
|
|
|
|
|
|
static css_position_t leading[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_RIGHT
|
|
};
|
|
static css_position_t trailing[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_RIGHT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_LEFT
|
|
};
|
|
static css_position_t pos[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_BOTTOM,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_RIGHT
|
|
};
|
|
static css_dimension_t dim[4] = {
|
|
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_HEIGHT,
|
|
/* CSS_FLEX_DIRECTION_COLUMN_REVERSE = */ CSS_HEIGHT,
|
|
/* CSS_FLEX_DIRECTION_ROW = */ CSS_WIDTH,
|
|
/* CSS_FLEX_DIRECTION_ROW_REVERSE = */ CSS_WIDTH
|
|
};
|
|
|
|
static bool isRowDirection(css_flex_direction_t flex_direction) {
|
|
return flex_direction == CSS_FLEX_DIRECTION_ROW ||
|
|
flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE;
|
|
}
|
|
|
|
static bool isColumnDirection(css_flex_direction_t flex_direction) {
|
|
return flex_direction == CSS_FLEX_DIRECTION_COLUMN ||
|
|
flex_direction == CSS_FLEX_DIRECTION_COLUMN_REVERSE;
|
|
}
|
|
|
|
static float getLeadingMargin(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) && !isUndefined(node->style.margin[CSS_START])) {
|
|
return node->style.margin[CSS_START];
|
|
}
|
|
|
|
return node->style.margin[leading[axis]];
|
|
}
|
|
|
|
static float getTrailingMargin(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) && !isUndefined(node->style.margin[CSS_END])) {
|
|
return node->style.margin[CSS_END];
|
|
}
|
|
|
|
return node->style.margin[trailing[axis]];
|
|
}
|
|
|
|
static float getLeadingPadding(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.padding[CSS_START]) &&
|
|
node->style.padding[CSS_START] >= 0) {
|
|
return node->style.padding[CSS_START];
|
|
}
|
|
|
|
if (node->style.padding[leading[axis]] >= 0) {
|
|
return node->style.padding[leading[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getTrailingPadding(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.padding[CSS_END]) &&
|
|
node->style.padding[CSS_END] >= 0) {
|
|
return node->style.padding[CSS_END];
|
|
}
|
|
|
|
if (node->style.padding[trailing[axis]] >= 0) {
|
|
return node->style.padding[trailing[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getLeadingBorder(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.border[CSS_START]) &&
|
|
node->style.border[CSS_START] >= 0) {
|
|
return node->style.border[CSS_START];
|
|
}
|
|
|
|
if (node->style.border[leading[axis]] >= 0) {
|
|
return node->style.border[leading[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getTrailingBorder(css_node_t *node, css_flex_direction_t axis) {
|
|
if (isRowDirection(axis) &&
|
|
!isUndefined(node->style.border[CSS_END]) &&
|
|
node->style.border[CSS_END] >= 0) {
|
|
return node->style.border[CSS_END];
|
|
}
|
|
|
|
if (node->style.border[trailing[axis]] >= 0) {
|
|
return node->style.border[trailing[axis]];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static float getLeadingPaddingAndBorder(css_node_t *node, css_flex_direction_t axis) {
|
|
return getLeadingPadding(node, axis) + getLeadingBorder(node, axis);
|
|
}
|
|
|
|
static float getTrailingPaddingAndBorder(css_node_t *node, css_flex_direction_t axis) {
|
|
return getTrailingPadding(node, axis) + getTrailingBorder(node, axis);
|
|
}
|
|
|
|
static float getBorderAxis(css_node_t *node, css_flex_direction_t axis) {
|
|
return getLeadingBorder(node, axis) + getTrailingBorder(node, axis);
|
|
}
|
|
|
|
static float getMarginAxis(css_node_t *node, css_flex_direction_t axis) {
|
|
return getLeadingMargin(node, axis) + getTrailingMargin(node, axis);
|
|
}
|
|
|
|
static float getPaddingAndBorderAxis(css_node_t *node, css_flex_direction_t axis) {
|
|
return getLeadingPaddingAndBorder(node, axis) + getTrailingPaddingAndBorder(node, axis);
|
|
}
|
|
|
|
static css_align_t getAlignItem(css_node_t *node, css_node_t *child) {
|
|
if (child->style.align_self != CSS_ALIGN_AUTO) {
|
|
return child->style.align_self;
|
|
}
|
|
return node->style.align_items;
|
|
}
|
|
|
|
static css_direction_t resolveDirection(css_node_t *node, css_direction_t parentDirection) {
|
|
css_direction_t direction = node->style.direction;
|
|
|
|
if (direction == CSS_DIRECTION_INHERIT) {
|
|
direction = parentDirection > CSS_DIRECTION_INHERIT ? parentDirection : CSS_DIRECTION_LTR;
|
|
}
|
|
|
|
return direction;
|
|
}
|
|
|
|
static css_flex_direction_t getFlexDirection(css_node_t *node) {
|
|
return node->style.flex_direction;
|
|
}
|
|
|
|
static css_flex_direction_t resolveAxis(css_flex_direction_t flex_direction, css_direction_t direction) {
|
|
if (direction == CSS_DIRECTION_RTL) {
|
|
if (flex_direction == CSS_FLEX_DIRECTION_ROW) {
|
|
return CSS_FLEX_DIRECTION_ROW_REVERSE;
|
|
} else if (flex_direction == CSS_FLEX_DIRECTION_ROW_REVERSE) {
|
|
return CSS_FLEX_DIRECTION_ROW;
|
|
}
|
|
}
|
|
|
|
return flex_direction;
|
|
}
|
|
|
|
static css_flex_direction_t getCrossFlexDirection(css_flex_direction_t flex_direction, css_direction_t direction) {
|
|
