react-native/ReactCommon/cxxreact/JSBigString.h

173 lines
4.1 KiB
C++

// Copyright 2004-present Facebook. All Rights Reserved.
#pragma once
#include <fcntl.h>
#include <sys/mman.h>
#include <folly/Exception.h>
#ifndef RN_EXPORT
#define RN_EXPORT __attribute__((visibility("default")))
#endif
namespace facebook {
namespace react {
// JSExecutor functions sometimes take large strings, on the order of
// megabytes. Copying these can be expensive. Introducing a
// move-only, non-CopyConstructible type will let the compiler ensure
// that no copies occur. folly::MoveWrapper should be used when a
// large string needs to be curried into a std::function<>, which must
// by CopyConstructible.
class JSBigString {
public:
JSBigString() = default;
// Not copyable
JSBigString(const JSBigString&) = delete;
JSBigString& operator=(const JSBigString&) = delete;
virtual ~JSBigString() {}
virtual bool isAscii() const = 0;
// This needs to be a \0 terminated string
virtual const char* c_str() const = 0;
// Length of the c_str without the NULL byte.
virtual size_t size() const = 0;
};
// Concrete JSBigString implementation which holds a std::string
// instance.
class JSBigStdString : public JSBigString {
public:
JSBigStdString(std::string str, bool isAscii=false)
: m_isAscii(isAscii)
, m_str(std::move(str)) {}
bool isAscii() const override {
return m_isAscii;
}
const char* c_str() const override {
return m_str.c_str();
}
size_t size() const override {
return m_str.size();
}
private:
bool m_isAscii;
std::string m_str;
};
// Concrete JSBigString implementation which holds a heap-allocated
// buffer, and provides an accessor for writing to it. This can be
// used to construct a JSBigString in place, such as by reading from a
// file.
class JSBigBufferString : public JSBigString {
public:
JSBigBufferString(size_t size)
: m_data(new char[size + 1])
, m_size(size) {
// Guarantee nul-termination. The caller is responsible for
// filling in the rest of m_data.
m_data[m_size] = '\0';
}
~JSBigBufferString() {
delete[] m_data;
}
bool isAscii() const override {
return true;
}
const char* c_str() const override {
return m_data;
}
size_t size() const override {
return m_size;
}
char* data() {
return m_data;
}
private:
char* m_data;
size_t m_size;
};
// JSBigString interface implemented by a file-backed mmap region.
class RN_EXPORT JSBigFileString : public JSBigString {
public:
JSBigFileString(int fd, size_t size, off_t offset = 0)
: m_fd {-1}
, m_data {nullptr}
{
folly::checkUnixError(
m_fd = dup(fd),
"Could not duplicate file descriptor");
// Offsets given to mmap must be page aligend. We abstract away that
// restriction by sending a page aligned offset to mmap, and keeping track
// of the offset within the page that we must alter the mmap pointer by to
// get the final desired offset.
auto ps = getpagesize();
auto d = lldiv(offset, ps);
m_mapOff = d.quot;
m_pageOff = d.rem;
m_size = size + m_pageOff;
}
~JSBigFileString() {
if (m_data) {
munmap((void *)m_data, m_size);
}
close(m_fd);
}
bool isAscii() const override {
return true;
}
const char *c_str() const override {
if (!m_data) {
m_data = (const char *)mmap(0, m_size, PROT_READ, MAP_SHARED, m_fd, m_mapOff);
CHECK(m_data != MAP_FAILED)
<< " fd: " << m_fd
<< " size: " << m_size
<< " offset: " << m_mapOff
<< " error: " << std::strerror(errno);
}
return m_data + m_pageOff;
}
size_t size() const override {
return m_size - m_pageOff;
}
int fd() const {
return m_fd;
}
static std::unique_ptr<const JSBigFileString> fromPath(const std::string& sourceURL);
private:
int m_fd; // The file descriptor being mmaped
size_t m_size; // The size of the mmaped region
size_t m_pageOff; // The offset in the mmaped region to the data.
off_t m_mapOff; // The offset in the file to the mmaped region.
mutable const char *m_data; // Pointer to the mmaped region.
};
} }