/** * Copyright 2004-present Facebook. All Rights Reserved. * * @providesModule MatrixMath */ 'use strict'; var invariant = require('invariant'); /** * Memory conservative (mutative) matrix math utilities. Uses "command" * matrices, which are reusable. */ var MatrixMath = { createIdentityMatrix: function() { return [ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 ]; }, createCopy: function(m) { return [ m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14], m[15], ]; }, createTranslate2d: function(x, y) { var mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseTranslate2dCommand(mat, x, y); return mat; }, reuseTranslate2dCommand: function(matrixCommand, x, y) { matrixCommand[12] = x; matrixCommand[13] = y; }, reuseTranslate3dCommand: function(matrixCommand, x, y, z) { matrixCommand[12] = x; matrixCommand[13] = y; matrixCommand[14] = z; }, createScale: function(factor) { var mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseScaleCommand(mat, factor); return mat; }, reuseScaleCommand: function(matrixCommand, factor) { matrixCommand[0] = factor; matrixCommand[5] = factor; }, reuseScale3dCommand: function(matrixCommand, x, y, z) { matrixCommand[0] = x; matrixCommand[5] = y; matrixCommand[10] = z; }, reuseScaleXCommand(matrixCommand, factor) { matrixCommand[0] = factor; }, reuseScaleYCommand(matrixCommand, factor) { matrixCommand[5] = factor; }, reuseScaleZCommand(matrixCommand, factor) { matrixCommand[10] = factor; }, reuseRotateXCommand: function(matrixCommand, radians) { matrixCommand[5] = Math.cos(radians); matrixCommand[6] = Math.sin(radians); matrixCommand[9] = -Math.sin(radians); matrixCommand[10] = Math.cos(radians); }, reuseRotateYCommand: function(matrixCommand, amount) { matrixCommand[0] = Math.cos(amount); matrixCommand[2] = -Math.sin(amount); matrixCommand[8] = Math.sin(amount); matrixCommand[10] = Math.cos(amount); }, // http://www.w3.org/TR/css3-transforms/#recomposing-to-a-2d-matrix reuseRotateZCommand: function(matrixCommand, radians) { matrixCommand[0] = Math.cos(radians); matrixCommand[1] = Math.sin(radians); matrixCommand[4] = -Math.sin(radians); matrixCommand[5] = Math.cos(radians); }, createRotateZ: function(radians) { var mat = MatrixMath.createIdentityMatrix(); MatrixMath.reuseRotateZCommand(mat, radians); return mat; }, multiplyInto: function(out, a, b) { var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30; out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31; out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32; out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33; }, determinant(matrix: Array): number { var [ m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ] = matrix; return ( m03 * m12 * m21 * m30 - m02 * m13 * m21 * m30 - m03 * m11 * m22 * m30 + m01 * m13 * m22 * m30 + m02 * m11 * m23 * m30 - m01 * m12 * m23 * m30 - m03 * m12 * m20 * m31 + m02 * m13 * m20 * m31 + m03 * m10 * m22 * m31 - m00 * m13 * m22 * m31 - m02 * m10 * m23 * m31 + m00 * m12 * m23 * m31 + m03 * m11 * m20 * m32 - m01 * m13 * m20 * m32 - m03 * m10 * m21 * m32 + m00 * m13 * m21 * m32 + m01 * m10 * m23 * m32 - m00 * m11 * m23 * m32 - m02 * m11 * m20 * m33 + m01 * m12 * m20 * m33 + m02 * m10 * m21 * m33 - m00 * m12 * m21 * m33 - m01 * m10 * m22 * m33 + m00 * m11 * m22 * m33 ); }, /** * Inverse of a matrix. Multiplying by the inverse is used in matrix math * instead of division. * * Formula from: * http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm */ inverse(matrix: Array): Array { var det = MatrixMath.determinant(matrix); if (!det) { return matrix; } var [ m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ] = matrix; return [ (m12*m23*m31 - m13*m22*m31 + m13*m21*m32 - m11*m23*m32 - m12*m21*m33 + m11*m22*m33) / det, (m03*m22*m31 - m02*m23*m31 - m03*m21*m32 + m01*m23*m32 + m02*m21*m33 - m01*m22*m33) / det, (m02*m13*m31 - m03*m12*m31 + m03*m11*m32 - m01*m13*m32 - m02*m11*m33 + m01*m12*m33) / det, (m03*m12*m21 - m02*m13*m21 - m03*m11*m22 + m01*m13*m22 + m02*m11*m23 - m01*m12*m23) / det, (m13*m22*m30 - m12*m23*m30 - m13*m20*m32 + m10*m23*m32 + m12*m20*m33 - m10*m22*m33) / det, (m02*m23*m30 - m03*m22*m30 + m03*m20*m32 - m00*m23*m32 - m02*m20*m33 + m00*m22*m33) / det, (m03*m12*m30 - m02*m13*m30 - m03*m10*m32 + m00*m13*m32 + m02*m10*m33 - m00*m12*m33) / det, (m02*m13*m20 - m03*m12*m20 + m03*m10*m22 - m00*m13*m22 - m02*m10*m23 + m00*m12*m23) / det, (m11*m23*m30 - m13*m21*m30 + m13*m20*m31 - m10*m23*m31 - m11*m20*m33 + m10*m21*m33) / det, (m03*m21*m30 - m01*m23*m30 - m03*m20*m31 + m00*m23*m31 + m01*m20*m33 - m00*m21*m33) / det, (m01*m13*m30 - m03*m11*m30 + m03*m10*m31 - m00*m13*m31 - m01*m10*m33 + m00*m11*m33) / det, (m03*m11*m20 - m01*m13*m20 - m03*m10*m21 + m00*m13*m21 + m01*m10*m23 - m00*m11*m23) / det, (m12*m21*m30 - m11*m22*m30 - m12*m20*m31 + m10*m22*m31 + m11*m20*m32 - m10*m21*m32) / det, (m01*m22*m30 - m02*m21*m30 + m02*m20*m31 - m00*m22*m31 - m01*m20*m32 + m00*m21*m32) / det, (m02*m11*m30 - m01*m12*m30 - m02*m10*m31 + m00*m12*m31 + m01*m10*m32 - m00*m11*m32) / det, (m01*m12*m20 - m02*m11*m20 + m02*m10*m21 - m00*m12*m21 - m01*m10*m22 + m00*m11*m22) / det ]; }, /** * Turns columns into rows and rows into columns. */ transpose(m: Array): Array { return [ m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15] ]; }, /** * Based on: http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c */ multiplyVectorByMatrix( v: Array, m: Array ): Array { var [vx, vy, vz, vw] = v; return [ vx * m[0] + vy * m[4] + vz * m[8] + vw * m[12], vx * m[1] + vy * m[5] + vz * m[9] + vw * m[13], vx * m[2] + vy * m[6] + vz * m[10] + vw * m[14], vx * m[3] + vy * m[7] + vz * m[11] + vw * m[15] ]; }, /** * From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Length(a: Array): number { return Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]); }, /** * Based on: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Normalize( vector: Array, v3Length: number ): Array { var im = 1 / (v3Length || MatrixMath.v3Length(vector)); return [ vector[0] * im, vector[1] * im, vector[2] * im ]; }, /** * The dot product of a and b, two 3-element vectors. * From: https://code.google.com/p/webgl-mjs/source/browse/mjs.js */ v3Dot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }, /** * From: * http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp */ v3Combine( a: Array, b: Array, aScale: number, bScale: number ): Array { return [ aScale * a[0] + bScale * b[0], aScale * a[1] + bScale * b[1], aScale * a[2] + bScale * b[2] ]; }, /** * From: * http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp */ v3Cross(a: Array, b: Array): Array { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0] ]; }, /** * Based on: * http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ * and: * http://quat.zachbennett.com/ * * Note that this rounds degrees to the thousandth of a degree, due to * floating point errors in the creation of the quaternion. * * Also note that this expects the qw value to be last, not first. * * Also, when researching this, remember that: * yaw === heading === z-axis * pitch === elevation/attitude === y-axis * roll === bank === x-axis */ quaternionToDegreesXYZ(q: Array, matrix, row): Array { var [qx, qy, qz, qw] = q; var qw2 = qw * qw; var qx2 = qx * qx; var qy2 = qy * qy; var qz2 = qz * qz; var test = qx * qy + qz * qw; var unit = qw2 + qx2 + qy2 + qz2; var conv = 180 / Math.PI; if (test > 0.49999 * unit) { return [0, 2 * Math.atan2(qx, qw) * conv, 90]; } if (test < -0.49999 * unit) { return [0, -2 * Math.atan2(qx, qw) * conv, -90]; } return [ MatrixMath.roundTo3Places( Math.atan2(2*qx*qw-2*qy*qz,1-2*qx2-2*qz2) * conv ), MatrixMath.roundTo3Places( Math.atan2(2*qy*qw-2*qx*qz,1-2*qy2-2*qz2) * conv ), MatrixMath.roundTo3Places( Math.asin(2*qx*qy+2*qz*qw) * conv ) ]; }, /** * Based on: * https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round */ roundTo3Places(n: number): number { var arr = n.toString().split('e'); return Math.round(arr[0] + 'e' + (arr[1] ? (+arr[1] - 3) : 3)) * 0.001; }, /** * Decompose a matrix into separate transform values, for use on platforms * where applying a precomposed matrix is not possible, and transforms are * applied in an inflexible ordering (e.g. Android). * * Implementation based on * http://www.w3.org/TR/css3-transforms/#decomposing-a-2d-matrix * http://www.w3.org/TR/css3-transforms/#decomposing-a-3d-matrix * which was based on * http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c */ decomposeMatrix(transformMatrix: Array): ?Object { invariant( transformMatrix.length === 16, 'Matrix decomposition needs a list of 3d matrix values, received %s', transformMatrix ); // output values var perspective = []; var quaternion = []; var scale = []; var skew = []; var translation = []; // create normalized, 2d array matrix // and normalized 1d array perspectiveMatrix with redefined 4th column if (!transformMatrix[15]) { return; } var matrix = []; var perspectiveMatrix = []; for (var i = 0; i < 4; i++) { matrix.push([]); for (var j = 0; j < 4; j++) { var value = transformMatrix[(i * 4) + j] / transformMatrix[15]; matrix[i].push(value); perspectiveMatrix.push(j === 3 ? 