if (isColumnDirection(flex_direction)) {
|
|
return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction);
|
|
} else {
|
|
return CSS_FLEX_DIRECTION_COLUMN;
|
|
}
|
|
}
|
|
|
|
static float getFlex(css_node_t *node) {
|
|
return node->style.flex;
|
|
}
|
|
|
|
static bool isFlex(css_node_t *node) {
|
|
return (
|
|
node->style.position_type == CSS_POSITION_RELATIVE &&
|
|
getFlex(node) > 0
|
|
);
|
|
}
|
|
|
|
static bool isFlexWrap(css_node_t *node) {
|
|
return node->style.flex_wrap == CSS_WRAP;
|
|
}
|
|
|
|
static float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) {
|
|
return node->layout.dimensions[dim[axis]] +
|
|
getLeadingMargin(node, axis) +
|
|
getTrailingMargin(node, axis);
|
|
}
|
|
|
|
static bool isStyleDimDefined(css_node_t *node, css_flex_direction_t axis) {
|
|
float value = node->style.dimensions[dim[axis]];
|
|
return !isUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static bool isLayoutDimDefined(css_node_t *node, css_flex_direction_t axis) {
|
|
float value = node->layout.dimensions[dim[axis]];
|
|
return !isUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static bool isPosDefined(css_node_t *node, css_position_t position) {
|
|
return !isUndefined(node->style.position[position]);
|
|
}
|
|
|
|
static bool isMeasureDefined(css_node_t *node) {
|
|
return node->measure;
|
|
}
|
|
|
|
static float getPosition(css_node_t *node, css_position_t position) {
|
|
float result = node->style.position[position];
|
|
if (!isUndefined(result)) {
|
|
return result;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static float boundAxis(css_node_t *node, css_flex_direction_t axis, float value) {
|
|
float min = CSS_UNDEFINED;
|
|
float max = CSS_UNDEFINED;
|
|
|
|
if (isColumnDirection(axis)) {
|
|
min = node->style.minDimensions[CSS_HEIGHT];
|
|
max = node->style.maxDimensions[CSS_HEIGHT];
|
|
} else if (isRowDirection(axis)) {
|
|
min = node->style.minDimensions[CSS_WIDTH];
|
|
max = node->style.maxDimensions[CSS_WIDTH];
|
|
}
|
|
|
|
float boundValue = value;
|
|
|
|
if (!isUndefined(max) && max >= 0.0 && boundValue > max) {
|
|
boundValue = max;
|
|
}
|
|
if (!isUndefined(min) && min >= 0.0 && boundValue < min) {
|
|
boundValue = min;
|
|
}
|
|
|
|
return boundValue;
|
|
}
|
|
|
|
// When the user specifically sets a value for width or height
|
|
static void setDimensionFromStyle(css_node_t *node, css_flex_direction_t axis) {
|
|
// The parent already computed us a width or height. We just skip it
|
|
if (isLayoutDimDefined(node, axis)) {
|
|
return;
|
|
}
|
|
// We only run if there's a width or height defined
|
|
if (!isStyleDimDefined(node, axis)) {
|
|
return;
|
|
}
|
|
|
|
// The dimensions can never be smaller than the padding and border
|
|
node->layout.dimensions[dim[axis]] = fmaxf(
|
|
boundAxis(node, axis, node->style.dimensions[dim[axis]]),
|
|
getPaddingAndBorderAxis(node, axis)
|
|
);
|
|
}
|
|
|
|
static void setTrailingPosition(css_node_t *node, css_node_t *child, css_flex_direction_t axis) {
|
|
child->layout.position[trailing[axis]] = node->layout.dimensions[dim[axis]] -
|
|
child->layout.dimensions[dim[axis]] - child->layout.position[pos[axis]];
|
|
}
|
|
|
|
// If both left and right are defined, then use left. Otherwise return
|
|
// +left or -right depending on which is defined.
|
|
static float getRelativePosition(css_node_t *node, css_flex_direction_t axis) {
|
|
float lead = node->style.position[leading[axis]];
|
|
if (!isUndefined(lead)) {
|
|
return lead;
|
|
}
|
|
return -getPosition(node, trailing[axis]);
|
|
}
|
|
|
|
static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, float parentMaxHeight, css_direction_t parentDirection) {
|
|
/** START_GENERATED **/
|
|
css_direction_t direction = resolveDirection(node, parentDirection);
|
|
css_flex_direction_t mainAxis = resolveAxis(getFlexDirection(node), direction);
|
|
css_flex_direction_t crossAxis = getCrossFlexDirection(mainAxis, direction);
|
|
css_flex_direction_t resolvedRowAxis = resolveAxis(CSS_FLEX_DIRECTION_ROW, direction);
|
|
|
|
// Handle width and height style attributes
|
|
setDimensionFromStyle(node, mainAxis);
|
|
setDimensionFromStyle(node, crossAxis);
|
|
|
|
// Set the resolved resolution in the node's layout
|
|
node->layout.direction = direction;
|
|
|
|
// The position is set by the parent, but we need to complete it with a
|
|
// delta composed of the margin and left/top/right/bottom
|
|
node->layout.position[leading[mainAxis]] += getLeadingMargin(node, mainAxis) +
|
|
getRelativePosition(node, mainAxis);
|
|
node->layout.position[trailing[mainAxis]] += getTrailingMargin(node, mainAxis) +
|
|
getRelativePosition(node, mainAxis);
|
|
node->layout.position[leading[crossAxis]] += getLeadingMargin(node, crossAxis) +
|
|
getRelativePosition(node, crossAxis);
|
|
node->layout.position[trailing[crossAxis]] += getTrailingMargin(node, crossAxis) +
|
|
getRelativePosition(node, crossAxis);
|
|
|
|
// Inline immutable values from the target node to avoid excessive method
|
|
// invocations during the layout calculation.
