/** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. * * @providesModule AnimatedImplementation * @flow */ 'use strict'; var Easing = require('Easing'); var InteractionManager = require('InteractionManager'); var Interpolation = require('Interpolation'); var React = require('React'); var Set = require('Set'); var SpringConfig = require('SpringConfig'); var invariant = require('invariant'); var flattenStyle = require('flattenStyle'); var requestAnimationFrame = require('requestAnimationFrame'); import type InterpolationConfigType from 'Interpolation'; type EndResult = {finished: bool}; type EndCallback = (result: EndResult) => void; // Note(vjeux): this would be better as an interface but flow doesn't // support them yet class Animated { __attach(): void {} __detach(): void {} __getValue(): any {} __getAnimatedValue(): any { return this.__getValue(); } __addChild(child: Animated) {} __removeChild(child: Animated) {} __getChildren(): Array { return []; } } // Important note: start() and stop() will only be called at most once. // Once an animation has been stopped or finished its course, it will // not be reused. class Animation { __active: bool; __onEnd: ?EndCallback; start( fromValue: number, onUpdate: (value: number) => void, onEnd: ?EndCallback, previousAnimation: ?Animation, ): void {} stop(): void {} // Helper function for subclasses to make sure onEnd is only called once. __debouncedOnEnd(result: EndResult) { var onEnd = this.__onEnd; this.__onEnd = null; onEnd && onEnd(result); } } class AnimatedWithChildren extends Animated { _children: Array; constructor() { super(); this._children = []; } __addChild(child: Animated): void { if (this._children.length === 0) { this.__attach(); } this._children.push(child); } __removeChild(child: Animated): void { var index = this._children.indexOf(child); if (index === -1) { console.warn('Trying to remove a child that doesn\'t exist'); return; } this._children.splice(index, 1); if (this._children.length === 0) { this.__detach(); } } __getChildren(): Array { return this._children; } } /** * Animated works by building a directed acyclic graph of dependencies * transparently when you render your Animated components. * * new Animated.Value(0) * .interpolate() .interpolate() new Animated.Value(1) * opacity translateY scale * style transform * View#234 style * View#123 * * A) Top Down phase * When an Animated.Value is updated, we recursively go down through this * graph in order to find leaf nodes: the views that we flag as needing * an update. * * B) Bottom Up phase * When a view is flagged as needing an update, we recursively go back up * in order to build the new value that it needs. The reason why we need * this two-phases process is to deal with composite props such as * transform which can receive values from multiple parents. */ function _flush(rootNode: AnimatedValue): void { var animatedStyles = new Set(); function findAnimatedStyles(node) { if (typeof node.update === 'function') { animatedStyles.add(node); } else { node.__getChildren().forEach(findAnimatedStyles); } } findAnimatedStyles(rootNode); animatedStyles.forEach(animatedStyle => animatedStyle.update()); } type TimingAnimationConfig = { toValue: number | AnimatedValue | {x: number, y: number} | AnimatedValueXY; easing?: (value: number) => number; duration?: number; delay?: number; }; type TimingAnimationConfigSingle = { toValue: number | AnimatedValue; easing?: (value: number) => number; duration?: number; delay?: number; }; var easeInOut = Easing.inOut(Easing.ease); class TimingAnimation extends Animation { _startTime: number; _fromValue: number; _toValue: any; _duration: number; _delay: number; _easing: (value: number) => number; _onUpdate: (value: number) => void; _animationFrame: any; _timeout: any; constructor( config: TimingAnimationConfigSingle, ) { super(); this._toValue = config.toValue; this._easing = config.easing || easeInOut; this._duration = config.duration !== undefined ? config.duration : 500; this._delay = config.delay || 0; } start( fromValue: number, onUpdate: (value: number) => void, onEnd: ?EndCallback, ): void { this.__active = true; this._fromValue = fromValue; this._onUpdate = onUpdate; this.__onEnd = onEnd; var start = () => { if (this._duration === 0) { this._onUpdate(this._toValue); this.__debouncedOnEnd({finished: true}); } else { this._startTime = Date.now(); this._animationFrame = requestAnimationFrame(this.onUpdate.bind(this)); } }; if (this._delay) { this._timeout = setTimeout(start, this._delay); } else { start(); } } onUpdate(): void { var now = Date.now(); if (now >= this._startTime + this._duration) { if (this._duration === 0) { this._onUpdate(this._toValue); } else { this._onUpdate( this._fromValue + this._easing(1) * (this._toValue - this._fromValue) ); } this.