2674 lines
111 KiB
C
2674 lines
111 KiB
C
/**
|
|
* Copyright (c) 2014-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD-style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "YGNodeList.h"
|
|
#include "Yoga.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#include <float.h>
|
|
#ifndef isnan
|
|
#define isnan _isnan
|
|
#endif
|
|
|
|
#ifndef __cplusplus
|
|
#define inline __inline
|
|
#endif
|
|
|
|
/* define fmaxf if < VC12 */
|
|
#if _MSC_VER < 1800
|
|
__forceinline const float fmaxf(const float a, const float b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
typedef struct YGCachedMeasurement {
|
|
float availableWidth;
|
|
float availableHeight;
|
|
YGMeasureMode widthMeasureMode;
|
|
YGMeasureMode heightMeasureMode;
|
|
|
|
float computedWidth;
|
|
float computedHeight;
|
|
} YGCachedMeasurement;
|
|
|
|
// This value was chosen based on empiracle data. Even the most complicated
|
|
// layouts should not require more than 16 entries to fit within the cache.
|
|
enum { YG_MAX_CACHED_RESULT_COUNT = 16 };
|
|
|
|
typedef struct YGLayout {
|
|
float position[4];
|
|
float dimensions[2];
|
|
YGDirection direction;
|
|
|
|
uint32_t computedFlexBasisGeneration;
|
|
float computedFlexBasis;
|
|
|
|
// Instead of recomputing the entire layout every single time, we
|
|
// cache some information to break early when nothing changed
|
|
uint32_t generationCount;
|
|
YGDirection lastParentDirection;
|
|
|
|
uint32_t nextCachedMeasurementsIndex;
|
|
YGCachedMeasurement cachedMeasurements[YG_MAX_CACHED_RESULT_COUNT];
|
|
float measuredDimensions[2];
|
|
|
|
YGCachedMeasurement cachedLayout;
|
|
} YGLayout;
|
|
|
|
typedef struct YGStyle {
|
|
YGDirection direction;
|
|
YGFlexDirection flexDirection;
|
|
YGJustify justifyContent;
|
|
YGAlign alignContent;
|
|
YGAlign alignItems;
|
|
YGAlign alignSelf;
|
|
YGPositionType positionType;
|
|
YGWrap flexWrap;
|
|
YGOverflow overflow;
|
|
float flex;
|
|
float flexGrow;
|
|
float flexShrink;
|
|
float flexBasis;
|
|
float margin[YGEdgeCount];
|
|
float position[YGEdgeCount];
|
|
float padding[YGEdgeCount];
|
|
float border[YGEdgeCount];
|
|
float dimensions[2];
|
|
float minDimensions[2];
|
|
float maxDimensions[2];
|
|
|
|
// Yoga specific properties, not compatible with flexbox specification
|
|
float aspectRatio;
|
|
} YGStyle;
|
|
|
|
typedef struct YGNode {
|
|
YGStyle style;
|
|
YGLayout layout;
|
|
uint32_t lineIndex;
|
|
bool hasNewLayout;
|
|
YGNodeRef parent;
|
|
YGNodeListRef children;
|
|
bool isDirty;
|
|
|
|
struct YGNode *nextChild;
|
|
|
|
YGMeasureFunc measure;
|
|
YGPrintFunc print;
|
|
void *context;
|
|
} YGNode;
|
|
|
|
static void YGNodeMarkDirtyInternal(const YGNodeRef node);
|
|
|
|
YGMalloc gYGMalloc = &malloc;
|
|
YGCalloc gYGCalloc = &calloc;
|
|
YGRealloc gYGRealloc = &realloc;
|
|
YGFree gYGFree = &free;
|
|
|
|
#ifdef ANDROID
|
|
#include <android/log.h>
|
|
static int YGAndroidLog(YGLogLevel level, const char *format, va_list args) {
|
|
int androidLevel = YGLogLevelDebug;
|
|
switch (level) {
|
|
case YGLogLevelError:
|
|
androidLevel = ANDROID_LOG_ERROR;
|
|
break;
|
|
case YGLogLevelWarn:
|
|
androidLevel = ANDROID_LOG_WARN;
|
|
break;
|
|
case YGLogLevelInfo:
|
|
androidLevel = ANDROID_LOG_INFO;
|
|
break;
|
|
case YGLogLevelDebug:
|
|
androidLevel = ANDROID_LOG_DEBUG;
|
|
break;
|
|
case YGLogLevelVerbose:
|
|
androidLevel = ANDROID_LOG_VERBOSE;
|
|
break;
|
|
case YGLogLevelCount:
|
|
break;
|
|
}
|
|
const int result = __android_log_vprint(androidLevel, "YG-layout", format, args);
|
|
return result;
|
|
}
|
|
static YGLogger gLogger = &YGAndroidLog;
|
|
#else
|
|
static int YGDefaultLog(YGLogLevel level, const char *format, va_list args) {
|
|
switch (level) {
|
|
case YGLogLevelError:
|
|
return vfprintf(stderr, format, args);
|
|
case YGLogLevelWarn:
|
|
case YGLogLevelInfo:
|
|
case YGLogLevelDebug:
|
|
case YGLogLevelVerbose:
|
|
default:
|
|
return vprintf(format, args);
|
|
}
|
|
}
|
|
static YGLogger gLogger = &YGDefaultLog;
|
|
#endif
|
|
|
|
static inline float YGComputedEdgeValue(const float edges[YGEdgeCount],
|
|
const YGEdge edge,
|
|
const float defaultValue) {
|
|
YG_ASSERT(edge <= YGEdgeEnd, "Cannot get computed value of multi-edge shorthands");
|
|
|
|
if (!YGValueIsUndefined(edges[edge])) {
|
|
return edges[edge];
|
|
}
|
|
|
|
if ((edge == YGEdgeTop || edge == YGEdgeBottom) && !YGValueIsUndefined(edges[YGEdgeVertical])) {
|
|
return edges[YGEdgeVertical];
|
|
}
|
|
|
|
if ((edge == YGEdgeLeft || edge == YGEdgeRight || edge == YGEdgeStart || edge == YGEdgeEnd) &&
|
|
!YGValueIsUndefined(edges[YGEdgeHorizontal])) {
|
|
return edges[YGEdgeHorizontal];
|
|
}
|
|
|
|
if (!YGValueIsUndefined(edges[YGEdgeAll])) {
|
|
return edges[YGEdgeAll];
|
|
}
|
|
|
|
if (edge == YGEdgeStart || edge == YGEdgeEnd) {
|
|
return YGUndefined;
|
|
}
|
|
|
|
return defaultValue;
|
|
}
|
|
|
|
int32_t gNodeInstanceCount = 0;
|
|
|
|
YGNodeRef YGNodeNew(void) {
|
|
const YGNodeRef node = gYGCalloc(1, sizeof(YGNode));
|
|
YG_ASSERT(node, "Could not allocate memory for node");
|
|
gNodeInstanceCount++;
|
|
|
|
YGNodeInit(node);
|
|
return node;
|
|
}
|
|
|
|
void YGNodeFree(const YGNodeRef node) {
|
|
if (node->parent) {
|
|
YGNodeListDelete(node->parent->children, node);
|
|
node->parent = NULL;
|
|
}
|
|
|
|
const uint32_t childCount = YGNodeGetChildCount(node);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
child->parent = NULL;
|
|
}
|
|
|
|
YGNodeListFree(node->children);
|
|
gYGFree(node);
|
|
gNodeInstanceCount--;
|
|
}
|
|
|
|
void YGNodeFreeRecursive(const YGNodeRef root) {
|
|
while (YGNodeGetChildCount(root) > 0) {
|
|
const YGNodeRef child = YGNodeGetChild(root, 0);
|
|
YGNodeRemoveChild(root, child);
|
|
YGNodeFreeRecursive(child);
|
|
}
|
|
YGNodeFree(root);
|
|
}
|
|
|
|
void YGNodeReset(const YGNodeRef node) {
|
|
YG_ASSERT(YGNodeGetChildCount(node) == 0, "Cannot reset a node which still has children attached");
|
|
YG_ASSERT(node->parent == NULL, "Cannot reset a node still attached to a parent");
|
|
|
|
YGNodeListFree(node->children);
|
|
memset(node, 0, sizeof(YGNode));
|
|
YGNodeInit(node);
|
|
}
|
|
|
|
int32_t YGNodeGetInstanceCount(void) {
|
|
return gNodeInstanceCount;
|
|
}
|
|
|
|
void YGNodeInit(const YGNodeRef node) {
|
|
node->parent = NULL;
|
|
node->children = NULL;
|
|
node->hasNewLayout = true;
|
|
node->isDirty = false;
|
|
|
|
node->style.flex = YGUndefined;
|
|
node->style.flexGrow = YGUndefined;
|
|
node->style.flexShrink = YGUndefined;
|
|
node->style.flexBasis = YGUndefined;
|
|
|
|
node->style.alignItems = YGAlignStretch;
|
|
node->style.alignContent = YGAlignFlexStart;
|
|
|
|
node->style.direction = YGDirectionInherit;
|
|
node->style.flexDirection = YGFlexDirectionColumn;
|
|
|
|
node->style.overflow = YGOverflowVisible;
|
|
|
|
// Some of the fields default to undefined and not 0
|
|
node->style.dimensions[YGDimensionWidth] = YGUndefined;
|
|
node->style.dimensions[YGDimensionHeight] = YGUndefined;
|
|
|
|
node->style.minDimensions[YGDimensionWidth] = YGUndefined;
|
|
node->style.minDimensions[YGDimensionHeight] = YGUndefined;
|
|
|
|
node->style.maxDimensions[YGDimensionWidth] = YGUndefined;
|
|
node->style.maxDimensions[YGDimensionHeight] = YGUndefined;
|
|
|
|
for (YGEdge edge = YGEdgeLeft; edge < YGEdgeCount; edge++) {
|
|
node->style.position[edge] = YGUndefined;
|
|
node->style.margin[edge] = YGUndefined;
|
|
node->style.padding[edge] = YGUndefined;
|
|
node->style.border[edge] = YGUndefined;
|
|
}
|
|
|
|
node->style.aspectRatio = YGUndefined;
|
|
|
|
node->layout.dimensions[YGDimensionWidth] = YGUndefined;
|
|
node->layout.dimensions[YGDimensionHeight] = YGUndefined;
|
|
|
|
// Such that the comparison is always going to be false
|
|
node->layout.lastParentDirection = (YGDirection) -1;
|
|
node->layout.nextCachedMeasurementsIndex = 0;
|
|
node->layout.computedFlexBasis = YGUndefined;
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] = YGUndefined;
|
|
node->layout.measuredDimensions[YGDimensionHeight] = YGUndefined;
|
|
node->layout.cachedLayout.widthMeasureMode = (YGMeasureMode) -1;
|
|
node->layout.cachedLayout.heightMeasureMode = (YGMeasureMode) -1;
|
|
node->layout.cachedLayout.computedWidth = -1;
|
|
node->layout.cachedLayout.computedHeight = -1;
|
|
}
|
|
|
|
static void YGNodeMarkDirtyInternal(const YGNodeRef node) {
|
|
if (!node->isDirty) {
|
|
node->isDirty = true;
|
|
node->layout.computedFlexBasis = YGUndefined;
|
|
if (node->parent) {
|
|
YGNodeMarkDirtyInternal(node->parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
void YGNodeSetMeasureFunc(const YGNodeRef node, YGMeasureFunc measureFunc) {
|
|
if (measureFunc == NULL) {
|
|
node->measure = NULL;
|
|
} else {
|
|
YG_ASSERT(YGNodeGetChildCount(node) == 0,
|
|
"Cannot set measure function: Nodes with measure functions cannot have children.");
|
|
node->measure = measureFunc;
|
|
}
|
|
}
|
|
|
|
YGMeasureFunc YGNodeGetMeasureFunc(const YGNodeRef node) {
|
|
return node->measure;
|
|
}
|
|
|
|
void YGNodeInsertChild(const YGNodeRef node, const YGNodeRef child, const uint32_t index) {
|
|
YG_ASSERT(child->parent == NULL, "Child already has a parent, it must be removed first.");
|
|
YG_ASSERT(node->measure == NULL,
|
|
"Cannot add child: Nodes with measure functions cannot have children.");
|
|
YGNodeListInsert(&node->children, child, index);
|
|
child->parent = node;
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
|
|
void YGNodeRemoveChild(const YGNodeRef node, const YGNodeRef child) {
|
|
if (YGNodeListDelete(node->children, child) != NULL) {
|
|
child->parent = NULL;
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
}
|
|
|
|
YGNodeRef YGNodeGetChild(const YGNodeRef node, const uint32_t index) {
|
|
return YGNodeListGet(node->children, index);
|
|
}
|
|
|
|
inline uint32_t YGNodeGetChildCount(const YGNodeRef node) {
|
|
return YGNodeListCount(node->children);
|
|
}
|
|
|
|
void YGNodeMarkDirty(const YGNodeRef node) {
|
|
YG_ASSERT(node->measure != NULL,
|
|
"Only leaf nodes with custom measure functions"
|
|
"should manually mark themselves as dirty");
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
|
|
bool YGNodeIsDirty(const YGNodeRef node) {
|
|
return node->isDirty;
|
|
}
|
|
|
|
void YGNodeCopyStyle(const YGNodeRef dstNode, const YGNodeRef srcNode) {
|
|
if (memcmp(&dstNode->style, &srcNode->style, sizeof(YGStyle)) != 0) {
|
|
memcpy(&dstNode->style, &srcNode->style, sizeof(YGStyle));
|
|
YGNodeMarkDirtyInternal(dstNode);
|
|
}
|
|
}
|
|
|
|
inline float YGNodeStyleGetFlexGrow(const YGNodeRef node) {
|
|
if (!YGValueIsUndefined(node->style.flexGrow)) {
|
|
return node->style.flexGrow;
|
|
}
|
|
if (!YGValueIsUndefined(node->style.flex) && node->style.flex > 0) {
|
|
return node->style.flex;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline float YGNodeStyleGetFlexShrink(const YGNodeRef node) {
|
|
if (!YGValueIsUndefined(node->style.flexShrink)) {
|
|
return node->style.flexShrink;
|
|
}
|
|
if (!YGValueIsUndefined(node->style.flex) && node->style.flex < 0) {
|
|
return -node->style.flex;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline float YGNodeStyleGetFlexBasis(const YGNodeRef node) {
|
|
if (!YGValueIsUndefined(node->style.flexBasis)) {
|
|
return node->style.flexBasis;
|
|
}
|
|
if (!YGValueIsUndefined(node->style.flex)) {
|
|
return node->style.flex > 0 ? 0 : YGUndefined;
|
|
}
|
|
return YGUndefined;
|
|
}
|
|
|
|
void YGNodeStyleSetFlex(const YGNodeRef node, const float flex) {
|
|
if (node->style.flex != flex) {
|
|
node->style.flex = flex;
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
}
|
|
|
|
#define YG_NODE_PROPERTY_IMPL(type, name, paramName, instanceName) \
|
|
void YGNodeSet##name(const YGNodeRef node, type paramName) { \
|
|
node->instanceName = paramName; \
|
|
} \
|
|
\
|
|
type YGNodeGet##name(const YGNodeRef node) { \
|
|
return node->instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_SETTER_IMPL(type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name(const YGNodeRef node, const type paramName) { \
|
|
if (node->style.instanceName != paramName) { \
|
|
node->style.instanceName = paramName; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_IMPL(type, name, paramName, instanceName) \
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(type, name, paramName, instanceName) \
|
|
\
|
|
type YGNodeStyleGet##name(const YGNodeRef node) { \