|
|
int childCount = node->children_count;
|
|
float paddingAndBorderAxisResolvedRow = getPaddingAndBorderAxis(node, resolvedRowAxis);
|
|
float paddingAndBorderAxisColumn = getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
|
|
if (isMeasureDefined(node)) {
|
|
bool isResolvedRowDimDefined = isLayoutDimDefined(node, resolvedRowAxis);
|
|
|
|
float width = CSS_UNDEFINED;
|
|
css_measure_mode_t widthMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
if (isStyleDimDefined(node, resolvedRowAxis)) {
|
|
width = node->style.dimensions[CSS_WIDTH];
|
|
widthMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (isResolvedRowDimDefined) {
|
|
width = node->layout.dimensions[dim[resolvedRowAxis]];
|
|
widthMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else {
|
|
width = parentMaxWidth -
|
|
getMarginAxis(node, resolvedRowAxis);
|
|
widthMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
width -= paddingAndBorderAxisResolvedRow;
|
|
if (isUndefined(width)) {
|
|
widthMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
}
|
|
|
|
float height = CSS_UNDEFINED;
|
|
css_measure_mode_t heightMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
if (isStyleDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
height = node->style.dimensions[CSS_HEIGHT];
|
|
heightMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else if (isLayoutDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
height = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]];
|
|
heightMode = CSS_MEASURE_MODE_EXACTLY;
|
|
} else {
|
|
height = parentMaxHeight -
|
|
getMarginAxis(node, resolvedRowAxis);
|
|
heightMode = CSS_MEASURE_MODE_AT_MOST;
|
|
}
|
|
height -= getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
|
if (isUndefined(height)) {
|
|
heightMode = CSS_MEASURE_MODE_UNDEFINED;
|
|
}
|
|
|
|
// We only need to give a dimension for the text if we haven't got any
|
|
// for it computed yet. It can either be from the style attribute or because
|
|
// the element is flexible.
|
|
bool isRowUndefined = !isStyleDimDefined(node, resolvedRowAxis) && !isResolvedRowDimDefined;
|
|
bool isColumnUndefined = !isStyleDimDefined(node, CSS_FLEX_DIRECTION_COLUMN) &&
|
|
isUndefined(node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]);
|
|
|
|
// Let's not measure the text if we already know both dimensions
|
|
if (isRowUndefined || isColumnUndefined) {
|
|
css_dim_t measureDim = node->measure(
|
|
node->context,
|
|
|
|
width,
|
|
widthMode,
|
|
height,
|
|
heightMode
|
|
);
|
|
if (isRowUndefined) {
|
|
node->layout.dimensions[CSS_WIDTH] = measureDim.dimensions[CSS_WIDTH] +
|
|
paddingAndBorderAxisResolvedRow;
|
|
}
|
|
if (isColumnUndefined) {
|
|
node->layout.dimensions[CSS_HEIGHT] = measureDim.dimensions[CSS_HEIGHT] +
|
|
paddingAndBorderAxisColumn;
|
|
}
|
|
}
|
|
if (childCount == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool isNodeFlexWrap = isFlexWrap(node);
|
|
|
|
css_justify_t justifyContent = node->style.justify_content;
|
|
|
|
float leadingPaddingAndBorderMain = getLeadingPaddingAndBorder(node, mainAxis);
|
|
float leadingPaddingAndBorderCross = getLeadingPaddingAndBorder(node, crossAxis);
|
|
float paddingAndBorderAxisMain = getPaddingAndBorderAxis(node, mainAxis);
|
|
float paddingAndBorderAxisCross = getPaddingAndBorderAxis(node, crossAxis);
|
|
|
|
bool isMainDimDefined = isLayoutDimDefined(node, mainAxis);
|
|
bool isCrossDimDefined = isLayoutDimDefined(node, crossAxis);
|
|
bool isMainRowDirection = isRowDirection(mainAxis);
|
|
|
|
int i;
|
|
int ii;
|
|
css_node_t* child;
|
|
css_flex_direction_t axis;
|
|
|
|
css_node_t* firstAbsoluteChild = NULL;
|
|
css_node_t* currentAbsoluteChild = NULL;
|
|
|
|
float definedMainDim = CSS_UNDEFINED;
|
|
if (isMainDimDefined) {
|
|
definedMainDim = node->layout.dimensions[dim[mainAxis]] - paddingAndBorderAxisMain;
|
|
}
|
|
|
|
// We want to execute the next two loops one per line with flex-wrap
|
|
int startLine = 0;
|
|
int endLine = 0;
|
|
// int nextOffset = 0;
|
|
int alreadyComputedNextLayout = 0;
|
|
// We aggregate the total dimensions of the container in those two variables
|
|
float linesCrossDim = 0;
|
|
float linesMainDim = 0;
|
|
int linesCount = 0;
|
|
while (endLine < childCount) {
|
|
// <Loop A> Layout non flexible children and count children by type
|
|
|
|
// mainContentDim is accumulation of the dimensions and margin of all the
|
|
// non flexible children. This will be used in order to either set the
|
|
// dimensions of the node if none already exist, or to compute the
|
|
// remaining space left for the flexible children.
|
|
float mainContentDim = 0;
|
|
|
|
// There are three kind of children, non flexible, flexible and absolute.
|
|
// We need to know how many there are in order to distribute the space.
|
|
int flexibleChildrenCount = 0;
|
|
float totalFlexible = 0;
|
|
int nonFlexibleChildrenCount = 0;
|
|
|
|
// Use the line loop to position children in the main axis for as long
|
|
// as they are using a simple stacking behaviour. Children that are
|
|
// immediately stacked in the initial loop will not be touched again
|
|
// in <Loop C>.