0 : value); } } perspectiveMatrix[15] = 1; // test for singularity of upper 3x3 part of the perspective matrix if (!MatrixMath.determinant(perspectiveMatrix)) { return; } // isolate perspective if (matrix[0][3] !== 0 || matrix[1][3] !== 0 || matrix[2][3] !== 0) { // rightHandSide is the right hand side of the equation. // rightHandSide is a vector, or point in 3d space relative to the origin. var rightHandSide = [ matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3] ]; // Solve the equation by inverting perspectiveMatrix and multiplying // rightHandSide by the inverse. var inversePerspectiveMatrix = MatrixMath.inverse3x3( perspectiveMatrix ); var transposedInversePerspectiveMatrix = MatrixMath.transpose4x4( inversePerspectiveMatrix ); var perspective = MatrixMath.multiplyVectorByMatrix( rightHandSide, transposedInversePerspectiveMatrix ); } else { // no perspective perspective[0] = perspective[1] = perspective[2] = 0; perspective[3] = 1; } // translation is simple for (var i = 0; i < 3; i++) { translation[i] = matrix[3][i]; } // Now get scale and shear. // 'row' is a 3 element array of 3 component vectors var row = []; for (i = 0; i < 3; i++) { row[i] = [ matrix[i][0], matrix[i][1], matrix[i][2] ]; } // Compute X scale factor and normalize first row. scale[0] = MatrixMath.v3Length(row[0]); row[0] = MatrixMath.v3Normalize(row[0], scale[0]); // Compute XY shear factor and make 2nd row orthogonal to 1st. skew[0] = MatrixMath.v3Dot(row[0], row[1]); row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]); // Compute XY shear factor and make 2nd row orthogonal to 1st. skew[0] = MatrixMath.v3Dot(row[0], row[1]); row[1] = MatrixMath.v3Combine(row[1], row[0], 1.0, -skew[0]); // Now, compute Y scale and normalize 2nd row. scale[1] = MatrixMath.v3Length(row[1]); row[1] = MatrixMath.v3Normalize(row[1], scale[1]); skew[0] /= scale[1]; // Compute XZ and YZ shears, orthogonalize 3rd row skew[1] = MatrixMath.v3Dot(row[0], row[2]); row[2] = MatrixMath.v3Combine(row[2], row[0], 1.0, -skew[1]); skew[2] = MatrixMath.v3Dot(row[1], row[2]); row[2] = MatrixMath.v3Combine(row[2], row[1], 1.0, -skew[2]); // Next, get Z scale and normalize 3rd row. scale[2] = MatrixMath.v3Length(row[2]); row[2] = MatrixMath.v3Normalize(row[2], scale[2]); skew[1] /= scale[2]; skew[2] /= scale[2]; // At this point, the matrix (in rows) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. var pdum3 = MatrixMath.v3Cross(row[1], row[2]); if (MatrixMath.v3Dot(row[0], pdum3) < 0) { for (i = 0; i < 3; i++) { scale[i] *= -1; row[i][0] *= -1; row[i][1] *= -1; row[i][2] *= -1; } } // Now, get the rotations out quaternion[0] = 0.5 * Math.sqrt(Math.max(1 + row[0][0] - row[1][1] - row[2][2], 0)); quaternion[1] = 0.5 * Math.sqrt(Math.max(1 - row[0][0] + row[1][1] - row[2][2], 0)); quaternion[2] = 0.5 * Math.sqrt(Math.max(1 - row[0][0] - row[1][1] + row[2][2], 0)); quaternion[3] = 0.5 * Math.sqrt(Math.max(1 + row[0][0] + row[1][1] + row[2][2], 0)); if (row[2][1] > row[1][2]) { quaternion[0] = -quaternion[0]; } if (row[0][2] > row[2][0]) { quaternion[1] = -quaternion[1]; } if (row[1][0] > row[0][1]) { quaternion[2] = -quaternion[2]; } // correct for occasional, weird Euler synonyms for 2d rotation var rotationDegrees; if ( quaternion[0] < 0.001 && quaternion[0] >= 0 && quaternion[1] < 0.001 && quaternion[1] >= 0 ) { // this is a 2d rotation on the z-axis rotationDegrees = [0, 0, MatrixMath.roundTo3Places( Math.atan2(row[0][1], row[0][0]) * 180 / Math.PI )]; } else { rotationDegrees = MatrixMath.quaternionToDegreesXYZ(quaternion, matrix, row); } // expose both base data and convenience names return { rotationDegrees, perspective, quaternion, scale, skew, translation, rotate: rotationDegrees[2], scaleX: scale[0], scaleY: scale[1], translateX: translation[0], translateY: translation[1], }; }, }; module.exports = MatrixMath;