|
|
return node->style.instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_EDGE_PROPERTY_IMPL(type, name, paramName, instanceName, defaultValue) \
|
|
void YGNodeStyleSet##name(const YGNodeRef node, const YGEdge edge, const type paramName) { \
|
|
if (node->style.instanceName[edge] != paramName) { \
|
|
node->style.instanceName[edge] = paramName; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
type YGNodeStyleGet##name(const YGNodeRef node, const YGEdge edge) { \
|
|
return YGComputedEdgeValue(node->style.instanceName, edge, defaultValue); \
|
|
}
|
|
|
|
#define YG_NODE_LAYOUT_PROPERTY_IMPL(type, name, instanceName) \
|
|
type YGNodeLayoutGet##name(const YGNodeRef node) { \
|
|
return node->layout.instanceName; \
|
|
}
|
|
|
|
YG_NODE_PROPERTY_IMPL(void *, Context, context, context);
|
|
YG_NODE_PROPERTY_IMPL(YGPrintFunc, PrintFunc, printFunc, print);
|
|
YG_NODE_PROPERTY_IMPL(bool, HasNewLayout, hasNewLayout, hasNewLayout);
|
|
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGDirection, Direction, direction, direction);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGFlexDirection, FlexDirection, flexDirection, flexDirection);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGJustify, JustifyContent, justifyContent, justifyContent);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignContent, alignContent, alignContent);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignItems, alignItems, alignItems);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignSelf, alignSelf, alignSelf);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGPositionType, PositionType, positionType, positionType);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGWrap, FlexWrap, flexWrap, flexWrap);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGOverflow, Overflow, overflow, overflow);
|
|
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(float, FlexGrow, flexGrow, flexGrow);
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(float, FlexShrink, flexShrink, flexShrink);
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(float, FlexBasis, flexBasis, flexBasis);
|
|
|
|
YG_NODE_STYLE_EDGE_PROPERTY_IMPL(float, Position, position, position, YGUndefined);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_IMPL(float, Margin, margin, margin, 0);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_IMPL(float, Padding, padding, padding, 0);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_IMPL(float, Border, border, border, 0);
|
|
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, Width, width, dimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, Height, height, dimensions[YGDimensionHeight]);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, MinWidth, minWidth, minDimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, MinHeight, minHeight, minDimensions[YGDimensionHeight]);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, MaxWidth, maxWidth, maxDimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, MaxHeight, maxHeight, maxDimensions[YGDimensionHeight]);
|
|
|
|
// Yoga specific properties, not compatible with flexbox specification
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, AspectRatio, aspectRatio, aspectRatio);
|
|
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Left, position[YGEdgeLeft]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Top, position[YGEdgeTop]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Right, position[YGEdgeRight]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Bottom, position[YGEdgeBottom]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Width, dimensions[YGDimensionWidth]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Height, dimensions[YGDimensionHeight]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(YGDirection, Direction, direction);
|
|
|
|
uint32_t gCurrentGenerationCount = 0;
|
|
|
|
bool YGLayoutNodeInternal(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const bool performLayout,
|
|
const char *reason);
|
|
|
|
inline bool YGValueIsUndefined(const float value) {
|
|
return isnan(value);
|
|
}
|
|
|
|
static inline bool YGFloatsEqual(const float a, const float b) {
|
|
if (YGValueIsUndefined(a)) {
|
|
return YGValueIsUndefined(b);
|
|
}
|
|
return fabs(a - b) < 0.0001;
|
|
}
|
|
|
|
static void YGIndent(const uint32_t n) {
|
|
for (uint32_t i = 0; i < n; i++) {
|
|
YGLog(YGLogLevelDebug, " ");
|
|
}
|
|
}
|
|
|
|
static void YGPrintNumberIfNotZero(const char *str, const float number) {
|
|
if (!YGFloatsEqual(number, 0)) {
|
|
YGLog(YGLogLevelDebug, "%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static void YGPrintNumberIfNotUndefined(const char *str, const float number) {
|
|
if (!YGValueIsUndefined(number)) {
|
|
YGLog(YGLogLevelDebug, "%s: %g, ", str, number);
|
|
}
|
|
}
|
|
|
|
static bool YGFourFloatsEqual(const float four[4]) {
|
|
return YGFloatsEqual(four[0], four[1]) && YGFloatsEqual(four[0], four[2]) &&
|
|
YGFloatsEqual(four[0], four[3]);
|
|
}
|
|
|
|
static void YGNodePrintInternal(const YGNodeRef node,
|
|
const YGPrintOptions options,
|
|
const uint32_t level) {
|
|
YGIndent(level);
|
|
YGLog(YGLogLevelDebug, "{");
|
|
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
|
|
if (options & YGPrintOptionsLayout) {
|
|
YGLog(YGLogLevelDebug, "layout: {");
|
|
YGLog(YGLogLevelDebug, "width: %g, ", node->layout.dimensions[YGDimensionWidth]);
|
|
YGLog(YGLogLevelDebug, "height: %g, ", node->layout.dimensions[YGDimensionHeight]);
|
|
YGLog(YGLogLevelDebug, "top: %g, ", node->layout.position[YGEdgeTop]);
|
|
YGLog(YGLogLevelDebug, "left: %g", node->layout.position[YGEdgeLeft]);
|
|
YGLog(YGLogLevelDebug, "}, ");
|
|
}
|
|
|
|
if (options & YGPrintOptionsStyle) {
|
|
if (node->style.flexDirection == YGFlexDirectionColumn) {
|
|
YGLog(YGLogLevelDebug, "flexDirection: 'column', ");
|
|
} else if (node->style.flexDirection == YGFlexDirectionColumnReverse) {
|
|
YGLog(YGLogLevelDebug, "flexDirection: 'column-reverse', ");
|
|
} else if (node->style.flexDirection == YGFlexDirectionRow) {
|
|
YGLog(YGLogLevelDebug, "flexDirection: 'row', ");
|
|
} else if (node->style.flexDirection == YGFlexDirectionRowReverse) {
|
|
YGLog(YGLogLevelDebug, "flexDirection: 'row-reverse', ");
|
|
}
|
|
|
|
if (node->style.justifyContent == YGJustifyCenter) {
|
|
YGLog(YGLogLevelDebug, "justifyContent: 'center', ");
|
|
} else if (node->style.justifyContent == YGJustifyFlexEnd) {
|
|
YGLog(YGLogLevelDebug, "justifyContent: 'flex-end', ");
|
|
} else if (node->style.justifyContent == YGJustifySpaceAround) {
|
|
YGLog(YGLogLevelDebug, "justifyContent: 'space-around', ");
|
|
} else if (node->style.justifyContent == YGJustifySpaceBetween) {
|
|
YGLog(YGLogLevelDebug, "justifyContent: 'space-between', ");
|
|
}
|
|
|
|
if (node->style.alignItems == YGAlignCenter) {
|
|
YGLog(YGLogLevelDebug, "alignItems: 'center', ");
|
|
} else if (node->style.alignItems == YGAlignFlexEnd) {
|
|
YGLog(YGLogLevelDebug, "alignItems: 'flex-end', ");
|
|
} else if (node->style.alignItems == YGAlignStretch) {
|
|
YGLog(YGLogLevelDebug, "alignItems: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.alignContent == YGAlignCenter) {
|
|
YGLog(YGLogLevelDebug, "alignContent: 'center', ");
|
|
} else if (node->style.alignContent == YGAlignFlexEnd) {
|
|
YGLog(YGLogLevelDebug, "alignContent: 'flex-end', ");
|
|
} else if (node->style.alignContent == YGAlignStretch) {
|
|
YGLog(YGLogLevelDebug, "alignContent: 'stretch', ");
|
|
}
|
|
|
|
if (node->style.alignSelf == YGAlignFlexStart) {
|
|
YGLog(YGLogLevelDebug, "alignSelf: 'flex-start', ");
|
|
} else if (node->style.alignSelf == YGAlignCenter) {
|
|
YGLog(YGLogLevelDebug, "alignSelf: 'center', ");
|
|
} else if (node->style.alignSelf == YGAlignFlexEnd) {
|
|
YGLog(YGLogLevelDebug, "alignSelf: 'flex-end', ");
|
|
} else if (node->style.alignSelf == YGAlignStretch) {
|
|
YGLog(YGLogLevelDebug, "alignSelf: 'stretch', ");
|
|
}
|
|
|
|
YGPrintNumberIfNotUndefined("flexGrow", YGNodeStyleGetFlexGrow(node));
|
|
YGPrintNumberIfNotUndefined("flexShrink", YGNodeStyleGetFlexShrink(node));
|
|
YGPrintNumberIfNotUndefined("flexBasis", YGNodeStyleGetFlexBasis(node));
|
|
|
|
if (node->style.overflow == YGOverflowHidden) {
|
|
YGLog(YGLogLevelDebug, "overflow: 'hidden', ");
|
|
} else if (node->style.overflow == YGOverflowVisible) {
|
|
YGLog(YGLogLevelDebug, "overflow: 'visible', ");
|
|
} else if (node->style.overflow == YGOverflowScroll) {
|
|
YGLog(YGLogLevelDebug, "overflow: 'scroll', ");
|
|
}
|
|
|
|
if (YGFourFloatsEqual(node->style.margin)) {
|
|
YGPrintNumberIfNotZero("margin", YGComputedEdgeValue(node->style.margin, YGEdgeLeft, 0));
|
|
} else {
|
|
YGPrintNumberIfNotZero("marginLeft", YGComputedEdgeValue(node->style.margin, YGEdgeLeft, 0));
|
|
YGPrintNumberIfNotZero("marginRight",
|
|
YGComputedEdgeValue(node->style.margin, YGEdgeRight, 0));
|
|
YGPrintNumberIfNotZero("marginTop", YGComputedEdgeValue(node->style.margin, YGEdgeTop, 0));
|
|
YGPrintNumberIfNotZero("marginBottom",
|
|
YGComputedEdgeValue(node->style.margin, YGEdgeBottom, 0));
|
|
YGPrintNumberIfNotZero("marginStart",
|
|
YGComputedEdgeValue(node->style.margin, YGEdgeStart, 0));
|
|
YGPrintNumberIfNotZero("marginEnd", YGComputedEdgeValue(node->style.margin, YGEdgeEnd, 0));
|
|
}
|
|
|
|
if (YGFourFloatsEqual(node->style.padding)) {
|
|
YGPrintNumberIfNotZero("padding", YGComputedEdgeValue(node->style.padding, YGEdgeLeft, 0));
|
|
} else {
|
|
YGPrintNumberIfNotZero("paddingLeft",
|
|
YGComputedEdgeValue(node->style.padding, YGEdgeLeft, 0));
|
|
YGPrintNumberIfNotZero("paddingRight",
|
|
YGComputedEdgeValue(node->style.padding, YGEdgeRight, 0));
|
|
YGPrintNumberIfNotZero("paddingTop", YGComputedEdgeValue(node->style.padding, YGEdgeTop, 0));
|
|
YGPrintNumberIfNotZero("paddingBottom",
|
|
YGComputedEdgeValue(node->style.padding, YGEdgeBottom, 0));
|
|
YGPrintNumberIfNotZero("paddingStart",
|
|
YGComputedEdgeValue(node->style.padding, YGEdgeStart, 0));
|
|
YGPrintNumberIfNotZero("paddingEnd", YGComputedEdgeValue(node->style.padding, YGEdgeEnd, 0));
|
|
}
|
|
|
|
if (YGFourFloatsEqual(node->style.border)) {
|
|
YGPrintNumberIfNotZero("borderWidth", YGComputedEdgeValue(node->style.border, YGEdgeLeft, 0));
|
|
} else {
|
|
YGPrintNumberIfNotZero("borderLeftWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeLeft, 0));
|
|
YGPrintNumberIfNotZero("borderRightWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeRight, 0));
|
|
YGPrintNumberIfNotZero("borderTopWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeTop, 0));
|
|
YGPrintNumberIfNotZero("borderBottomWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeBottom, 0));
|
|
YGPrintNumberIfNotZero("borderStartWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeStart, 0));
|
|
YGPrintNumberIfNotZero("borderEndWidth",
|
|
YGComputedEdgeValue(node->style.border, YGEdgeEnd, 0));
|
|
}
|
|
|
|
YGPrintNumberIfNotUndefined("width", node->style.dimensions[YGDimensionWidth]);
|
|
YGPrintNumberIfNotUndefined("height", node->style.dimensions[YGDimensionHeight]);
|
|
YGPrintNumberIfNotUndefined("maxWidth", node->style.maxDimensions[YGDimensionWidth]);
|
|
YGPrintNumberIfNotUndefined("maxHeight", node->style.maxDimensions[YGDimensionHeight]);
|
|
YGPrintNumberIfNotUndefined("minWidth", node->style.minDimensions[YGDimensionWidth]);
|
|
YGPrintNumberIfNotUndefined("minHeight", node->style.minDimensions[YGDimensionHeight]);
|
|
|
|
if (node->style.positionType == YGPositionTypeAbsolute) {
|
|
YGLog(YGLogLevelDebug, "position: 'absolute', ");
|
|
}
|
|
|
|
YGPrintNumberIfNotUndefined("left",
|
|
YGComputedEdgeValue(node->style.position, YGEdgeLeft, YGUndefined));
|
|
YGPrintNumberIfNotUndefined(
|
|
"right", YGComputedEdgeValue(node->style.position, YGEdgeRight, YGUndefined));
|
|
YGPrintNumberIfNotUndefined("top",
|
|
YGComputedEdgeValue(node->style.position, YGEdgeTop, YGUndefined));
|
|
YGPrintNumberIfNotUndefined(
|
|
"bottom", YGComputedEdgeValue(node->style.position, YGEdgeBottom, YGUndefined));
|
|
}
|
|
|
|
const uint32_t childCount = YGNodeListCount(node->children);
|
|
if (options & YGPrintOptionsChildren && childCount > 0) {
|
|
YGLog(YGLogLevelDebug, "children: [\n");
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
YGNodePrintInternal(YGNodeGetChild(node, i), options, level + 1);
|
|
}
|
|
YGIndent(level);
|
|
YGLog(YGLogLevelDebug, "]},\n");