|
|
bool isSimpleStackMain =
|
|
(isMainDimDefined && justifyContent == CSS_JUSTIFY_FLEX_START) ||
|
|
(!isMainDimDefined && justifyContent != CSS_JUSTIFY_CENTER);
|
|
int firstComplexMain = (isSimpleStackMain ? childCount : startLine);
|
|
|
|
// Use the initial line loop to position children in the cross axis for
|
|
// as long as they are relatively positioned with alignment STRETCH or
|
|
// FLEX_START. Children that are immediately stacked in the initial loop
|
|
// will not be touched again in <Loop D>.
|
|
bool isSimpleStackCross = true;
|
|
int firstComplexCross = childCount;
|
|
|
|
css_node_t* firstFlexChild = NULL;
|
|
css_node_t* currentFlexChild = NULL;
|
|
|
|
float mainDim = leadingPaddingAndBorderMain;
|
|
float crossDim = 0;
|
|
|
|
float maxWidth = CSS_UNDEFINED;
|
|
float maxHeight = CSS_UNDEFINED;
|
|
for (i = startLine; i < childCount; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
child->line_index = linesCount;
|
|
|
|
child->next_absolute_child = NULL;
|
|
child->next_flex_child = NULL;
|
|
|
|
css_align_t alignItem = getAlignItem(node, child);
|
|
|
|
// Pre-fill cross axis dimensions when the child is using stretch before
|
|
// we call the recursive layout pass
|
|
if (alignItem == CSS_ALIGN_STRETCH &&
|
|
child->style.position_type == CSS_POSITION_RELATIVE &&
|
|
isCrossDimDefined &&
|
|
!isStyleDimDefined(child, crossAxis)) {
|
|
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
|
boundAxis(child, crossAxis, node->layout.dimensions[dim[crossAxis]] -
|
|
paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)),
|
|
// You never want to go smaller than padding
|
|
getPaddingAndBorderAxis(child, crossAxis)
|
|
);
|
|
} else if (child->style.position_type == CSS_POSITION_ABSOLUTE) {
|
|
// Store a private linked list of absolutely positioned children
|
|
// so that we can efficiently traverse them later.
|
|
if (firstAbsoluteChild == NULL) {
|
|
firstAbsoluteChild = child;
|
|
}
|
|
if (currentAbsoluteChild != NULL) {
|
|
currentAbsoluteChild->next_absolute_child = child;
|
|
}
|
|
currentAbsoluteChild = child;
|
|
|
|
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
|
|
// left and right or top and bottom).
|
|
for (ii = 0; ii < 2; ii++) {
|
|
axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
|
|
if (isLayoutDimDefined(node, axis) &&
|
|
!isStyleDimDefined(child, axis) &&
|
|
isPosDefined(child, leading[axis]) &&
|
|
isPosDefined(child, trailing[axis])) {
|
|
child->layout.dimensions[dim[axis]] = fmaxf(
|
|
boundAxis(child, axis, node->layout.dimensions[dim[axis]] -
|
|
getPaddingAndBorderAxis(node, axis) -
|
|
getMarginAxis(child, axis) -
|
|
getPosition(child, leading[axis]) -
|
|
getPosition(child, trailing[axis])),
|
|
// You never want to go smaller than padding
|
|
getPaddingAndBorderAxis(child, axis)
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
float nextContentDim = 0;
|
|
|
|
// It only makes sense to consider a child flexible if we have a computed
|
|
// dimension for the node->
|
|
if (isMainDimDefined && isFlex(child)) {
|
|
flexibleChildrenCount++;
|
|
totalFlexible += child->style.flex;
|
|
|
|
// Store a private linked list of flexible children so that we can
|
|
// efficiently traverse them later.
|
|
if (firstFlexChild == NULL) {
|
|
firstFlexChild = child;
|
|
}
|
|
if (currentFlexChild != NULL) {
|
|
currentFlexChild->next_flex_child = child;
|
|
}
|
|
currentFlexChild = child;
|
|
|
|
// Even if we don't know its exact size yet, we already know the padding,
|
|
// border and margin. We'll use this partial information, which represents
|
|
// the smallest possible size for the child, to compute the remaining
|
|
// available space.
|
|
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
|
|
getMarginAxis(child, mainAxis);
|
|
|
|
} else {
|
|
maxWidth = CSS_UNDEFINED;
|
|
maxHeight = CSS_UNDEFINED;
|
|
|
|
if (!isMainRowDirection) {
|
|
if (isLayoutDimDefined(node, resolvedRowAxis)) {
|
|
maxWidth = node->layout.dimensions[dim[resolvedRowAxis]] -
|
|
paddingAndBorderAxisResolvedRow;
|
|
} else {
|
|
maxWidth = parentMaxWidth -
|
|
getMarginAxis(node, resolvedRowAxis) -
|
|
paddingAndBorderAxisResolvedRow;
|
|
}
|
|
} else {
|
|
if (isLayoutDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
maxHeight = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] -
|
|
paddingAndBorderAxisColumn;
|
|
} else {
|
|
maxHeight = parentMaxHeight -
|
|
getMarginAxis(node, CSS_FLEX_DIRECTION_COLUMN) -
|
|
paddingAndBorderAxisColumn;
|
|
}
|
|
}
|
|
|
|
// This is the main recursive call. We layout non flexible children.
|
|
if (alreadyComputedNextLayout == 0) {
|
|
layoutNode(child, maxWidth, maxHeight, direction);
|
|
}
|
|
|
|
// Absolute positioned elements do not take part of the layout, so we
|
|
// don't use them to compute mainContentDim
|
|
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
|
nonFlexibleChildrenCount++;
|
|
// At this point we know the final size and margin of the element.