__debouncedOnEnd({finished: true}); return; } this._onUpdate( this._fromValue + this._easing((now - this._startTime) / this._duration) * (this._toValue - this._fromValue) ); if (this.__active) { this._animationFrame = requestAnimationFrame(this.onUpdate.bind(this)); } } stop(): void { this.__active = false; clearTimeout(this._timeout); window.cancelAnimationFrame(this._animationFrame); this.__debouncedOnEnd({finished: false}); } } type DecayAnimationConfig = { velocity: number | {x: number, y: number}; deceleration?: number; }; type DecayAnimationConfigSingle = { velocity: number; deceleration?: number; }; class DecayAnimation extends Animation { _startTime: number; _lastValue: number; _fromValue: number; _deceleration: number; _velocity: number; _onUpdate: (value: number) => void; _animationFrame: any; constructor( config: DecayAnimationConfigSingle, ) { super(); this._deceleration = config.deceleration || 0.998; this._velocity = config.velocity; } start( fromValue: number, onUpdate: (value: number) => void, onEnd: ?EndCallback, ): void { this.__active = true; this._lastValue = fromValue; this._fromValue = fromValue; this._onUpdate = onUpdate; this.__onEnd = onEnd; this._startTime = Date.now(); this._animationFrame = requestAnimationFrame(this.onUpdate.bind(this)); } onUpdate(): void { var now = Date.now(); var value = this._fromValue + (this._velocity / (1 - this._deceleration)) * (1 - Math.exp(-(1 - this._deceleration) * (now - this._startTime))); this._onUpdate(value); if (Math.abs(this._lastValue - value) < 0.1) { this.__debouncedOnEnd({finished: true}); return; } this._lastValue = value; if (this.__active) { this._animationFrame = requestAnimationFrame(this.onUpdate.bind(this)); } } stop(): void { this.__active = false; window.cancelAnimationFrame(this._animationFrame); this.__debouncedOnEnd({finished: false}); } } type SpringAnimationConfig = { toValue: number | AnimatedValue | {x: number, y: number} | AnimatedValueXY; overshootClamping?: bool; restDisplacementThreshold?: number; restSpeedThreshold?: number; velocity?: number | {x: number, y: number}; bounciness?: number; speed?: number; tension?: number; friction?: number; }; type SpringAnimationConfigSingle = { toValue: number | AnimatedValue; overshootClamping?: bool; restDisplacementThreshold?: number; restSpeedThreshold?: number; velocity?: number; bounciness?: number; speed?: number; tension?: number; friction?: number; }; function withDefault(value: ?T, defaultValue: T): T { if (value === undefined || value === null) { return defaultValue; } return value; } class SpringAnimation extends Animation { _overshootClamping: bool; _restDisplacementThreshold: number; _restSpeedThreshold: number; _initialVelocity: ?number; _lastVelocity: number; _startPosition: number; _lastPosition: number; _fromValue: number; _toValue: any; _tension: number; _friction: number; _lastTime: number; _onUpdate: (value: number) => void; _animationFrame: any; constructor( config: SpringAnimationConfigSingle, ) { super(); this._overshootClamping = withDefault(config.overshootClamping, false); this._restDisplacementThreshold = withDefault(config.restDisplacementThreshold, 0.001); this._restSpeedThreshold = withDefault(config.restSpeedThreshold, 0.001); this._initialVelocity = config.velocity; this._lastVelocity = withDefault(config.velocity, 0); this._toValue = config.toValue; var springConfig; if (config.bounciness !== undefined || config.speed !== undefined) { invariant( config.tension === undefined && config.friction === undefined, 'You can only define bounciness/speed or tension/friction but not both', ); springConfig = SpringConfig.fromBouncinessAndSpeed( withDefault(config.bounciness, 8), withDefault(config.speed, 12), ); } else { springConfig = SpringConfig.fromOrigamiTensionAndFriction( withDefault(config.tension, 40), withDefault(config.friction, 7), ); } this._tension = springConfig.tension; this._friction = springConfig.friction; } start( fromValue: number, onUpdate: (value: number) => void, onEnd: ?EndCallback, previousAnimation: ?Animation, ): void { this.__active = true; this._startPosition = fromValue; this._lastPosition = this._startPosition; this._onUpdate = onUpdate; this.__onEnd = onEnd; this._lastTime = Date.now(); if (previousAnimation instanceof SpringAnimation) { var internalState = previousAnimation.getInternalState(); this._lastPosition = internalState.lastPosition; this._lastVelocity = internalState.lastVelocity; this._lastTime = internalState.lastTime; } if (this._initialVelocity !== undefined && this._initialVelocity !