|
|
} else {
|
|
YGLog(YGLogLevelDebug, "},\n");
|
|
}
|
|
}
|
|
|
|
void YGNodePrint(const YGNodeRef node, const YGPrintOptions options) {
|
|
YGNodePrintInternal(node, options, 0);
|
|
}
|
|
|
|
static const YGEdge leading[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeTop,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeBottom,
|
|
[YGFlexDirectionRow] = YGEdgeLeft,
|
|
[YGFlexDirectionRowReverse] = YGEdgeRight,
|
|
};
|
|
static const YGEdge trailing[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeBottom,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeTop,
|
|
[YGFlexDirectionRow] = YGEdgeRight,
|
|
[YGFlexDirectionRowReverse] = YGEdgeLeft,
|
|
};
|
|
static const YGEdge pos[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeTop,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeBottom,
|
|
[YGFlexDirectionRow] = YGEdgeLeft,
|
|
[YGFlexDirectionRowReverse] = YGEdgeRight,
|
|
};
|
|
static const YGDimension dim[4] = {
|
|
[YGFlexDirectionColumn] = YGDimensionHeight,
|
|
[YGFlexDirectionColumnReverse] = YGDimensionHeight,
|
|
[YGFlexDirectionRow] = YGDimensionWidth,
|
|
[YGFlexDirectionRowReverse] = YGDimensionWidth,
|
|
};
|
|
|
|
static inline bool YGFlexDirectionIsRow(const YGFlexDirection flexDirection) {
|
|
return flexDirection == YGFlexDirectionRow || flexDirection == YGFlexDirectionRowReverse;
|
|
}
|
|
|
|
static inline bool YGFlexDirectionIsColumn(const YGFlexDirection flexDirection) {
|
|
return flexDirection == YGFlexDirectionColumn || flexDirection == YGFlexDirectionColumnReverse;
|
|
}
|
|
|
|
static inline float YGNodeLeadingMargin(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.margin[YGEdgeStart])) {
|
|
return node->style.margin[YGEdgeStart];
|
|
}
|
|
|
|
return YGComputedEdgeValue(node->style.margin, leading[axis], 0);
|
|
}
|
|
|
|
static float YGNodeTrailingMargin(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.margin[YGEdgeEnd])) {
|
|
return node->style.margin[YGEdgeEnd];
|
|
}
|
|
|
|
return YGComputedEdgeValue(node->style.margin, trailing[axis], 0);
|
|
}
|
|
|
|
static float YGNodeLeadingPadding(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.padding[YGEdgeStart]) &&
|
|
node->style.padding[YGEdgeStart] >= 0) {
|
|
return node->style.padding[YGEdgeStart];
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.padding, leading[axis], 0), 0);
|
|
}
|
|
|
|
static float YGNodeTrailingPadding(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.padding[YGEdgeEnd]) &&
|
|
node->style.padding[YGEdgeEnd] >= 0) {
|
|
return node->style.padding[YGEdgeEnd];
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.padding, trailing[axis], 0), 0);
|
|
}
|
|
|
|
static float YGNodeLeadingBorder(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.border[YGEdgeStart]) &&
|
|
node->style.border[YGEdgeStart] >= 0) {
|
|
return node->style.border[YGEdgeStart];
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.border, leading[axis], 0), 0);
|
|
}
|
|
|
|
static float YGNodeTrailingBorder(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && !YGValueIsUndefined(node->style.border[YGEdgeEnd]) &&
|
|
node->style.border[YGEdgeEnd] >= 0) {
|
|
return node->style.border[YGEdgeEnd];
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.border, trailing[axis], 0), 0);
|
|
}
|
|
|
|
static inline float YGNodeLeadingPaddingAndBorder(const YGNodeRef node,
|
|
const YGFlexDirection axis) {
|
|
return YGNodeLeadingPadding(node, axis) + YGNodeLeadingBorder(node, axis);
|
|
}
|
|
|
|
static inline float YGNodeTrailingPaddingAndBorder(const YGNodeRef node,
|
|
const YGFlexDirection axis) {
|
|
return YGNodeTrailingPadding(node, axis) + YGNodeTrailingBorder(node, axis);
|
|
}
|
|
|
|
static inline float YGNodeMarginForAxis(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return YGNodeLeadingMargin(node, axis) + YGNodeTrailingMargin(node, axis);
|
|
}
|
|
|
|
static inline float YGNodePaddingAndBorderForAxis(const YGNodeRef node,
|
|
const YGFlexDirection axis) {
|
|
return YGNodeLeadingPaddingAndBorder(node, axis) + YGNodeTrailingPaddingAndBorder(node, axis);
|
|
}
|
|
|
|
static inline YGAlign YGNodeAlignItem(const YGNodeRef node, const YGNodeRef child) {
|
|
return child->style.alignSelf == YGAlignAuto ? node->style.alignItems : child->style.alignSelf;
|
|
}
|
|
|
|
static inline YGDirection YGNodeResolveDirection(const YGNodeRef node,
|
|
const YGDirection parentDirection) {
|
|
if (node->style.direction == YGDirectionInherit) {
|
|
return parentDirection > YGDirectionInherit ? parentDirection : YGDirectionLTR;
|
|
} else {
|
|
return node->style.direction;
|
|
}
|
|
}
|
|
|
|
static inline YGFlexDirection YGFlexDirectionResolve(const YGFlexDirection flexDirection,
|
|
const YGDirection direction) {
|
|
if (direction == YGDirectionRTL) {
|
|
if (flexDirection == YGFlexDirectionRow) {
|
|
return YGFlexDirectionRowReverse;
|
|
} else if (flexDirection == YGFlexDirectionRowReverse) {
|
|
return YGFlexDirectionRow;
|
|
}
|
|
}
|
|
|
|
return flexDirection;
|
|
}
|
|
|
|
static YGFlexDirection YGFlexDirectionCross(const YGFlexDirection flexDirection,
|
|
const YGDirection direction) {
|
|
return YGFlexDirectionIsColumn(flexDirection)
|
|
? YGFlexDirectionResolve(YGFlexDirectionRow, direction)
|
|
: YGFlexDirectionColumn;
|
|
}
|
|
|
|
static inline bool YGNodeIsFlex(const YGNodeRef node) {
|
|
return (node->style.positionType == YGPositionTypeRelative &&
|
|
(node->style.flexGrow != 0 || node->style.flexShrink != 0 || node->style.flex != 0));
|
|
}
|
|
|
|
static inline float YGNodeDimWithMargin(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return node->layout.measuredDimensions[dim[axis]] + YGNodeLeadingMargin(node, axis) +
|
|
YGNodeTrailingMargin(node, axis);
|
|
}
|
|
|
|
static inline bool YGNodeIsStyleDimDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
const float value = node->style.dimensions[dim[axis]];
|
|
return !YGValueIsUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static inline bool YGNodeIsLayoutDimDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
const float value = node->layout.measuredDimensions[dim[axis]];
|
|
return !YGValueIsUndefined(value) && value >= 0.0;
|
|
}
|
|
|
|
static inline bool YGNodeIsLeadingPosDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return (YGFlexDirectionIsRow(axis) &&
|
|
!YGValueIsUndefined(
|
|
YGComputedEdgeValue(node->style.position, YGEdgeStart, YGUndefined))) ||
|
|
!YGValueIsUndefined(YGComputedEdgeValue(node->style.position, leading[axis], YGUndefined));
|
|
}
|
|
|
|
static inline bool YGNodeIsTrailingPosDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return (YGFlexDirectionIsRow(axis) &&
|
|
!YGValueIsUndefined(YGComputedEdgeValue(node->style.position, YGEdgeEnd, YGUndefined))) ||
|
|
!YGValueIsUndefined(
|
|
YGComputedEdgeValue(node->style.position, trailing[axis], YGUndefined));
|
|
}
|
|
|
|
static float YGNodeLeadingPosition(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis)) {
|
|
const float leadingPosition =
|
|
YGComputedEdgeValue(node->style.position, YGEdgeStart, YGUndefined);
|
|
if (!YGValueIsUndefined(leadingPosition)) {
|
|
return leadingPosition;
|
|
}
|
|
}
|
|
|
|
const float leadingPosition =
|
|
YGComputedEdgeValue(node->style.position, leading[axis], YGUndefined);
|
|
|
|
return YGValueIsUndefined(leadingPosition) ? 0 : leadingPosition;
|
|
}
|
|
|
|
static float YGNodeTrailingPosition(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis)) {
|
|
const float trailingPosition =
|
|
YGComputedEdgeValue(node->style.position, YGEdgeEnd, YGUndefined);
|
|
if (!YGValueIsUndefined(trailingPosition)) {
|
|
return trailingPosition;
|
|
}
|
|
}
|
|
|
|
const float trailingPosition =
|
|
YGComputedEdgeValue(node->style.position, trailing[axis], YGUndefined);
|
|
|
|
return YGValueIsUndefined(trailingPosition) ? 0 : trailingPosition;
|
|
}
|
|
|
|
static float YGNodeBoundAxisWithinMinAndMax(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float value) {
|
|
float min = YGUndefined;
|
|
float max = YGUndefined;
|
|
|
|
if (YGFlexDirectionIsColumn(axis)) {
|
|
min = node->style.minDimensions[YGDimensionHeight];
|
|
max = node->style.maxDimensions[YGDimensionHeight];
|
|
} else if (YGFlexDirectionIsRow(axis)) {
|
|
min = node->style.minDimensions[YGDimensionWidth];
|
|
max = node->style.maxDimensions[YGDimensionWidth];
|
|
}
|
|
|
|
float boundValue = value;
|
|
|
|
if (!YGValueIsUndefined(max) && max >= 0.0 && boundValue > max) {
|
|
boundValue = max;
|
|
}
|
|
|
|
if (!YGValueIsUndefined(min) && min >= 0.0 && boundValue < min) {
|
|
boundValue = min;
|
|
}
|
|
|
|
return boundValue;
|
|
}
|
|
|
|
// Like YGNodeBoundAxisWithinMinAndMax but also ensures that the value doesn't go
|
|
// below the
|
|
// padding and border amount.
|
|
static inline float YGNodeBoundAxis(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float value) {
|
|
return fmaxf(YGNodeBoundAxisWithinMinAndMax(node, axis, value),
|
|
YGNodePaddingAndBorderForAxis(node, axis));
|
|
}
|
|
|
|
static void YGNodeSetChildTrailingPosition(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const YGFlexDirection axis) {
|
|
const float size = child->layout.measuredDimensions[dim[axis]];
|
|
child->layout.position[trailing[axis]] =
|
|
node->layout.measuredDimensions[dim[axis]] - size - child->layout.position[pos[axis]];
|
|
}
|
|
|
|
// If both left and right are defined, then use left. Otherwise return
|
|
// +left or -right depending on which is defined.
|
|
static float YGNodeRelativePosition(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return YGNodeIsLeadingPosDefined(node, axis) ? YGNodeLeadingPosition(node, axis)
|
|
: -YGNodeTrailingPosition(node, axis);
|
|
}
|
|
|
|
static void YGConstrainMaxSizeForMode(const float maxSize, YGMeasureMode *mode, float *size) {
|
|
switch (*mode) {
|
|
case YGMeasureModeExactly:
|
|
case YGMeasureModeAtMost:
|
|
*size = (YGValueIsUndefined(maxSize) || *size < maxSize) ? *size : maxSize;
|
|
break;
|
|
case YGMeasureModeUndefined:
|
|
if (!YGValueIsUndefined(maxSize)) {
|
|
*mode = YGMeasureModeAtMost;
|
|
*size = maxSize;
|
|
}
|
|
break;
|
|
case YGMeasureModeCount:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void YGNodeSetPosition(const YGNodeRef node, const YGDirection direction) {
|
|
const YGFlexDirection mainAxis = YGFlexDirectionResolve(node->style.flexDirection, direction);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, direction);
|
|
const float relativePositionMain = YGNodeRelativePosition(node, mainAxis);
|
|
const float relativePositionCross = YGNodeRelativePosition(node, crossAxis);
|
|
|
|
node->layout.position[leading[mainAxis]] =
|
|
YGNodeLeadingMargin(node, mainAxis) + relativePositionMain;
|
|
node->layout.position[trailing[mainAxis]] =
|
|
YGNodeTrailingMargin(node, mainAxis) + relativePositionMain;
|
|
node->layout.position[leading[crossAxis]] =
|
|
YGNodeLeadingMargin(node, crossAxis) + relativePositionCross;
|
|
node->layout.position[trailing[crossAxis]] =
|
|
YGNodeTrailingMargin(node, crossAxis) + relativePositionCross;
|
|
}
|
|
|
|
static void YGNodeComputeFlexBasisForChild(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const float width,
|
|
const YGMeasureMode widthMode,
|
|
const float height,
|
|
const YGMeasureMode heightMode,
|
|
const YGDirection direction) {
|
|
const YGFlexDirection mainAxis = YGFlexDirectionResolve(node->style.flexDirection, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
|
|
float childWidth;
|
|
float childHeight;
|
|
YGMeasureMode childWidthMeasureMode;
|
|
YGMeasureMode childHeightMeasureMode;
|
|
|
|
const bool isRowStyleDimDefined = YGNodeIsStyleDimDefined(child, YGFlexDirectionRow);
|
|
const bool isColumnStyleDimDefined = YGNodeIsStyleDimDefined(child, YGFlexDirectionColumn);
|
|
|
|
if (!YGValueIsUndefined(YGNodeStyleGetFlexBasis(child)) &&
|
|
!YGValueIsUndefined(isMainAxisRow ? width : height)) {
|
|
if (YGValueIsUndefined(child->layout.computedFlexBasis) ||
|
|
(YGIsExperimentalFeatureEnabled(YGExperimentalFeatureWebFlexBasis) &&
|
|
child->layout.computedFlexBasisGeneration != gCurrentGenerationCount)) {
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(YGNodeStyleGetFlexBasis(child), YGNodePaddingAndBorderForAxis(child, mainAxis));
|
|
}
|
|
} else if (isMainAxisRow && isRowStyleDimDefined) {
|
|
// The width is definite, so use that as the flex basis.