|
|
nextContentDim = getDimWithMargin(child, mainAxis);
|
|
}
|
|
}
|
|
|
|
// The element we are about to add would make us go to the next line
|
|
if (isNodeFlexWrap &&
|
|
isMainDimDefined &&
|
|
mainContentDim + nextContentDim > definedMainDim &&
|
|
// If there's only one element, then it's bigger than the content
|
|
// and needs its own line
|
|
i != startLine) {
|
|
nonFlexibleChildrenCount--;
|
|
alreadyComputedNextLayout = 1;
|
|
break;
|
|
}
|
|
|
|
// Disable simple stacking in the main axis for the current line as
|
|
// we found a non-trivial child-> The remaining children will be laid out
|
|
// in <Loop C>.
|
|
if (isSimpleStackMain &&
|
|
(child->style.position_type != CSS_POSITION_RELATIVE || isFlex(child))) {
|
|
isSimpleStackMain = false;
|
|
firstComplexMain = i;
|
|
}
|
|
|
|
// Disable simple stacking in the cross axis for the current line as
|
|
// we found a non-trivial child-> The remaining children will be laid out
|
|
// in <Loop D>.
|
|
if (isSimpleStackCross &&
|
|
(child->style.position_type != CSS_POSITION_RELATIVE ||
|
|
(alignItem != CSS_ALIGN_STRETCH && alignItem != CSS_ALIGN_FLEX_START) ||
|
|
(alignItem == CSS_ALIGN_STRETCH && !isCrossDimDefined))) {
|
|
isSimpleStackCross = false;
|
|
firstComplexCross = i;
|
|
}
|
|
|
|
if (isSimpleStackMain) {
|
|
child->layout.position[pos[mainAxis]] += mainDim;
|
|
if (isMainDimDefined) {
|
|
setTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
mainDim += getDimWithMargin(child, mainAxis);
|
|
crossDim = fmaxf(crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis)));
|
|
}
|
|
|
|
if (isSimpleStackCross) {
|
|
child->layout.position[pos[crossAxis]] += linesCrossDim + leadingPaddingAndBorderCross;
|
|
if (isCrossDimDefined) {
|
|
setTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
|
|
alreadyComputedNextLayout = 0;
|
|
mainContentDim += nextContentDim;
|
|
endLine = i + 1;
|
|
}
|
|
|
|
// <Loop B> Layout flexible children and allocate empty space
|
|
|
|
// In order to position the elements in the main axis, we have two
|
|
// controls. The space between the beginning and the first element
|
|
// and the space between each two elements.
|
|
float leadingMainDim = 0;
|
|
float betweenMainDim = 0;
|
|
|
|
// The remaining available space that needs to be allocated
|
|
float remainingMainDim = 0;
|
|
if (isMainDimDefined) {
|
|
remainingMainDim = definedMainDim - mainContentDim;
|
|
} else {
|
|
remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
|
|
}
|
|
|
|
// If there are flexible children in the mix, they are going to fill the
|
|
// remaining space
|
|
if (flexibleChildrenCount != 0) {
|
|
float flexibleMainDim = remainingMainDim / totalFlexible;
|
|
float baseMainDim;
|
|
float boundMainDim;
|
|
|
|
// If the flex share of remaining space doesn't meet min/max bounds,
|
|
// remove this child from flex calculations.
|
|
currentFlexChild = firstFlexChild;
|
|
while (currentFlexChild != NULL) {
|
|
baseMainDim = flexibleMainDim * currentFlexChild->style.flex +
|
|
getPaddingAndBorderAxis(currentFlexChild, mainAxis);
|
|
boundMainDim = boundAxis(currentFlexChild, mainAxis, baseMainDim);
|
|
|
|
if (baseMainDim != boundMainDim) {
|
|
remainingMainDim -= boundMainDim;
|
|
totalFlexible -= currentFlexChild->style.flex;
|
|
}
|
|
|
|
currentFlexChild = currentFlexChild->next_flex_child;
|
|
}
|
|
flexibleMainDim = remainingMainDim / totalFlexible;
|
|
|
|
// The non flexible children can overflow the container, in this case
|
|
// we should just assume that there is no space available.