== null) { this._lastVelocity = this._initialVelocity; } this.onUpdate(); } getInternalState(): Object { return { lastPosition: this._lastPosition, lastVelocity: this._lastVelocity, lastTime: this._lastTime, }; } onUpdate(): void { var position = this._lastPosition; var velocity = this._lastVelocity; var tempPosition = this._lastPosition; var tempVelocity = this._lastVelocity; // If for some reason we lost a lot of frames (e.g. process large payload or // stopped in the debugger), we only advance by 4 frames worth of // computation and will continue on the next frame. It's better to have it // running at faster speed than jumping to the end. var MAX_STEPS = 64; var now = Date.now(); if (now > this._lastTime + MAX_STEPS) { now = this._lastTime + MAX_STEPS; } // We are using a fixed time step and a maximum number of iterations. // The following post provides a lot of thoughts into how to build this // loop: http://gafferongames.com/game-physics/fix-your-timestep/ var TIMESTEP_MSEC = 1; var numSteps = Math.floor((now - this._lastTime) / TIMESTEP_MSEC); for (var i = 0; i < numSteps; ++i) { // Velocity is based on seconds instead of milliseconds var step = TIMESTEP_MSEC / 1000; // This is using RK4. A good blog post to understand how it works: // http://gafferongames.com/game-physics/integration-basics/ var aVelocity = velocity; var aAcceleration = this._tension * (this._toValue - tempPosition) - this._friction * tempVelocity; var tempPosition = position + aVelocity * step / 2; var tempVelocity = velocity + aAcceleration * step / 2; var bVelocity = tempVelocity; var bAcceleration = this._tension * (this._toValue - tempPosition) - this._friction * tempVelocity; tempPosition = position + bVelocity * step / 2; tempVelocity = velocity + bAcceleration * step / 2; var cVelocity = tempVelocity; var cAcceleration = this._tension * (this._toValue - tempPosition) - this._friction * tempVelocity; tempPosition = position + cVelocity * step / 2; tempVelocity = velocity + cAcceleration * step / 2; var dVelocity = tempVelocity; var dAcceleration = this._tension * (this._toValue - tempPosition) - this._friction * tempVelocity; tempPosition = position + cVelocity * step / 2; tempVelocity = velocity + cAcceleration * step / 2; var dxdt = (aVelocity + 2 * (bVelocity + cVelocity) + dVelocity) / 6; var dvdt = (aAcceleration + 2 * (bAcceleration + cAcceleration) + dAcceleration) / 6; position += dxdt * step; velocity += dvdt * step; } this._lastTime = now; this._lastPosition = position; this._lastVelocity = velocity; this._onUpdate(position); if (!this.__active) { // a listener might have stopped us in _onUpdate return; } // Conditions for stopping the spring animation var isOvershooting = false; if (this._overshootClamping && this._tension !== 0) { if (this._startPosition < this._toValue) { isOvershooting = position > this._toValue; } else { isOvershooting = position < this._toValue; } } var isVelocity = Math.abs(velocity) <= this._restSpeedThreshold; var isDisplacement = true; if (this._tension !== 0) { isDisplacement = Math.abs(this._toValue - position) <= this._restDisplacementThreshold; } if (isOvershooting || (isVelocity && isDisplacement)) { if (this._tension !== 0) { // Ensure that we end up with a round value this._onUpdate(this._toValue); } this.__debouncedOnEnd({finished: true}); return; } this._animationFrame = requestAnimationFrame(this.onUpdate.bind(this)); } stop(): void { this.__active = false; window.cancelAnimationFrame(this._animationFrame); this.__debouncedOnEnd({finished: false}); } } type ValueListenerCallback = (state: {value: number}) => void; var _uniqueId = 1; /** * Standard value for driving animations. One `Animated.Value` can drive * multiple properties in a synchronized fashion, but can only be driven by one * mechanism at a time. Using a new mechanism (e.g. starting a new animation, * or calling `setValue`) will stop any previous ones. */ class AnimatedValue extends AnimatedWithChildren { _value: number; _offset: number; _animation: ?Animation; _tracking: ?Animated; _listeners: {[key: string]: ValueListenerCallback}; constructor(value: number) { super(); this._value = value; this._offset = 0; this._animation = null; this._listeners = {}; } __detach() { this.stopAnimation(); } __getValue(): number { return this._value + this._offset; } /** * Directly set the value. This will stop any animations running on the value * and udpate all the bound properties. */ setValue(value: number): void { if (this._animation) { this._animation.stop(); this._animation = null; } this._updateValue(value); } /** * Sets an offset that is applied on top of whatever value is set, whether via * `setValue`, an animation, or `Animated.event`. Useful for compensating * things like the start of a pan gesture. */ setOffset(offset: number): void { this._offset = offset; } /** * Merges the offset value into the base value and resets the offset to zero. * The final output of the value is unchanged. */ flattenOffset(): void { this._value += this._offset; this._offset = 0; } /** * Adds an asynchronous listener to the value so you can observe updates from * animations or whathaveyou. This is useful because there is no way to * syncronously read the value because it might be driven natively. */ addListener(callback: ValueListenerCallback): string { var id = String(_uniqueId++); this._listeners[id] = callback; return id; } removeListener(id: string): void { delete this._listeners[id]; } removeAllListeners(): void { this._listeners = {}; } /** * Stops any running animation or tracking. `callback` is invoked with the * final value after stopping the animation, which is useful for updating * state to match the animation position with layout. */ stopAnimation(callback?: ?