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(child->style.dimensions[YGDimensionWidth],
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionRow));
|
|
} else if (!isMainAxisRow && isColumnStyleDimDefined) {
|
|
// The height is definite, so use that as the flex basis.
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(child->style.dimensions[YGDimensionHeight],
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionColumn));
|
|
} else {
|
|
// Compute the flex basis and hypothetical main size (i.e. the clamped
|
|
// flex basis).
|
|
childWidth = YGUndefined;
|
|
childHeight = YGUndefined;
|
|
childWidthMeasureMode = YGMeasureModeUndefined;
|
|
childHeightMeasureMode = YGMeasureModeUndefined;
|
|
|
|
if (isRowStyleDimDefined) {
|
|
childWidth = child->style.dimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionRow);
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
if (isColumnStyleDimDefined) {
|
|
childHeight = child->style.dimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn);
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
|
|
// The W3C spec doesn't say anything about the 'overflow' property,
|
|
// but all major browsers appear to implement the following logic.
|
|
if ((!isMainAxisRow && node->style.overflow == YGOverflowScroll) ||
|
|
node->style.overflow != YGOverflowScroll) {
|
|
if (YGValueIsUndefined(childWidth) && !YGValueIsUndefined(width)) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
}
|
|
|
|
if ((isMainAxisRow && node->style.overflow == YGOverflowScroll) ||
|
|
node->style.overflow != YGOverflowScroll) {
|
|
if (YGValueIsUndefined(childHeight) && !YGValueIsUndefined(height)) {
|
|
childHeight = height;
|
|
childHeightMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
}
|
|
|
|
// If child has no defined size in the cross axis and is set to stretch,
|
|
// set the cross
|
|
// axis to be measured exactly with the available inner width
|
|
if (!isMainAxisRow && !YGValueIsUndefined(width) && !isRowStyleDimDefined &&
|
|
widthMode == YGMeasureModeExactly && YGNodeAlignItem(node, child) == YGAlignStretch) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
if (isMainAxisRow && !YGValueIsUndefined(height) && !isColumnStyleDimDefined &&
|
|
heightMode == YGMeasureModeExactly && YGNodeAlignItem(node, child) == YGAlignStretch) {
|
|
childHeight = height;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
|
|
if (!YGValueIsUndefined(child->style.aspectRatio)) {
|
|
if (!isMainAxisRow && childWidthMeasureMode == YGMeasureModeExactly) {
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(childWidth * child->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionColumn));
|
|
return;
|
|
} else if (isMainAxisRow && childHeightMeasureMode == YGMeasureModeExactly) {
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(childHeight * child->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionRow));
|
|
return;
|
|
}
|
|
}
|
|
|
|
YGConstrainMaxSizeForMode(child->style.maxDimensions[YGDimensionWidth],
|
|
&childWidthMeasureMode,
|
|
&childWidth);
|
|
YGConstrainMaxSizeForMode(child->style.maxDimensions[YGDimensionHeight],
|
|
&childHeightMeasureMode,
|
|
&childHeight);
|
|
|
|
// Measure the child
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
false,
|
|
"measure");
|
|
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(isMainAxisRow ? child->layout.measuredDimensions[YGDimensionWidth]
|
|
: child->layout.measuredDimensions[YGDimensionHeight],
|
|
YGNodePaddingAndBorderForAxis(child, mainAxis));
|
|
}
|
|
|
|
child->layout.computedFlexBasisGeneration = gCurrentGenerationCount;
|
|
}
|
|
|
|
static void YGNodeAbsoluteLayoutChild(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const float width,
|
|
const YGMeasureMode widthMode,
|
|
const YGDirection direction) {
|
|
const YGFlexDirection mainAxis = YGFlexDirectionResolve(node->style.flexDirection, direction);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
|
|
float childWidth = YGUndefined;
|
|
float childHeight = YGUndefined;
|
|
YGMeasureMode childWidthMeasureMode = YGMeasureModeUndefined;
|
|
YGMeasureMode childHeightMeasureMode = YGMeasureModeUndefined;
|
|
|
|
if (YGNodeIsStyleDimDefined(child, YGFlexDirectionRow)) {
|
|
childWidth =
|
|
child->style.dimensions[YGDimensionWidth] + YGNodeMarginForAxis(child, YGFlexDirectionRow);
|
|
} else {
|
|
// If the child doesn't have a specified width, compute the width based
|
|
// on the left/right
|
|
// offsets if they're defined.
|
|
if (YGNodeIsLeadingPosDefined(child, YGFlexDirectionRow) &&
|
|
YGNodeIsTrailingPosDefined(child, YGFlexDirectionRow)) {
|
|
childWidth = node->layout.measuredDimensions[YGDimensionWidth] -
|
|
(YGNodeLeadingBorder(node, YGFlexDirectionRow) +
|
|
YGNodeTrailingBorder(node, YGFlexDirectionRow)) -
|
|
(YGNodeLeadingPosition(child, YGFlexDirectionRow) +
|
|
YGNodeTrailingPosition(child, YGFlexDirectionRow));
|
|
childWidth = YGNodeBoundAxis(child, YGFlexDirectionRow, childWidth);
|
|
}
|
|
}
|
|
|
|
if (YGNodeIsStyleDimDefined(child, YGFlexDirectionColumn)) {
|
|
childHeight = child->style.dimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn);
|
|
} else {
|
|
// If the child doesn't have a specified height, compute the height
|
|
// based on the top/bottom
|
|
// offsets if they're defined.
|
|
if (YGNodeIsLeadingPosDefined(child, YGFlexDirectionColumn) &&
|
|
YGNodeIsTrailingPosDefined(child, YGFlexDirectionColumn)) {
|
|
childHeight = node->layout.measuredDimensions[YGDimensionHeight] -
|
|
(YGNodeLeadingBorder(node, YGFlexDirectionColumn) +
|
|
YGNodeTrailingBorder(node, YGFlexDirectionColumn)) -
|
|
(YGNodeLeadingPosition(child, YGFlexDirectionColumn) +
|
|
YGNodeTrailingPosition(child, YGFlexDirectionColumn));
|
|
childHeight = YGNodeBoundAxis(child, YGFlexDirectionColumn, childHeight);
|
|
}
|
|
}
|
|
|
|
// Exactly one dimension needs to be defined for us to be able to do aspect ratio
|
|
// calculation. One dimension being the anchor and the other being flexible.
|
|
if (YGValueIsUndefined(childWidth) ^ YGValueIsUndefined(childHeight)) {
|
|
if (!YGValueIsUndefined(child->style.aspectRatio)) {
|
|
if (YGValueIsUndefined(childWidth)) {
|
|
childWidth = fmaxf(childHeight * child->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionColumn));
|
|
} else if (YGValueIsUndefined(childHeight)) {
|
|
childHeight = fmaxf(childWidth * child->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionRow));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're still missing one or the other dimension, measure the content.
|
|
if (YGValueIsUndefined(childWidth) || YGValueIsUndefined(childHeight)) {
|
|
childWidthMeasureMode =
|
|
YGValueIsUndefined(childWidth) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
childHeightMeasureMode =
|
|
YGValueIsUndefined(childHeight) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
|
|
// According to the spec, if the main size is not definite and the
|
|
// child's inline axis is parallel to the main axis (i.e. it's
|
|
// horizontal), the child should be sized using "UNDEFINED" in
|
|
// the main size. Otherwise use "AT_MOST" in the cross axis.
|
|
if (!isMainAxisRow && YGValueIsUndefined(childWidth) && widthMode != YGMeasureModeUndefined) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
false,
|
|
"abs-measure");
|
|
childWidth = child->layout.measuredDimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionRow);
|
|
childHeight = child->layout.measuredDimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn);
|
|
}
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
YGMeasureModeExactly,
|
|
YGMeasureModeExactly,
|
|
true,
|
|
"abs-layout");
|
|
|
|
if (YGNodeIsTrailingPosDefined(child, mainAxis) && !YGNodeIsLeadingPosDefined(child, mainAxis)) {
|
|
child->layout.position[leading[mainAxis]] = node->layout.measuredDimensions[dim[mainAxis]] -
|
|
child->layout.measuredDimensions[dim[mainAxis]] -
|
|
YGNodeTrailingBorder(node, mainAxis) -
|
|
YGNodeTrailingPosition(child, mainAxis);
|
|
}
|
|
|
|
if (YGNodeIsTrailingPosDefined(child, crossAxis) &&
|
|
!YGNodeIsLeadingPosDefined(child, crossAxis)) {
|
|
child->layout.position[leading[crossAxis]] = node->layout.measuredDimensions[dim[crossAxis]] -
|
|
child->layout.measuredDimensions[dim[crossAxis]] -
|
|
YGNodeTrailingBorder(node, crossAxis) -
|
|
YGNodeTrailingPosition(child, crossAxis);
|
|
}
|
|
}
|
|
|
|
static void YGNodeWithMeasureFuncSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode) {
|
|
YG_ASSERT(node->measure, "Expected node to have custom measure function");
|
|
|
|
const float paddingAndBorderAxisRow = YGNodePaddingAndBorderForAxis(node, YGFlexDirectionRow);
|
|
const float paddingAndBorderAxisColumn =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionColumn);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
|
|
const float innerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
|
|
const float innerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
|
|
|
|
if (widthMeasureMode == YGMeasureModeExactly && heightMeasureMode == YGMeasureModeExactly) {
|
|
// Don't bother sizing the text if both dimensions are already defined.
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionRow, availableWidth - marginAxisRow);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionColumn, availableHeight - marginAxisColumn);
|
|
} else if (innerWidth <= 0 || innerHeight <= 0) {
|
|
// Don't bother sizing the text if there's no horizontal or vertical
|
|
// space.
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionRow, 0);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionColumn, 0);
|
|
} else {
|
|
// Measure the text under the current constraints.
|
|
const YGSize measuredSize =
|
|
node->measure(node, innerWidth, widthMeasureMode, innerHeight, heightMeasureMode);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
(widthMeasureMode == YGMeasureModeUndefined ||
|
|
widthMeasureMode == YGMeasureModeAtMost)
|
|
? measuredSize.width + paddingAndBorderAxisRow
|
|
: availableWidth - marginAxisRow);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
(heightMeasureMode == YGMeasureModeUndefined ||
|
|
heightMeasureMode == YGMeasureModeAtMost)
|
|
? measuredSize.height + paddingAndBorderAxisColumn
|
|
: availableHeight - marginAxisColumn);
|
|
}
|
|
}
|
|
|
|
// For nodes with no children, use the available values if they were provided,
|
|
// or the minimum size as indicated by the padding and border sizes.
|
|
static void YGNodeEmptyContainerSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode) {
|
|
const float paddingAndBorderAxisRow = YGNodePaddingAndBorderForAxis(node, YGFlexDirectionRow);
|
|
const float paddingAndBorderAxisColumn =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionColumn);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
(widthMeasureMode == YGMeasureModeUndefined ||
|
|
widthMeasureMode == YGMeasureModeAtMost)
|
|
? paddingAndBorderAxisRow
|
|
: availableWidth - marginAxisRow);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
(heightMeasureMode == YGMeasureModeUndefined ||
|
|
heightMeasureMode == YGMeasureModeAtMost)
|
|
? paddingAndBorderAxisColumn
|
|
: availableHeight - marginAxisColumn);
|
|
}
|
|
|
|
static bool YGNodeFixedSizeSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode) {
|
|
if ((widthMeasureMode == YGMeasureModeAtMost && availableWidth <= 0) ||
|
|
(heightMeasureMode == YGMeasureModeAtMost && availableHeight <= 0) ||
|
|
(widthMeasureMode == YGMeasureModeExactly && heightMeasureMode == YGMeasureModeExactly)) {
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
YGValueIsUndefined(availableWidth) || (widthMeasureMode == YGMeasureModeAtMost && availableWidth < 0)
|
|
? 0
|
|
: availableWidth - marginAxisRow);
|
|
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
YGValueIsUndefined(availableHeight) || (heightMeasureMode == YGMeasureModeAtMost && availableHeight < 0)
|
|
? 0
|
|
: availableHeight - marginAxisColumn);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// This is the main routine that implements a subset of the flexbox layout
|
|
// algorithm
|
|
// described in the W3C YG documentation: https://www.w3.org/TR/YG3-flexbox/.
|
|
//
|
|
// Limitations of this algorithm, compared to the full standard:
|
|
// * Display property is always assumed to be 'flex' except for Text nodes,
|
|
// which
|
|
// are assumed to be 'inline-flex'.