|
|
if (flexibleMainDim < 0) {
|
|
flexibleMainDim = 0;
|
|
}
|
|
|
|
currentFlexChild = firstFlexChild;
|
|
while (currentFlexChild != NULL) {
|
|
// At this point we know the final size of the element in the main
|
|
// dimension
|
|
currentFlexChild->layout.dimensions[dim[mainAxis]] = boundAxis(currentFlexChild, mainAxis,
|
|
flexibleMainDim * currentFlexChild->style.flex +
|
|
getPaddingAndBorderAxis(currentFlexChild, mainAxis)
|
|
);
|
|
|
|
maxWidth = CSS_UNDEFINED;
|
|
if (isLayoutDimDefined(node, resolvedRowAxis)) {
|
|
maxWidth = node->layout.dimensions[dim[resolvedRowAxis]] -
|
|
paddingAndBorderAxisResolvedRow;
|
|
} else if (!isMainRowDirection) {
|
|
maxWidth = parentMaxWidth -
|
|
getMarginAxis(node, resolvedRowAxis) -
|
|
paddingAndBorderAxisResolvedRow;
|
|
}
|
|
maxHeight = CSS_UNDEFINED;
|
|
if (isLayoutDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) {
|
|
maxHeight = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] -
|
|
paddingAndBorderAxisColumn;
|
|
} else if (isMainRowDirection) {
|
|
maxHeight = parentMaxHeight -
|
|
getMarginAxis(node, CSS_FLEX_DIRECTION_COLUMN) -
|
|
paddingAndBorderAxisColumn;
|
|
}
|
|
|
|
// And we recursively call the layout algorithm for this child
|
|
layoutNode(currentFlexChild, maxWidth, maxHeight, direction);
|
|
|
|
child = currentFlexChild;
|
|
currentFlexChild = currentFlexChild->next_flex_child;
|
|
child->next_flex_child = NULL;
|
|
}
|
|
|
|
// We use justifyContent to figure out how to allocate the remaining
|
|
// space available
|
|
} else if (justifyContent != CSS_JUSTIFY_FLEX_START) {
|
|
if (justifyContent == CSS_JUSTIFY_CENTER) {
|
|
leadingMainDim = remainingMainDim / 2;
|
|
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
|
|
leadingMainDim = remainingMainDim;
|
|
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
|
|
remainingMainDim = fmaxf(remainingMainDim, 0);
|
|
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
|
|
betweenMainDim = remainingMainDim /
|
|
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
|
|
} else {
|
|
betweenMainDim = 0;
|
|
}
|
|
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
|
|
// Space on the edges is half of the space between elements
|
|
betweenMainDim = remainingMainDim /
|
|
(flexibleChildrenCount + nonFlexibleChildrenCount);
|
|
leadingMainDim = betweenMainDim / 2;
|
|
}
|
|
}
|
|
|
|
// <Loop C> Position elements in the main axis and compute dimensions
|
|
|
|
// At this point, all the children have their dimensions set. We need to
|
|
// find their position. In order to do that, we accumulate data in
|
|
// variables that are also useful to compute the total dimensions of the
|
|
// container!
|
|
mainDim += leadingMainDim;
|
|
|
|
for (i = firstComplexMain; i < endLine; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (child->style.position_type == CSS_POSITION_ABSOLUTE &&
|
|
isPosDefined(child, leading[mainAxis])) {
|
|
// In case the child is position absolute and has left/top being
|
|
// defined, we override the position to whatever the user said
|
|
// (and margin/border).
|
|
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
|
|
getLeadingBorder(node, mainAxis) +
|
|
getLeadingMargin(child, mainAxis);
|
|
} else {
|
|
// If the child is position absolute (without top/left) or relative,
|
|
// we put it at the current accumulated offset.
|
|
child->layout.position[pos[mainAxis]] += mainDim;
|
|
|
|
// Define the trailing position accordingly.
|
|
if (isMainDimDefined) {
|
|
setTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
// Now that we placed the element, we need to update the variables
|
|
// We only need to do that for relative elements. Absolute elements
|
|
// do not take part in that phase.
|
|
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
|
// The main dimension is the sum of all the elements dimension plus
|
|
// the spacing.
|
|
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
|
|
// The cross dimension is the max of the elements dimension since there
|
|
// can only be one element in that cross dimension.
|
|
crossDim = fmaxf(crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis)));
|
|
}
|
|
}
|
|
}
|
|
|
|
float containerCrossAxis = node->layout.dimensions[dim[crossAxis]];
|
|
if (!isCrossDimDefined) {
|
|
containerCrossAxis = fmaxf(
|
|
// For the cross dim, we add both sides at the end because the value
|
|
// is aggregate via a max function. Intermediate negative values
|
|
// can mess this computation otherwise
|
|
boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross),
|
|
paddingAndBorderAxisCross
|
|
);
|
|
}
|
|
|
|
// <Loop D> Position elements in the cross axis
|
|
for (i = firstComplexCross; i < endLine; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (child->style.position_type == CSS_POSITION_ABSOLUTE &&
|
|
isPosDefined(child, leading[crossAxis])) {
|
|
// In case the child is absolutely positionned and has a
|
|
// top/left/bottom/right being set, we override all the previously
|
|
// computed positions to set it correctly.
|
|
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
|
|
getLeadingBorder(node, crossAxis) +
|
|
getLeadingMargin(child, crossAxis);
|
|
|
|
} else {
|
|
float leadingCrossDim = leadingPaddingAndBorderCross;
|
|
|
|
// For a relative children, we're either using alignItems (parent) or
|
|
// alignSelf (child) in order to determine the position in the cross axis
|
|
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
|
/*eslint-disable */
|
|
// This variable is intentionally re-defined as the code is transpiled to a block scope language
|
|
css_align_t alignItem = getAlignItem(node, child);
|
|
/*eslint-enable */
|
|
if (alignItem == CSS_ALIGN_STRETCH) {
|
|
// You can only stretch if the dimension has not already been defined
|
|
// previously.
|
|
if (!isStyleDimDefined(child, crossAxis)) {
|
|
float dimCrossAxis = child->layout.dimensions[dim[crossAxis]];
|
|
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
|
boundAxis(child, crossAxis, containerCrossAxis -
|
|
paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)),
|
|
// You never want to go smaller than padding
|
|
getPaddingAndBorderAxis(child, crossAxis)
|
|
);
|
|
|
|
// If the size has changed, and this child has children we need to re-layout this child
|
|
if (dimCrossAxis != child->layout.dimensions[dim[crossAxis]] && child->children_count > 0) {
|
|
// Reset child margins before re-layout as they are added back in layoutNode and would be doubled
|
|
child->layout.position[leading[mainAxis]] -= getLeadingMargin(child, mainAxis) +
|
|
getRelativePosition(child, mainAxis);
|
|
child->layout.position[trailing[mainAxis]] -= getTrailingMargin(child, mainAxis) +
|
|
getRelativePosition(child, mainAxis);
|
|
child->layout.position[leading[crossAxis]] -= getLeadingMargin(child, crossAxis) +
|
|
getRelativePosition(child, crossAxis);
|
|
child->layout.position[trailing[crossAxis]] -= getTrailingMargin(child, crossAxis) +
|
|
getRelativePosition(child, crossAxis);
|
|
|
|
layoutNode(child, maxWidth, maxHeight, direction);
|
|
}
|
|
}
|
|
} else if (alignItem != CSS_ALIGN_FLEX_START) {
|
|
// The remaining space between the parent dimensions+padding and child
|
|
// dimensions+margin.