|
|
// * The 'zIndex' property (or any form of z ordering) is not supported. Nodes
|
|
// are
|
|
// stacked in document order.
|
|
// * The 'order' property is not supported. The order of flex items is always
|
|
// defined
|
|
// by document order.
|
|
// * The 'visibility' property is always assumed to be 'visible'. Values of
|
|
// 'collapse'
|
|
// and 'hidden' are not supported.
|
|
// * The 'wrap' property supports only 'nowrap' (which is the default) or
|
|
// 'wrap'. The
|
|
// rarely-used 'wrap-reverse' is not supported.
|
|
// * Rather than allowing arbitrary combinations of flexGrow, flexShrink and
|
|
// flexBasis, this algorithm supports only the three most common
|
|
// combinations:
|
|
// flex: 0 is equiavlent to flex: 0 0 auto
|
|
// flex: n (where n is a positive value) is equivalent to flex: n 1 auto
|
|
// If POSITIVE_FLEX_IS_AUTO is 0, then it is equivalent to flex: n 0 0
|
|
// This is faster because the content doesn't need to be measured, but
|
|
// it's
|
|
// less flexible because the basis is always 0 and can't be overriden
|
|
// with
|
|
// the width/height attributes.
|
|
// flex: -1 (or any negative value) is equivalent to flex: 0 1 auto
|
|
// * Margins cannot be specified as 'auto'. They must be specified in terms of
|
|
// pixel
|
|
// values, and the default value is 0.
|
|
// * The 'baseline' value is not supported for alignItems and alignSelf
|
|
// properties.
|
|
// * Values of width, maxWidth, minWidth, height, maxHeight and minHeight must
|
|
// be
|
|
// specified as pixel values, not as percentages.
|
|
// * There is no support for calculation of dimensions based on intrinsic
|
|
// aspect ratios
|
|
// (e.g. images).
|
|
// * There is no support for forced breaks.
|
|
// * It does not support vertical inline directions (top-to-bottom or
|
|
// bottom-to-top text).
|
|
//
|
|
// Deviations from standard:
|
|
// * Section 4.5 of the spec indicates that all flex items have a default
|
|
// minimum
|
|
// main size. For text blocks, for example, this is the width of the widest
|
|
// word.
|
|
// Calculating the minimum width is expensive, so we forego it and assume a
|
|
// default
|
|
// minimum main size of 0.
|
|
// * Min/Max sizes in the main axis are not honored when resolving flexible
|
|
// lengths.
|
|
// * The spec indicates that the default value for 'flexDirection' is 'row',
|
|
// but
|
|
// the algorithm below assumes a default of 'column'.
|
|
//
|
|
// Input parameters:
|
|
// - node: current node to be sized and layed out
|
|
// - availableWidth & availableHeight: available size to be used for sizing
|
|
// the node
|
|
// or YGUndefined if the size is not available; interpretation depends on
|
|
// layout
|
|
// flags
|
|
// - parentDirection: the inline (text) direction within the parent
|
|
// (left-to-right or
|
|
// right-to-left)
|
|
// - widthMeasureMode: indicates the sizing rules for the width (see below
|
|
// for explanation)
|
|
// - heightMeasureMode: indicates the sizing rules for the height (see below
|
|
// for explanation)
|
|
// - performLayout: specifies whether the caller is interested in just the
|
|
// dimensions
|
|
// of the node or it requires the entire node and its subtree to be layed
|
|
// out
|
|
// (with final positions)
|
|
//
|
|
// Details:
|
|
// This routine is called recursively to lay out subtrees of flexbox
|
|
// elements. It uses the
|
|
// information in node.style, which is treated as a read-only input. It is
|
|
// responsible for
|
|
// setting the layout.direction and layout.measuredDimensions fields for the
|
|
// input node as well
|
|
// as the layout.position and layout.lineIndex fields for its child nodes.
|
|
// The
|
|
// layout.measuredDimensions field includes any border or padding for the
|
|
// node but does
|
|
// not include margins.
|
|
//
|
|
// The spec describes four different layout modes: "fill available", "max
|
|
// content", "min
|
|
// content",
|
|
// and "fit content". Of these, we don't use "min content" because we don't
|
|
// support default
|
|
// minimum main sizes (see above for details). Each of our measure modes maps
|
|
// to a layout mode
|
|
// from the spec (https://www.w3.org/TR/YG3-sizing/#terms):
|
|
// - YGMeasureModeUndefined: max content
|
|
// - YGMeasureModeExactly: fill available
|
|
// - YGMeasureModeAtMost: fit content
|
|
//
|
|
// When calling YGNodelayoutImpl and YGLayoutNodeInternal, if the caller passes
|
|
// an available size of
|
|
// undefined then it must also pass a measure mode of YGMeasureModeUndefined
|
|
// in that dimension.
|
|
//
|
|
static void YGNodelayoutImpl(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const bool performLayout) {
|
|
YG_ASSERT(YGValueIsUndefined(availableWidth) ? widthMeasureMode == YGMeasureModeUndefined : true,
|
|
"availableWidth is indefinite so widthMeasureMode must be "
|
|
"YGMeasureModeUndefined");
|
|
YG_ASSERT(YGValueIsUndefined(availableHeight) ? heightMeasureMode == YGMeasureModeUndefined
|
|
: true,
|
|
"availableHeight is indefinite so heightMeasureMode must be "
|
|
"YGMeasureModeUndefined");
|
|
|
|
// Set the resolved resolution in the node's layout.
|
|
const YGDirection direction = YGNodeResolveDirection(node, parentDirection);
|
|
node->layout.direction = direction;
|
|
|
|
if (node->measure) {
|
|
YGNodeWithMeasureFuncSetMeasuredDimensions(
|
|
node, availableWidth, availableHeight, widthMeasureMode, heightMeasureMode);
|
|
return;
|
|
}
|
|
|
|
const uint32_t childCount = YGNodeListCount(node->children);
|
|
if (childCount == 0) {
|
|
YGNodeEmptyContainerSetMeasuredDimensions(
|
|
node, availableWidth, availableHeight, widthMeasureMode, heightMeasureMode);
|
|
return;
|
|
}
|
|
|
|
// If we're not being asked to perform a full layout we can skip the algorithm if we already know
|
|
// the size
|
|
if (!performLayout &&
|
|
YGNodeFixedSizeSetMeasuredDimensions(
|
|
node, availableWidth, availableHeight, widthMeasureMode, heightMeasureMode)) {
|
|
return;
|
|
}
|
|
|
|
// STEP 1: CALCULATE VALUES FOR REMAINDER OF ALGORITHM
|
|
const YGFlexDirection mainAxis = YGFlexDirectionResolve(node->style.flexDirection, direction);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
const YGJustify justifyContent = node->style.justifyContent;
|
|
const bool isNodeFlexWrap = node->style.flexWrap == YGWrapWrap;
|
|
|
|
YGNodeRef firstAbsoluteChild = NULL;
|
|
YGNodeRef currentAbsoluteChild = NULL;
|
|
|
|
const float leadingPaddingAndBorderMain = YGNodeLeadingPaddingAndBorder(node, mainAxis);
|
|
const float trailingPaddingAndBorderMain = YGNodeTrailingPaddingAndBorder(node, mainAxis);
|
|
const float leadingPaddingAndBorderCross = YGNodeLeadingPaddingAndBorder(node, crossAxis);
|
|
const float paddingAndBorderAxisMain = YGNodePaddingAndBorderForAxis(node, mainAxis);
|
|
const float paddingAndBorderAxisCross = YGNodePaddingAndBorderForAxis(node, crossAxis);
|
|
|
|
const YGMeasureMode measureModeMainDim = isMainAxisRow ? widthMeasureMode : heightMeasureMode;
|
|
const YGMeasureMode measureModeCrossDim = isMainAxisRow ? heightMeasureMode : widthMeasureMode;
|
|
|
|
const float paddingAndBorderAxisRow = YGNodePaddingAndBorderForAxis(node, YGFlexDirectionRow);
|
|
const float paddingAndBorderAxisColumn =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionColumn);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
|
|
// STEP 2: DETERMINE AVAILABLE SIZE IN MAIN AND CROSS DIRECTIONS
|
|
const float availableInnerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
|
|
const float availableInnerHeight =
|
|
availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
|
|
const float availableInnerMainDim = isMainAxisRow ? availableInnerWidth : availableInnerHeight;
|
|
const float availableInnerCrossDim = isMainAxisRow ? availableInnerHeight : availableInnerWidth;
|
|
|
|
// If there is only one child with flexGrow + flexShrink it means we can set the
|
|
// computedFlexBasis to 0 instead of measuring and shrinking / flexing the child to exactly
|
|
// match the remaining space
|
|
YGNodeRef singleFlexChild = NULL;
|
|
if ((isMainAxisRow && widthMeasureMode == YGMeasureModeExactly) ||
|
|
(!isMainAxisRow && heightMeasureMode == YGMeasureModeExactly)) {
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
if (singleFlexChild) {
|
|
if (YGNodeIsFlex(child)) {
|
|
// There is already a flexible child, abort.
|
|
singleFlexChild = NULL;
|
|
break;
|
|
}
|
|
} else if (YGNodeStyleGetFlexGrow(child) > 0 && YGNodeStyleGetFlexShrink(child) > 0) {
|
|
singleFlexChild = child;
|
|
}
|
|
}
|
|
}
|
|
|
|
// STEP 3: DETERMINE FLEX BASIS FOR EACH ITEM
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
|
|
if (performLayout) {
|
|
// Set the initial position (relative to the parent).
|
|
const YGDirection childDirection = YGNodeResolveDirection(child, direction);
|
|
YGNodeSetPosition(child, childDirection);
|
|
}
|
|
|
|
// Absolute-positioned children don't participate in flex layout. Add them
|
|
// to a list that we can process later.
|
|
if (child->style.positionType == YGPositionTypeAbsolute) {
|
|
// Store a private linked list of absolutely positioned children
|
|
// so that we can efficiently traverse them later.
|
|
if (firstAbsoluteChild == NULL) {
|
|
firstAbsoluteChild = child;
|
|
}
|
|
if (currentAbsoluteChild != NULL) {
|
|
currentAbsoluteChild->nextChild = child;
|
|
}
|
|
currentAbsoluteChild = child;
|
|
child->nextChild = NULL;
|
|
} else {
|
|
if (child == singleFlexChild) {
|
|
child->layout.computedFlexBasisGeneration = gCurrentGenerationCount;
|
|
child->layout.computedFlexBasis = 0;
|
|
} else {
|
|
YGNodeComputeFlexBasisForChild(node,
|
|
child,
|
|
availableInnerWidth,
|
|
widthMeasureMode,
|
|
availableInnerHeight,
|
|
heightMeasureMode,
|
|
direction);
|
|
}
|
|
}
|
|
}
|
|
|
|
// STEP 4: COLLECT FLEX ITEMS INTO FLEX LINES
|
|
|
|
// Indexes of children that represent the first and last items in the line.
|
|
uint32_t startOfLineIndex = 0;
|
|
uint32_t endOfLineIndex = 0;
|
|
|
|
// Number of lines.
|
|
uint32_t lineCount = 0;
|
|
|
|
// Accumulated cross dimensions of all lines so far.
|
|
float totalLineCrossDim = 0;
|
|
|
|
// Max main dimension of all the lines.
|
|
float maxLineMainDim = 0;
|
|
|
|
for (; endOfLineIndex < childCount; lineCount++, startOfLineIndex = endOfLineIndex) {
|
|
// Number of items on the currently line. May be different than the
|
|
// difference
|
|
// between start and end indicates because we skip over absolute-positioned
|
|
// items.
|
|
uint32_t itemsOnLine = 0;
|
|
|
|
// sizeConsumedOnCurrentLine is accumulation of the dimensions and margin
|
|
// of all the children on the current line. This will be used in order to
|
|
// either set the dimensions of the node if none already exist or to compute
|
|
// the remaining space left for the flexible children.
|
|
float sizeConsumedOnCurrentLine = 0;
|
|
|
|
float totalFlexGrowFactors = 0;
|
|
float totalFlexShrinkScaledFactors = 0;
|
|
|
|
// Maintain a linked list of the child nodes that can shrink and/or grow.
|
|
YGNodeRef firstRelativeChild = NULL;
|
|
YGNodeRef currentRelativeChild = NULL;
|
|
|
|
// Add items to the current line until it's full or we run out of items.
|
|
for (uint32_t i = startOfLineIndex; i < childCount; i++, endOfLineIndex++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
child->lineIndex = lineCount;
|
|
|
|
if (child->style.positionType != YGPositionTypeAbsolute) {
|
|
const float outerFlexBasis =
|
|
child->layout.computedFlexBasis + YGNodeMarginForAxis(child, mainAxis);
|
|
|
|
// If this is a multi-line flow and this item pushes us over the
|
|
// available size, we've
|
|
// hit the end of the current line. Break out of the loop and lay out
|
|
// the current line.
|
|
if (sizeConsumedOnCurrentLine + outerFlexBasis > availableInnerMainDim && isNodeFlexWrap &&
|
|
itemsOnLine > 0) {
|
|
break;
|
|
}
|
|
|
|
sizeConsumedOnCurrentLine += outerFlexBasis;
|
|
itemsOnLine++;
|
|
|
|
if (YGNodeIsFlex(child)) {
|
|
totalFlexGrowFactors += YGNodeStyleGetFlexGrow(child);
|
|
|
|
// Unlike the grow factor, the shrink factor is scaled relative to the
|
|
// child
|
|
// dimension.
|
|
totalFlexShrinkScaledFactors +=
|
|
-YGNodeStyleGetFlexShrink(child) * child->layout.computedFlexBasis;
|
|
}
|
|
|
|
// Store a private linked list of children that need to be layed out.
|
|
if (firstRelativeChild == NULL) {
|
|
firstRelativeChild = child;
|
|
}
|
|
if (currentRelativeChild != NULL) {
|
|
currentRelativeChild->nextChild = child;
|
|
}
|
|
currentRelativeChild = child;
|
|
child->nextChild = NULL;
|
|
}
|
|
}
|
|
|
|
// If we don't need to measure the cross axis, we can skip the entire flex
|
|
// step.
|
|
const bool canSkipFlex = !performLayout && measureModeCrossDim == YGMeasureModeExactly;
|
|
|
|
// In order to position the elements in the main axis, we have two
|
|
// controls. The space between the beginning and the first element
|
|
// and the space between each two elements.
|
|
float leadingMainDim = 0;
|
|
float betweenMainDim = 0;
|
|
|
|
// STEP 5: RESOLVING FLEXIBLE LENGTHS ON MAIN AXIS
|
|
// Calculate the remaining available space that needs to be allocated.
|
|
// If the main dimension size isn't known, it is computed based on
|
|
// the line length, so there's no more space left to distribute.
|
|
float remainingFreeSpace = 0;
|
|
if (!YGValueIsUndefined(availableInnerMainDim)) {
|
|
remainingFreeSpace = availableInnerMainDim - sizeConsumedOnCurrentLine;
|
|
} else if (sizeConsumedOnCurrentLine < 0) {
|
|
// availableInnerMainDim is indefinite which means the node is being sized
|
|
// based on its
|
|
// content.
|
|
// sizeConsumedOnCurrentLine is negative which means the node will
|
|
// allocate 0 pixels for
|
|
// its content. Consequently, remainingFreeSpace is 0 -
|
|
// sizeConsumedOnCurrentLine.
|
|
remainingFreeSpace = -sizeConsumedOnCurrentLine;
|
|
}
|
|
|
|
const float originalRemainingFreeSpace = remainingFreeSpace;
|
|
float deltaFreeSpace = 0;
|
|
|
|
if (!canSkipFlex) {
|
|
float childFlexBasis;
|
|
float flexShrinkScaledFactor;
|
|
float flexGrowFactor;
|
|
float baseMainSize;
|
|
float boundMainSize;
|
|
|
|
// Do two passes over the flex items to figure out how to distribute the
|
|
// remaining space.
|
|
// The first pass finds the items whose min/max constraints trigger,
|
|
// freezes them at those
|
|
// sizes, and excludes those sizes from the remaining space. The second
|
|
// pass sets the size
|
|
// of each flexible item. It distributes the remaining space amongst the
|
|
// items whose min/max
|
|
// constraints didn't trigger in pass 1. For the other items, it sets
|
|
// their sizes by forcing
|
|
// their min/max constraints to trigger again.
|
|
//
|
|
// This two pass approach for resolving min/max constraints deviates from
|
|
// the spec. The
|
|
// spec (https://www.w3.org/TR/YG-flexbox-1/#resolve-flexible-lengths)
|
|
// describes a process
|
|
// that needs to be repeated a variable number of times. The algorithm
|
|
// implemented here
|
|
// won't handle all cases but it was simpler to implement and it mitigates
|
|
// performance
|
|
// concerns because we know exactly how many passes it'll do.
|
|
|
|
// First pass: detect the flex items whose min/max constraints trigger
|
|
float deltaFlexShrinkScaledFactors = 0;
|
|
float deltaFlexGrowFactors = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != NULL) {
|
|
childFlexBasis = currentRelativeChild->layout.computedFlexBasis;
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = -YGNodeStyleGetFlexShrink(currentRelativeChild) * childFlexBasis;
|
|
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
baseMainSize =
|
|
childFlexBasis +
|
|
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor;
|
|
boundMainSize = YGNodeBoundAxis(currentRelativeChild, mainAxis, baseMainSize);
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining,
|
|
// this item's
|
|
// min/max constraints should also trigger in the second pass
|
|
// resulting in the
|
|
// item's size calculation being identical in the first and second
|
|
// passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexShrinkScaledFactors -= flexShrinkScaledFactor;
|
|
}
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = YGNodeStyleGetFlexGrow(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
baseMainSize =
|
|
childFlexBasis + remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor;
|
|
boundMainSize = YGNodeBoundAxis(currentRelativeChild, mainAxis, baseMainSize);
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining,
|
|
// this item's
|
|
// min/max constraints should also trigger in the second pass
|
|
// resulting in the
|
|
// item's size calculation being identical in the first and second
|
|
// passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexGrowFactors -= flexGrowFactor;
|
|
}
|
|
}
|
|
}
|
|
|
|
currentRelativeChild = currentRelativeChild->nextChild;
|
|
}
|
|
|
|
totalFlexShrinkScaledFactors += deltaFlexShrinkScaledFactors;
|
|
totalFlexGrowFactors += deltaFlexGrowFactors;
|
|
remainingFreeSpace += deltaFreeSpace;
|
|
|
|
// Second pass: resolve the sizes of the flexible items
|
|
deltaFreeSpace = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != NULL) {
|
|
childFlexBasis = currentRelativeChild->layout.computedFlexBasis;
|
|
float updatedMainSize = childFlexBasis;
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = -YGNodeStyleGetFlexShrink(currentRelativeChild) * childFlexBasis;
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
float childSize;
|
|
|
|
if (totalFlexShrinkScaledFactors == 0) {
|
|
childSize = childFlexBasis + flexShrinkScaledFactor;
|
|
} else {
|
|
childSize =
|
|
childFlexBasis +
|
|
(remainingFreeSpace / totalFlexShrinkScaledFactors) * flexShrinkScaledFactor;
|
|
}
|
|
|
|
updatedMainSize = YGNodeBoundAxis(currentRelativeChild, mainAxis, childSize);
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = YGNodeStyleGetFlexGrow(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
updatedMainSize =
|
|
YGNodeBoundAxis(currentRelativeChild,
|
|
mainAxis,
|
|
childFlexBasis +
|
|
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor);
|
|
}
|
|
}
|
|
|
|
deltaFreeSpace -= updatedMainSize - childFlexBasis;
|
|
|
|
float childWidth;
|
|
float childHeight;
|
|
YGMeasureMode childWidthMeasureMode;
|
|
YGMeasureMode childHeightMeasureMode;
|
|
|
|
if (isMainAxisRow) {
|
|
childWidth =
|
|
updatedMainSize + YGNodeMarginForAxis(currentRelativeChild, YGFlexDirectionRow);
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
|
|
if (!YGValueIsUndefined(availableInnerCrossDim) &&
|
|
!YGNodeIsStyleDimDefined(currentRelativeChild, YGFlexDirectionColumn) &&
|
|
heightMeasureMode == YGMeasureModeExactly &&
|
|
YGNodeAlignItem(node, currentRelativeChild) == YGAlignStretch) {
|
|
childHeight = availableInnerCrossDim;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
} else if (!YGNodeIsStyleDimDefined(currentRelativeChild, YGFlexDirectionColumn)) {
|
|
childHeight = availableInnerCrossDim;
|
|
childHeightMeasureMode =
|
|
YGValueIsUndefined(childHeight) ? YGMeasureModeUndefined : YGMeasureModeAtMost;
|
|
} else {
|
|
childHeight = currentRelativeChild->style.dimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(currentRelativeChild, YGFlexDirectionColumn);
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
} else {
|
|
childHeight =
|
|
updatedMainSize + YGNodeMarginForAxis(currentRelativeChild, YGFlexDirectionColumn);
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
|
|
if (!YGValueIsUndefined(availableInnerCrossDim) &&
|
|
!YGNodeIsStyleDimDefined(currentRelativeChild, YGFlexDirectionRow) &&
|
|
widthMeasureMode == YGMeasureModeExactly &&
|
|
YGNodeAlignItem(node, currentRelativeChild) == YGAlignStretch) {
|
|
childWidth = availableInnerCrossDim;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
} else if (!YGNodeIsStyleDimDefined(currentRelativeChild, YGFlexDirectionRow)) {
|
|
childWidth = availableInnerCrossDim;
|
|
childWidthMeasureMode =
|
|
YGValueIsUndefined(childWidth) ? YGMeasureModeUndefined : YGMeasureModeAtMost;
|
|
} else {
|
|
childWidth = currentRelativeChild->style.dimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(currentRelativeChild, YGFlexDirectionRow);
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
}
|
|
|
|
if (!YGValueIsUndefined(currentRelativeChild->style.aspectRatio)) {
|
|
if (isMainAxisRow && childHeightMeasureMode != YGMeasureModeExactly) {
|
|
childHeight =
|
|
fmaxf(childWidth * currentRelativeChild->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(currentRelativeChild, YGFlexDirectionColumn));
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
} else if (!isMainAxisRow && childWidthMeasureMode != YGMeasureModeExactly) {
|
|
childWidth =
|
|
fmaxf(childHeight * currentRelativeChild->style.aspectRatio,
|
|
YGNodePaddingAndBorderForAxis(currentRelativeChild, YGFlexDirectionRow));
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
}
|
|
|
|
YGConstrainMaxSizeForMode(currentRelativeChild->style.maxDimensions[YGDimensionWidth],
|
|
&childWidthMeasureMode,
|
|
&childWidth);
|
|
YGConstrainMaxSizeForMode(currentRelativeChild->style.maxDimensions[YGDimensionHeight],
|
|
&childHeightMeasureMode,
|
|
&childHeight);
|
|
|
|
const bool requiresStretchLayout =
|
|
!YGNodeIsStyleDimDefined(currentRelativeChild, crossAxis) &&
|
|
YGNodeAlignItem(node, currentRelativeChild) == YGAlignStretch;
|
|
|
|
// Recursively call the layout algorithm for this child with the updated
|
|
// main size.
|
|
YGLayoutNodeInternal(currentRelativeChild,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
performLayout && !requiresStretchLayout,
|
|
"flex");
|
|
|
|
currentRelativeChild = currentRelativeChild->nextChild;
|
|
}
|
|
}
|
|
|
|
remainingFreeSpace = originalRemainingFreeSpace + deltaFreeSpace;
|
|
|
|
// STEP 6: MAIN-AXIS JUSTIFICATION & CROSS-AXIS SIZE DETERMINATION
|
|
|
|
// At this point, all the children have their dimensions set in the main
|
|
// axis.
|
|
// Their dimensions are also set in the cross axis with the exception of
|
|
// items
|
|
// that are aligned "stretch". We need to compute these stretch values and
|
|
// set the final positions.
|
|
|
|
// If we are using "at most" rules in the main axis. Calculate the remaining space when
|
|
// constraint by the min size defined for the main axis.
|
|
|
|
if (measureModeMainDim == YGMeasureModeAtMost && remainingFreeSpace > 0) {
|
|
if (!YGValueIsUndefined(node->style.minDimensions[dim[mainAxis]]) &&
|
|
node->style.minDimensions[dim[mainAxis]] >= 0) {
|
|
remainingFreeSpace = fmaxf(0,
|
|
node->style.minDimensions[dim[mainAxis]] -
|
|
(availableInnerMainDim - remainingFreeSpace));
|
|
} else {
|
|
remainingFreeSpace = 0;
|
|
}
|
|
}
|
|
|
|
switch (justifyContent) {
|
|
case YGJustifyCenter:
|
|
leadingMainDim = remainingFreeSpace / 2;
|
|
break;
|
|
case YGJustifyFlexEnd:
|
|
leadingMainDim = remainingFreeSpace;
|
|
break;
|
|
case YGJustifySpaceBetween:
|
|
if (itemsOnLine > 1) {
|
|
betweenMainDim = fmaxf(remainingFreeSpace, 0) / (itemsOnLine - 1);
|
|
} else {
|
|
betweenMainDim = 0;
|
|
}
|
|
break;
|
|
case YGJustifySpaceAround:
|
|
// Space on the edges is half of the space between elements
|
|
betweenMainDim = remainingFreeSpace / itemsOnLine;
|
|
leadingMainDim = betweenMainDim / 2;
|
|
break;
|
|
case YGJustifyFlexStart:
|
|
case YGJustifyCount:
|
|
break;
|
|
}
|
|
|
|
float mainDim = leadingPaddingAndBorderMain + leadingMainDim;
|
|
float crossDim = 0;
|
|
|
|
for (uint32_t i = startOfLineIndex; i < endOfLineIndex; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
|
|
if (child->style.positionType == YGPositionTypeAbsolute &&
|
|
YGNodeIsLeadingPosDefined(child, mainAxis)) {
|
|
if (performLayout) {
|
|
// In case the child is position absolute and has left/top being
|
|
// defined, we override the position to whatever the user said
|
|
// (and margin/border).
|
|
child->layout.position[pos[mainAxis]] = YGNodeLeadingPosition(child, mainAxis) +
|
|
YGNodeLeadingBorder(node, mainAxis) +
|
|
YGNodeLeadingMargin(child, mainAxis);
|
|
}
|
|
} else {
|
|
// Now that we placed the element, we need to update the variables.
|
|
// We need to do that only for relative elements. Absolute elements
|
|
// do not take part in that phase.