|
|
float remainingCrossDim = containerCrossAxis -
|
|
paddingAndBorderAxisCross - getDimWithMargin(child, crossAxis);
|
|
|
|
if (alignItem == CSS_ALIGN_CENTER) {
|
|
leadingCrossDim += remainingCrossDim / 2;
|
|
} else { // CSS_ALIGN_FLEX_END
|
|
leadingCrossDim += remainingCrossDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
// And we apply the position
|
|
child->layout.position[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
|
|
|
|
// Define the trailing position accordingly.
|
|
if (isCrossDimDefined) {
|
|
setTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
}
|
|
|
|
linesCrossDim += crossDim;
|
|
linesMainDim = fmaxf(linesMainDim, mainDim);
|
|
linesCount += 1;
|
|
startLine = endLine;
|
|
}
|
|
|
|
// <Loop E>
|
|
//
|
|
// Note(prenaux): More than one line, we need to layout the crossAxis
|
|
// according to alignContent.
|
|
//
|
|
// Note that we could probably remove <Loop D> and handle the one line case
|
|
// here too, but for the moment this is safer since it won't interfere with
|
|
// previously working code.
|
|
//
|
|
// See specs:
|
|
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#layout-algorithm
|
|
// section 9.4
|
|
//
|
|
if (linesCount > 1 && isCrossDimDefined) {
|
|
float nodeCrossAxisInnerSize = node->layout.dimensions[dim[crossAxis]] -
|
|
paddingAndBorderAxisCross;
|
|
float remainingAlignContentDim = nodeCrossAxisInnerSize - linesCrossDim;
|
|
|
|
float crossDimLead = 0;
|
|
float currentLead = leadingPaddingAndBorderCross;
|
|
|
|
css_align_t alignContent = node->style.align_content;
|
|
if (alignContent == CSS_ALIGN_FLEX_END) {
|
|
currentLead += remainingAlignContentDim;
|
|
} else if (alignContent == CSS_ALIGN_CENTER) {
|
|
currentLead += remainingAlignContentDim / 2;
|
|
} else if (alignContent == CSS_ALIGN_STRETCH) {
|
|
if (nodeCrossAxisInnerSize > linesCrossDim) {
|
|
crossDimLead = (remainingAlignContentDim / linesCount);
|
|
}
|
|
}
|
|
|
|
int endIndex = 0;
|
|
for (i = 0; i < linesCount; ++i) {
|
|
int startIndex = endIndex;
|
|
|
|
// compute the line's height and find the endIndex
|
|
float lineHeight = 0;
|
|
for (ii = startIndex; ii < childCount; ++ii) {
|
|
child = node->get_child(node->context, ii);
|
|
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
|
continue;
|
|
}
|
|
if (child->line_index != i) {
|
|
break;
|
|
}
|
|
if (isLayoutDimDefined(child, crossAxis)) {
|
|
lineHeight = fmaxf(
|
|
lineHeight,
|
|
child->layout.dimensions[dim[crossAxis]] + getMarginAxis(child, crossAxis)
|
|
);
|
|
}
|
|
}
|
|
endIndex = ii;
|
|
lineHeight += crossDimLead;
|
|
|
|
for (ii = startIndex; ii < endIndex; ++ii) {
|
|
child = node->get_child(node->context, ii);
|
|
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
|
continue;
|
|
}
|
|
|
|
css_align_t alignContentAlignItem = getAlignItem(node, child);
|
|
if (alignContentAlignItem == CSS_ALIGN_FLEX_START) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis);
|
|
} else if (alignContentAlignItem == CSS_ALIGN_FLEX_END) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + lineHeight - getTrailingMargin(child, crossAxis) - child->layout.dimensions[dim[crossAxis]];
|
|
} else if (alignContentAlignItem == CSS_ALIGN_CENTER) {
|
|
float childHeight = child->layout.dimensions[dim[crossAxis]];
|
|
child->layout.position[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2;
|
|
} else if (alignContentAlignItem == CSS_ALIGN_STRETCH) {
|
|
child->layout.position[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis);
|
|
// TODO(prenaux): Correctly set the height of items with undefined
|
|
// (auto) crossAxis dimension.
|
|
}
|
|
}
|
|
|
|
currentLead += lineHeight;
|
|
}
|
|
}
|
|
|
|
bool needsMainTrailingPos = false;
|
|
bool needsCrossTrailingPos = false;
|
|
|
|
// If the user didn't specify a width or height, and it has not been set
|
|
// by the container, then we set it via the children.