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
if (performLayout) {
|
|
child->layout.position[pos[mainAxis]] += mainDim;
|
|
}
|
|
|
|
if (canSkipFlex) {
|
|
// If we skipped the flex step, then we can't rely on the
|
|
// measuredDims because
|
|
// they weren't computed. This means we can't call YGNodeDimWithMargin.
|
|
mainDim += betweenMainDim + YGNodeMarginForAxis(child, mainAxis) +
|
|
child->layout.computedFlexBasis;
|
|
crossDim = availableInnerCrossDim;
|
|
} else {
|
|
// The main dimension is the sum of all the elements dimension plus
|
|
// the spacing.
|
|
mainDim += betweenMainDim + YGNodeDimWithMargin(child, mainAxis);
|
|
|
|
// The cross dimension is the max of the elements dimension since
|
|
// there
|
|
// can only be one element in that cross dimension.
|
|
crossDim = fmaxf(crossDim, YGNodeDimWithMargin(child, crossAxis));
|
|
}
|
|
} else if (performLayout) {
|
|
child->layout.position[pos[mainAxis]] +=
|
|
YGNodeLeadingBorder(node, mainAxis) + leadingMainDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
mainDim += trailingPaddingAndBorderMain;
|
|
|
|
float containerCrossAxis = availableInnerCrossDim;
|
|
if (measureModeCrossDim == YGMeasureModeUndefined ||
|
|
measureModeCrossDim == YGMeasureModeAtMost) {
|
|
// Compute the cross axis from the max cross dimension of the children.
|
|
containerCrossAxis = YGNodeBoundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) -
|
|
paddingAndBorderAxisCross;
|
|
|
|
if (measureModeCrossDim == YGMeasureModeAtMost) {
|
|
containerCrossAxis = fminf(containerCrossAxis, availableInnerCrossDim);
|
|
}
|
|
}
|
|
|
|
// If there's no flex wrap, the cross dimension is defined by the container.
|
|
if (!isNodeFlexWrap && measureModeCrossDim == YGMeasureModeExactly) {
|
|
crossDim = availableInnerCrossDim;
|
|
}
|
|
|
|
// Clamp to the min/max size specified on the container.
|
|
crossDim = YGNodeBoundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) -
|
|
paddingAndBorderAxisCross;
|
|
|
|
// STEP 7: CROSS-AXIS ALIGNMENT
|
|
// We can skip child alignment if we're just measuring the container.
|
|
if (performLayout) {
|
|
for (uint32_t i = startOfLineIndex; i < endOfLineIndex; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
|
|
if (child->style.positionType == YGPositionTypeAbsolute) {
|
|
// If the child is absolutely positioned and has a
|
|
// top/left/bottom/right
|
|
// set, override all the previously computed positions to set it
|
|
// correctly.
|
|
if (YGNodeIsLeadingPosDefined(child, crossAxis)) {
|
|
child->layout.position[pos[crossAxis]] = YGNodeLeadingPosition(child, crossAxis) +
|
|
YGNodeLeadingBorder(node, crossAxis) +
|
|
YGNodeLeadingMargin(child, crossAxis);
|
|
} else {
|
|
child->layout.position[pos[crossAxis]] =
|
|
YGNodeLeadingBorder(node, crossAxis) + YGNodeLeadingMargin(child, crossAxis);
|
|
}
|
|
} else {
|
|
float leadingCrossDim = leadingPaddingAndBorderCross;
|
|
|
|
// For a relative children, we're either using alignItems (parent) or
|
|
// alignSelf (child) in order to determine the position in the cross
|
|
// axis
|
|
const YGAlign alignItem = YGNodeAlignItem(node, child);
|
|
|
|
// If the child uses align stretch, we need to lay it out one more
|
|
// time, this time
|
|
// forcing the cross-axis size to be the computed cross size for the
|
|
// current line.
|
|
if (alignItem == YGAlignStretch) {
|
|
const bool isCrossSizeDefinite =
|
|
(isMainAxisRow && YGNodeIsStyleDimDefined(child, YGFlexDirectionColumn)) ||
|
|
(!isMainAxisRow && YGNodeIsStyleDimDefined(child, YGFlexDirectionRow));
|
|
|
|
float childWidth;
|
|
float childHeight;
|
|
YGMeasureMode childWidthMeasureMode = YGMeasureModeExactly;
|
|
YGMeasureMode childHeightMeasureMode = YGMeasureModeExactly;
|
|
|
|
if (isMainAxisRow) {
|
|
childHeight = crossDim;
|
|
childWidth = child->layout.measuredDimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionRow);
|
|
} else {
|
|
childWidth = crossDim;
|
|
childHeight = child->layout.measuredDimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn);
|
|
}
|
|
|
|
YGConstrainMaxSizeForMode(child->style.maxDimensions[YGDimensionWidth],
|
|
&childWidthMeasureMode,
|
|
&childWidth);
|
|
YGConstrainMaxSizeForMode(child->style.maxDimensions[YGDimensionHeight],
|
|
&childHeightMeasureMode,
|
|
&childHeight);
|
|
|
|
// If the child defines a definite size for its cross axis, there's
|
|
// no need to stretch.
|
|
if (!isCrossSizeDefinite) {
|
|
childWidthMeasureMode =
|
|
YGValueIsUndefined(childWidth) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
childHeightMeasureMode =
|
|
YGValueIsUndefined(childHeight) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
true,
|
|
"stretch");
|
|
}
|
|
} else if (alignItem != YGAlignFlexStart) {
|
|
const float remainingCrossDim =
|
|
containerCrossAxis - YGNodeDimWithMargin(child, crossAxis);
|
|
|
|
if (alignItem == YGAlignCenter) {
|
|
leadingCrossDim += remainingCrossDim / 2;
|
|
} else { // YGAlignFlexEnd
|
|
leadingCrossDim += remainingCrossDim;
|
|
}
|
|
}
|
|
|
|
// And we apply the position
|
|
child->layout.position[pos[crossAxis]] += totalLineCrossDim + leadingCrossDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
totalLineCrossDim += crossDim;
|
|
maxLineMainDim = fmaxf(maxLineMainDim, mainDim);
|
|
}
|
|
|
|
// STEP 8: MULTI-LINE CONTENT ALIGNMENT
|
|
if (lineCount > 1 && performLayout && !YGValueIsUndefined(availableInnerCrossDim)) {
|
|
const float remainingAlignContentDim = availableInnerCrossDim - totalLineCrossDim;
|
|
|
|
float crossDimLead = 0;
|
|
float currentLead = leadingPaddingAndBorderCross;
|
|
|
|
switch (node->style.alignContent) {
|
|
case YGAlignFlexEnd:
|
|
currentLead += remainingAlignContentDim;
|
|
break;
|
|
case YGAlignCenter:
|
|
currentLead += remainingAlignContentDim / 2;
|
|
break;
|
|
case YGAlignStretch:
|
|
if (availableInnerCrossDim > totalLineCrossDim) {
|
|
crossDimLead = (remainingAlignContentDim / lineCount);
|
|
}
|
|
break;
|
|
case YGAlignAuto:
|
|
case YGAlignFlexStart:
|
|
case YGAlignCount:
|
|
break;
|
|
}
|
|
|
|
uint32_t endIndex = 0;
|
|
for (uint32_t i = 0; i < lineCount; i++) {
|
|
uint32_t startIndex = endIndex;
|
|
uint32_t ii;
|
|
|
|
// compute the line's height and find the endIndex
|
|
float lineHeight = 0;
|
|
for (ii = startIndex; ii < childCount; ii++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, ii);
|
|
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
if (child->lineIndex != i) {
|
|
break;
|
|
}
|
|
|
|
if (YGNodeIsLayoutDimDefined(child, crossAxis)) {
|
|
lineHeight = fmaxf(lineHeight,
|
|
child->layout.measuredDimensions[dim[crossAxis]] +
|
|
YGNodeMarginForAxis(child, crossAxis));
|
|
}
|
|
}
|
|
}
|
|
endIndex = ii;
|
|
lineHeight += crossDimLead;
|
|
|
|
if (performLayout) {
|
|
for (ii = startIndex; ii < endIndex; ii++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, ii);
|
|
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
switch (YGNodeAlignItem(node, child)) {
|
|
case YGAlignFlexStart: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + YGNodeLeadingMargin(child, crossAxis);
|
|
break;
|
|
}
|
|
case YGAlignFlexEnd: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + lineHeight - YGNodeTrailingMargin(child, crossAxis) -
|
|
child->layout.measuredDimensions[dim[crossAxis]];
|
|
break;
|
|
}
|
|
case YGAlignCenter: {
|
|
float childHeight = child->layout.measuredDimensions[dim[crossAxis]];
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + (lineHeight - childHeight) / 2;
|
|
break;
|
|
}
|
|
case YGAlignStretch: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + YGNodeLeadingMargin(child, crossAxis);
|
|
// TODO(prenaux): Correctly set the height of items with indefinite
|
|
// (auto) crossAxis dimension.
|
|
break;
|
|
}
|
|
case YGAlignAuto:
|
|
case YGAlignCount:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
currentLead += lineHeight;
|
|
}
|
|
}
|
|
|
|
// STEP 9: COMPUTING FINAL DIMENSIONS
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionRow, availableWidth - marginAxisRow);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node, YGFlexDirectionColumn, availableHeight - marginAxisColumn);
|
|
|
|
// If the user didn't specify a width or height for the node, set the
|
|
// dimensions based on the children.
|
|
if (measureModeMainDim == YGMeasureModeUndefined) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measuredDimensions[dim[mainAxis]] =
|
|
YGNodeBoundAxis(node, mainAxis, maxLineMainDim);
|
|
} else if (measureModeMainDim == YGMeasureModeAtMost) {
|
|
node->layout.measuredDimensions[dim[mainAxis]] =
|
|
fmaxf(fminf(availableInnerMainDim + paddingAndBorderAxisMain,
|
|
YGNodeBoundAxisWithinMinAndMax(node, mainAxis, maxLineMainDim)),
|
|
paddingAndBorderAxisMain);
|
|
}
|
|
|
|
if (measureModeCrossDim == YGMeasureModeUndefined) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measuredDimensions[dim[crossAxis]] =
|
|
YGNodeBoundAxis(node, crossAxis, totalLineCrossDim + paddingAndBorderAxisCross);
|
|
} else if (measureModeCrossDim == YGMeasureModeAtMost) {
|
|
node->layout.measuredDimensions[dim[crossAxis]] =
|
|
fmaxf(fminf(availableInnerCrossDim + paddingAndBorderAxisCross,
|
|
YGNodeBoundAxisWithinMinAndMax(node,
|
|
crossAxis,
|
|
totalLineCrossDim + paddingAndBorderAxisCross)),
|
|
paddingAndBorderAxisCross);
|
|
}
|
|
|
|
if (performLayout) {
|
|
// STEP 10: SIZING AND POSITIONING ABSOLUTE CHILDREN
|
|
for (currentAbsoluteChild = firstAbsoluteChild; currentAbsoluteChild != NULL;
|
|
currentAbsoluteChild = currentAbsoluteChild->nextChild) {
|
|
YGNodeAbsoluteLayoutChild(
|
|
node, currentAbsoluteChild, availableInnerWidth, widthMeasureMode, direction);
|
|
}
|
|
|
|
// STEP 11: SETTING TRAILING POSITIONS FOR CHILDREN
|
|
const bool needsMainTrailingPos =
|
|
mainAxis == YGFlexDirectionRowReverse || mainAxis == YGFlexDirectionColumnReverse;
|
|
const bool needsCrossTrailingPos =
|
|
YGFlexDirectionRowReverse || crossAxis == YGFlexDirectionColumnReverse;
|
|
|
|
// Set trailing position if necessary.
|
|
if (needsMainTrailingPos || needsCrossTrailingPos) {
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
|
|
if (needsMainTrailingPos) {
|
|
YGNodeSetChildTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
if (needsCrossTrailingPos) {
|
|
YGNodeSetChildTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t gDepth = 0;
|
|
bool gPrintTree = false;
|
|
bool gPrintChanges = false;
|
|
bool gPrintSkips = false;
|
|
|
|
static const char *spacer = " ";
|
|
|
|
static const char *YGSpacer(const unsigned long level) {
|
|
const size_t spacerLen = strlen(spacer);
|
|
if (level > spacerLen) {
|
|
return &spacer[0];
|
|
} else {
|
|
return &spacer[spacerLen - level];
|
|
}
|
|
}
|
|
|
|
static const char *YGMeasureModeName(const YGMeasureMode mode, const bool performLayout) {
|
|
const char *kMeasureModeNames[YGMeasureModeCount] = {"UNDEFINED", "EXACTLY", "AT_MOST"};
|
|
const char *kLayoutModeNames[YGMeasureModeCount] = {"LAY_UNDEFINED",
|
|
"LAY_EXACTLY",
|
|
"LAY_AT_"
|
|
"MOST"};
|
|
|
|
if (mode >= YGMeasureModeCount) {
|
|
return "";
|
|
}
|
|
|
|
return performLayout ? kLayoutModeNames[mode] : kMeasureModeNames[mode];
|
|
}
|
|
|
|
static inline bool YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(YGMeasureMode sizeMode,
|
|
float size,
|
|
float lastComputedSize) {
|
|
return sizeMode == YGMeasureModeExactly && YGFloatsEqual(size, lastComputedSize);
|
|
}
|
|
|
|
static inline bool YGMeasureModeOldSizeIsUnspecifiedAndStillFits(YGMeasureMode sizeMode,
|
|
float size,
|
|
YGMeasureMode lastSizeMode,
|
|
float lastComputedSize) {
|
|
return sizeMode == YGMeasureModeAtMost && lastSizeMode == YGMeasureModeUndefined &&
|
|
size >= lastComputedSize;
|
|
}
|
|
|
|
static inline bool YGMeasureModeNewMeasureSizeIsStricterAndStillValid(YGMeasureMode sizeMode,
|
|
float size,
|
|
YGMeasureMode lastSizeMode,
|
|
float lastSize,
|
|
float lastComputedSize) {
|
|
return lastSizeMode == YGMeasureModeAtMost && sizeMode == YGMeasureModeAtMost &&
|
|
lastSize > size && lastComputedSize <= size;
|
|
}
|
|
|
|
bool YGNodeCanUseCachedMeasurement(const YGMeasureMode widthMode,
|
|
const float width,
|
|
const YGMeasureMode heightMode,
|
|
const float height,
|
|
const YGMeasureMode lastWidthMode,
|
|
const float lastWidth,
|
|
const YGMeasureMode lastHeightMode,
|
|
const float lastHeight,
|
|
const float lastComputedWidth,
|
|
const float lastComputedHeight,
|
|
const float marginRow,
|
|
const float marginColumn) {
|
|
if (lastComputedHeight < 0 || lastComputedWidth < 0) {
|
|
return false;
|
|
}
|
|
|
|
const bool hasSameWidthSpec = lastWidthMode == widthMode && YGFloatsEqual(lastWidth, width);
|
|
const bool hasSameHeightSpec = lastHeightMode == heightMode && YGFloatsEqual(lastHeight, height);
|
|
|
|
const bool widthIsCompatible =
|
|
hasSameWidthSpec || YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(widthMode,
|
|
width - marginRow,
|
|
lastComputedWidth) ||
|
|
YGMeasureModeOldSizeIsUnspecifiedAndStillFits(widthMode,
|
|
width - marginRow,
|
|
lastWidthMode,
|
|
lastComputedWidth) ||
|
|
YGMeasureModeNewMeasureSizeIsStricterAndStillValid(
|
|
widthMode, width - marginRow, lastWidthMode, lastWidth, lastComputedWidth);
|
|
|
|
const bool heightIsCompatible =
|
|
hasSameHeightSpec || YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(heightMode,
|
|
height - marginColumn,
|
|
lastComputedHeight) ||
|
|
YGMeasureModeOldSizeIsUnspecifiedAndStillFits(heightMode,
|
|
height - marginColumn,
|
|
lastHeightMode,
|
|
lastComputedHeight) ||
|
|
YGMeasureModeNewMeasureSizeIsStricterAndStillValid(
|
|
heightMode, height - marginColumn, lastHeightMode, lastHeight, lastComputedHeight);
|
|
|
|
return widthIsCompatible && heightIsCompatible;
|
|
}
|
|
|
|
//
|
|
// This is a wrapper around the YGNodelayoutImpl function. It determines
|
|
// whether the layout request is redundant and can be skipped.