|
|
if (!isMainDimDefined) {
|
|
node->layout.dimensions[dim[mainAxis]] = fmaxf(
|
|
// We're missing the last padding at this point to get the final
|
|
// dimension
|
|
boundAxis(node, mainAxis, linesMainDim + getTrailingPaddingAndBorder(node, mainAxis)),
|
|
// We can never assign a width smaller than the padding and borders
|
|
paddingAndBorderAxisMain
|
|
);
|
|
|
|
if (mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
|
|
mainAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
needsMainTrailingPos = true;
|
|
}
|
|
}
|
|
|
|
if (!isCrossDimDefined) {
|
|
node->layout.dimensions[dim[crossAxis]] = fmaxf(
|
|
// For the cross dim, we add both sides at the end because the value
|
|
// is aggregate via a max function. Intermediate negative values
|
|
// can mess this computation otherwise
|
|
boundAxis(node, crossAxis, linesCrossDim + paddingAndBorderAxisCross),
|
|
paddingAndBorderAxisCross
|
|
);
|
|
|
|
if (crossAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
|
|
crossAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
|
|
needsCrossTrailingPos = true;
|
|
}
|
|
}
|
|
|
|
// <Loop F> Set trailing position if necessary
|
|
if (needsMainTrailingPos || needsCrossTrailingPos) {
|
|
for (i = 0; i < childCount; ++i) {
|
|
child = node->get_child(node->context, i);
|
|
|
|
if (needsMainTrailingPos) {
|
|
setTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
if (needsCrossTrailingPos) {
|
|
setTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
}
|
|
|
|
// <Loop G> Calculate dimensions for absolutely positioned elements
|
|
currentAbsoluteChild = firstAbsoluteChild;
|
|
while (currentAbsoluteChild != NULL) {
|
|
// Pre-fill dimensions when using absolute position and both offsets for
|
|
// the axis are defined (either both left and right or top and bottom).
|
|
for (ii = 0; ii < 2; ii++) {
|
|
axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
|
|
|
|
if (isLayoutDimDefined(node, axis) &&
|
|
!isStyleDimDefined(currentAbsoluteChild, axis) &&
|
|
isPosDefined(currentAbsoluteChild, leading[axis]) &&
|
|
isPosDefined(currentAbsoluteChild, trailing[axis])) {
|
|
currentAbsoluteChild->layout.dimensions[dim[axis]] = fmaxf(
|
|
boundAxis(currentAbsoluteChild, axis, node->layout.dimensions[dim[axis]] -
|
|
getBorderAxis(node, axis) -
|
|
getMarginAxis(currentAbsoluteChild, axis) -
|
|
getPosition(currentAbsoluteChild, leading[axis]) -
|
|
getPosition(currentAbsoluteChild, trailing[axis])
|
|
),
|
|
// You never want to go smaller than padding
|
|
getPaddingAndBorderAxis(currentAbsoluteChild, axis)
|
|
);
|
|
}
|
|
|
|
if (isPosDefined(currentAbsoluteChild, trailing[axis]) &&
|
|
!isPosDefined(currentAbsoluteChild, leading[axis])) {
|
|
currentAbsoluteChild->layout.position[leading[axis]] =
|
|
node->layout.dimensions[dim[axis]] -
|
|
currentAbsoluteChild->layout.dimensions[dim[axis]] -
|
|
getPosition(currentAbsoluteChild, trailing[axis]);
|
|
}
|
|
}
|
|
|
|
child = currentAbsoluteChild;
|
|
currentAbsoluteChild = currentAbsoluteChild->next_absolute_child;
|
|
child->next_absolute_child = NULL;
|
|
}
|
|
/** END_GENERATED **/
|
|
}
|
|
|
|
void layoutNode(css_node_t *node, float parentMaxWidth, float parentMaxHeight, css_direction_t parentDirection) {
|
|
css_layout_t *layout = &node->layout;
|
|
css_direction_t direction = node->style.direction;
|
|
layout->should_update = true;
|
|
|
|
bool skipLayout =
|
|
!node->is_dirty(node->context) &&
|
|
eq(layout->last_requested_dimensions[CSS_WIDTH], layout->dimensions[CSS_WIDTH]) &&
|
|
eq(layout->last_requested_dimensions[CSS_HEIGHT], layout->dimensions[CSS_HEIGHT]) &&
|
|
eq(layout->last_parent_max_width, parentMaxWidth) &&
|
|
eq(layout->last_parent_max_height, parentMaxHeight) &&
|
|
eq(layout->last_direction, direction);
|
|
|
|
if (skipLayout) {
|
|
layout->dimensions[CSS_WIDTH] = layout->last_dimensions[CSS_WIDTH];
|
|
layout->dimensions[CSS_HEIGHT] = layout->last_dimensions[CSS_HEIGHT];
|
|
layout->position[CSS_TOP] = layout->last_position[CSS_TOP];
|
|
layout->position[CSS_LEFT] = layout->last_position[CSS_LEFT];
|
|
} else {
|
|
layout->last_requested_dimensions[CSS_WIDTH] = layout->dimensions[CSS_WIDTH];
|
|
layout->last_requested_dimensions[CSS_HEIGHT] = layout->dimensions[CSS_HEIGHT];
|
|
layout->last_parent_max_width = parentMaxWidth;
|
|
layout->last_parent_max_height = parentMaxHeight;
|
|
layout->last_direction = direction;
|
|
|
|
for (int i = 0, childCount = node->children_count; i < childCount; i++) {
|
|
resetNodeLayout(node->get_child(node->context, i));
|
|
}
|
|
|
|
layoutNodeImpl(node, parentMaxWidth, parentMaxHeight, parentDirection);
|
|
|
|
layout->last_dimensions[CSS_WIDTH] = layout->dimensions[CSS_WIDTH];
|
|
layout->last_dimensions[CSS_HEIGHT] = layout->dimensions[CSS_HEIGHT];
|
|
layout->last_position[CSS_TOP] = layout->position[CSS_TOP];
|
|
layout->last_position[CSS_LEFT] = layout->position[CSS_LEFT];
|
|
}
|
|
}
|
|
|
|
void resetNodeLayout(css_node_t *node) {
|
|
node->layout.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
|
|
node->layout.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
|
|
node->layout.position[CSS_LEFT] = 0;
|
|
node->layout.position[CSS_TOP] = 0;
|
|
}
|