|
|
//
|
|
// Parameters:
|
|
// Input parameters are the same as YGNodelayoutImpl (see above)
|
|
// Return parameter is true if layout was performed, false if skipped
|
|
//
|
|
bool YGLayoutNodeInternal(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const bool performLayout,
|
|
const char *reason) {
|
|
YGLayout *layout = &node->layout;
|
|
|
|
gDepth++;
|
|
|
|
const bool needToVisitNode =
|
|
(node->isDirty && layout->generationCount != gCurrentGenerationCount) ||
|
|
layout->lastParentDirection != parentDirection;
|
|
|
|
if (needToVisitNode) {
|
|
// Invalidate the cached results.
|
|
layout->nextCachedMeasurementsIndex = 0;
|
|
layout->cachedLayout.widthMeasureMode = (YGMeasureMode) -1;
|
|
layout->cachedLayout.heightMeasureMode = (YGMeasureMode) -1;
|
|
layout->cachedLayout.computedWidth = -1;
|
|
layout->cachedLayout.computedHeight = -1;
|
|
}
|
|
|
|
YGCachedMeasurement *cachedResults = NULL;
|
|
|
|
// Determine whether the results are already cached. We maintain a separate
|
|
// cache for layouts and measurements. A layout operation modifies the
|
|
// positions
|
|
// and dimensions for nodes in the subtree. The algorithm assumes that each
|
|
// node
|
|
// gets layed out a maximum of one time per tree layout, but multiple
|
|
// measurements
|
|
// may be required to resolve all of the flex dimensions.
|
|
// We handle nodes with measure functions specially here because they are the
|
|
// most
|
|
// expensive to measure, so it's worth avoiding redundant measurements if at
|
|
// all possible.
|
|
if (node->measure) {
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
|
|
// First, try to use the layout cache.
|
|
if (YGNodeCanUseCachedMeasurement(widthMeasureMode,
|
|
availableWidth,
|
|
heightMeasureMode,
|
|
availableHeight,
|
|
layout->cachedLayout.widthMeasureMode,
|
|
layout->cachedLayout.availableWidth,
|
|
layout->cachedLayout.heightMeasureMode,
|
|
layout->cachedLayout.availableHeight,
|
|
layout->cachedLayout.computedWidth,
|
|
layout->cachedLayout.computedHeight,
|
|
marginAxisRow,
|
|
marginAxisColumn)) {
|
|
cachedResults = &layout->cachedLayout;
|
|
} else {
|
|
// Try to use the measurement cache.
|
|
for (uint32_t i = 0; i < layout->nextCachedMeasurementsIndex; i++) {
|
|
if (YGNodeCanUseCachedMeasurement(widthMeasureMode,
|
|
availableWidth,
|
|
heightMeasureMode,
|
|
availableHeight,
|
|
layout->cachedMeasurements[i].widthMeasureMode,
|
|
layout->cachedMeasurements[i].availableWidth,
|
|
layout->cachedMeasurements[i].heightMeasureMode,
|
|
layout->cachedMeasurements[i].availableHeight,
|
|
layout->cachedMeasurements[i].computedWidth,
|
|
layout->cachedMeasurements[i].computedHeight,
|
|
marginAxisRow,
|
|
marginAxisColumn)) {
|
|
cachedResults = &layout->cachedMeasurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (performLayout) {
|
|
if (YGFloatsEqual(layout->cachedLayout.availableWidth, availableWidth) &&
|
|
YGFloatsEqual(layout->cachedLayout.availableHeight, availableHeight) &&
|
|
layout->cachedLayout.widthMeasureMode == widthMeasureMode &&
|
|
layout->cachedLayout.heightMeasureMode == heightMeasureMode) {
|
|
cachedResults = &layout->cachedLayout;
|
|
}
|
|
} else {
|
|
for (uint32_t i = 0; i < layout->nextCachedMeasurementsIndex; i++) {
|
|
if (YGFloatsEqual(layout->cachedMeasurements[i].availableWidth, availableWidth) &&
|
|
YGFloatsEqual(layout->cachedMeasurements[i].availableHeight, availableHeight) &&
|
|
layout->cachedMeasurements[i].widthMeasureMode == widthMeasureMode &&
|
|
layout->cachedMeasurements[i].heightMeasureMode == heightMeasureMode) {
|
|
cachedResults = &layout->cachedMeasurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!needToVisitNode && cachedResults != NULL) {
|
|
layout->measuredDimensions[YGDimensionWidth] = cachedResults->computedWidth;
|
|
layout->measuredDimensions[YGDimensionHeight] = cachedResults->computedHeight;
|
|
|
|
if (gPrintChanges && gPrintSkips) {
|
|
printf("%s%d.{[skipped] ", YGSpacer(gDepth), gDepth);
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
printf("wm: %s, hm: %s, aw: %f ah: %f => d: (%f, %f) %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
availableWidth,
|
|
availableHeight,
|
|
cachedResults->computedWidth,
|
|
cachedResults->computedHeight,
|
|
reason);
|
|
}
|
|
} else {
|
|
if (gPrintChanges) {
|
|
printf("%s%d.{%s", YGSpacer(gDepth), gDepth, needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
printf("wm: %s, hm: %s, aw: %f ah: %f %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
availableWidth,
|
|
availableHeight,
|
|
reason);
|
|
}
|
|
|
|
YGNodelayoutImpl(node,
|
|
availableWidth,
|
|
availableHeight,
|
|
parentDirection,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
performLayout);
|
|
|
|
if (gPrintChanges) {
|
|
printf("%s%d.}%s", YGSpacer(gDepth), gDepth, needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
printf("wm: %s, hm: %s, d: (%f, %f) %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
layout->measuredDimensions[YGDimensionWidth],
|
|
layout->measuredDimensions[YGDimensionHeight],
|
|
reason);
|
|
}
|
|
|
|
layout->lastParentDirection = parentDirection;
|
|
|
|
if (cachedResults == NULL) {
|
|
if (layout->nextCachedMeasurementsIndex == YG_MAX_CACHED_RESULT_COUNT) {
|
|
if (gPrintChanges) {
|
|
printf("Out of cache entries!\n");
|
|
}
|
|
layout->nextCachedMeasurementsIndex = 0;
|
|
}
|
|
|
|
YGCachedMeasurement *newCacheEntry;
|
|
if (performLayout) {
|
|
// Use the single layout cache entry.
|
|
newCacheEntry = &layout->cachedLayout;
|
|
} else {
|
|
// Allocate a new measurement cache entry.
|
|
newCacheEntry = &layout->cachedMeasurements[layout->nextCachedMeasurementsIndex];
|
|
layout->nextCachedMeasurementsIndex++;
|
|
}
|
|
|
|
newCacheEntry->availableWidth = availableWidth;
|
|
newCacheEntry->availableHeight = availableHeight;
|
|
newCacheEntry->widthMeasureMode = widthMeasureMode;
|
|
newCacheEntry->heightMeasureMode = heightMeasureMode;
|
|
newCacheEntry->computedWidth = layout->measuredDimensions[YGDimensionWidth];
|
|
newCacheEntry->computedHeight = layout->measuredDimensions[YGDimensionHeight];
|
|
}
|
|
}
|
|
|
|
if (performLayout) {
|
|
node->layout.dimensions[YGDimensionWidth] = node->layout.measuredDimensions[YGDimensionWidth];
|
|
node->layout.dimensions[YGDimensionHeight] = node->layout.measuredDimensions[YGDimensionHeight];
|
|
node->hasNewLayout = true;
|
|
node->isDirty = false;
|
|
}
|
|
|
|
gDepth--;
|
|
layout->generationCount = gCurrentGenerationCount;
|
|
return (needToVisitNode || cachedResults == NULL);
|
|
}
|
|
|
|
static void roundToPixelGrid(const YGNodeRef node) {
|
|
const float fractialLeft =
|
|
node->layout.position[YGEdgeLeft] - floorf(node->layout.position[YGEdgeLeft]);
|
|
const float fractialTop =
|
|
node->layout.position[YGEdgeTop] - floorf(node->layout.position[YGEdgeTop]);
|
|
node->layout.dimensions[YGDimensionWidth] =
|
|
roundf(fractialLeft + node->layout.dimensions[YGDimensionWidth]) - roundf(fractialLeft);
|
|
node->layout.dimensions[YGDimensionHeight] =
|
|
roundf(fractialTop + node->layout.dimensions[YGDimensionHeight]) - roundf(fractialTop);
|
|
|
|
node->layout.position[YGEdgeLeft] = roundf(node->layout.position[YGEdgeLeft]);
|
|
node->layout.position[YGEdgeTop] = roundf(node->layout.position[YGEdgeTop]);
|
|
|
|
const uint32_t childCount = YGNodeListCount(node->children);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
roundToPixelGrid(YGNodeGetChild(node, i));
|
|
}
|
|
}
|
|
|
|
void YGNodeCalculateLayout(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection) {
|
|
// Increment the generation count. This will force the recursive routine to
|
|
// visit
|
|
// all dirty nodes at least once. Subsequent visits will be skipped if the
|
|
// input
|
|
// parameters don't change.
|
|
gCurrentGenerationCount++;
|
|
|
|
float width = availableWidth;
|
|
float height = availableHeight;
|
|
YGMeasureMode widthMeasureMode = YGMeasureModeUndefined;
|
|
YGMeasureMode heightMeasureMode = YGMeasureModeUndefined;
|
|
|
|
if (!YGValueIsUndefined(width)) {
|
|
widthMeasureMode = YGMeasureModeExactly;
|
|
} else if (YGNodeIsStyleDimDefined(node, YGFlexDirectionRow)) {
|
|
width = node->style.dimensions[dim[YGFlexDirectionRow]] +
|
|
YGNodeMarginForAxis(node, YGFlexDirectionRow);
|
|
widthMeasureMode = YGMeasureModeExactly;
|
|
} else if (node->style.maxDimensions[YGDimensionWidth] >= 0.0) {
|
|
width = node->style.maxDimensions[YGDimensionWidth];
|
|
widthMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
|
|
if (!YGValueIsUndefined(height)) {
|
|
heightMeasureMode = YGMeasureModeExactly;
|
|
} else if (YGNodeIsStyleDimDefined(node, YGFlexDirectionColumn)) {
|
|
height = node->style.dimensions[dim[YGFlexDirectionColumn]] +
|
|
YGNodeMarginForAxis(node, YGFlexDirectionColumn);
|
|
heightMeasureMode = YGMeasureModeExactly;
|
|
} else if (node->style.maxDimensions[YGDimensionHeight] >= 0.0) {
|
|
height = node->style.maxDimensions[YGDimensionHeight];
|
|
heightMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
|
|
if (YGLayoutNodeInternal(node,
|
|
width,
|
|
height,
|
|
parentDirection,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
true,
|
|
"initia"
|
|
"l")) {
|
|
YGNodeSetPosition(node, node->layout.direction);
|
|
|
|
if (YGIsExperimentalFeatureEnabled(YGExperimentalFeatureRounding)) {
|
|
roundToPixelGrid(node);
|
|
}
|
|
|
|
if (gPrintTree) {
|
|
YGNodePrint(node, YGPrintOptionsLayout | YGPrintOptionsChildren | YGPrintOptionsStyle);
|
|
}
|
|
}
|
|
}
|
|
|
|
void YGSetLogger(YGLogger logger) {
|
|
gLogger = logger;
|
|
}
|
|
|
|
void YGLog(YGLogLevel level, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
gLogger(level, format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
static bool experimentalFeatures[YGExperimentalFeatureCount + 1];
|
|
|
|
void YGSetExperimentalFeatureEnabled(YGExperimentalFeature feature, bool enabled) {
|
|
experimentalFeatures[feature] = enabled;
|
|
}
|
|
|
|
inline bool YGIsExperimentalFeatureEnabled(YGExperimentalFeature feature) {
|
|
return experimentalFeatures[feature];
|
|
}
|
|
|
|
void YGSetMemoryFuncs(YGMalloc YGMalloc, YGCalloc YGCalloc, YGRealloc YGRealloc, YGFree YGFree) {
|
|
YG_ASSERT(gNodeInstanceCount == 0, "Cannot set memory functions: all node must be freed first");
|
|
YG_ASSERT((YGMalloc == NULL && YGCalloc == NULL && YGRealloc == NULL && YGFree == NULL) ||
|
|
(YGMalloc != NULL && YGCalloc != NULL && YGRealloc != NULL && YGFree != NULL),
|
|
"Cannot set memory functions: functions must be all NULL or Non-NULL");
|
|
|
|
if (YGMalloc == NULL || YGCalloc == NULL || YGRealloc == NULL || YGFree == NULL) {
|
|
gYGMalloc = &malloc;
|
|
gYGCalloc = &calloc;
|
|
gYGRealloc = &realloc;
|
|
gYGFree = &free;
|
|
} else {
|
|
gYGMalloc = YGMalloc;
|
|
gYGCalloc = YGCalloc;
|
|
gYGRealloc = YGRealloc;
|
|
gYGFree = YGFree;
|
|
}
|
|
}
|