(value: number) => void): void { this.stopTracking(); this._animation && this._animation.stop(); this._animation = null; callback && callback(this.__getValue()); } /** * Interpolates the value before updating the property, e.g. mapping 0-1 to * 0-10. */ interpolate(config: InterpolationConfigType): AnimatedInterpolation { return new AnimatedInterpolation(this, Interpolation.create(config)); } /** * Typically only used internally, but could be used by a custom Animation * class. */ animate(animation: Animation, callback: ?EndCallback): void { var handle = InteractionManager.createInteractionHandle(); var previousAnimation = this._animation; this._animation && this._animation.stop(); this._animation = animation; animation.start( this._value, (value) => { this._updateValue(value); }, (result) => { this._animation = null; InteractionManager.clearInteractionHandle(handle); callback && callback(result); }, previousAnimation, ); } /** * Typically only used internally. */ stopTracking(): void { this._tracking && this._tracking.__detach(); this._tracking = null; } /** * Typically only used internally. */ track(tracking: Animated): void { this.stopTracking(); this._tracking = tracking; } _updateValue(value: number): void { this._value = value; _flush(this); for (var key in this._listeners) { this._listeners[key]({value: this.__getValue()}); } } } type ValueXYListenerCallback = (value: {x: number; y: number}) => void; /** * 2D Value for driving 2D animations, such as pan gestures. Almost identical * API to normal `Animated.Value`, but multiplexed. Contains two regular * `Animated.Value`s under the hood. Example: * *```javascript * class DraggableView extends React.Component { * constructor(props) { * super(props); * this.state = { * pan: new Animated.ValueXY(), // inits to zero * }; * this.state.panResponder = PanResponder.create({ * onStartShouldSetPanResponder: () => true, * onPanResponderMove: Animated.event([null, { * dx: this.state.pan.x, // x,y are Animated.Value * dy: this.state.pan.y, * }]), * onPanResponderRelease: () => { * Animated.spring( * this.state.pan, // Auto-multiplexed * {toValue: {x: 0, y: 0}} // Back to zero * ).start(); * }, * }); * } * render() { * return ( * * {this.props.children} * * ); * } * } *``` */ class AnimatedValueXY extends AnimatedWithChildren { x: AnimatedValue; y: AnimatedValue; _listeners: {[key: string]: {x: string; y: string}}; constructor(valueIn?: ?{x: number | AnimatedValue; y: number | AnimatedValue}) { super(); var value: any = valueIn || {x: 0, y: 0}; // @flowfixme: shouldn't need `: any` if (typeof value.x === 'number' && typeof value.y === 'number') { this.x = new AnimatedValue(value.x); this.y = new AnimatedValue(value.y); } else { invariant( value.x instanceof AnimatedValue && value.y instanceof AnimatedValue, 'AnimatedValueXY must be initalized with an object of numbers or ' + 'AnimatedValues.' ); this.x = value.x; this.y = value.y; } this._listeners = {}; } setValue(value: {x: number; y: number}) { this.x.setValue(value.x); this.y.setValue(value.y); } setOffset(offset: {x: number; y: number}) { this.x.setOffset(offset.x); this.y.setOffset(offset.y); } flattenOffset(): void { this.x.flattenOffset(); this.y.flattenOffset(); } __getValue(): {x: number; y: number} { return { x: this.x.__getValue(), y: this.y.__getValue(), }; } stopAnimation(callback?: ?() => number): void { this.x.stopAnimation(); this.y.stopAnimation(); callback && callback(this.__getValue()); } addListener(callback: ValueXYListenerCallback): string { var id = String(_uniqueId++); var jointCallback = ({value: number}) => { callback(this.__getValue()); }; this._listeners[id] = { x: this.x.addListener(jointCallback), y: this.y.addListener(jointCallback), }; return id; } removeListener(id: string): void { this.x.removeListener(this._listeners[id].x); this.y.removeListener(this._listeners[id].y); delete this._listeners[id]; } /** * Converts `{x, y}` into `{left, top}` for use in style, e.g. * *```javascript * style={this.state.anim.getLayout()} *``` */ getLayout(): {[key: string]: AnimatedValue} { return { left: this.x, top: this.y, }; } /** * Converts `{x, y}` into a useable translation transform, e.g. * *```javascript * style={{ * transform: this.state.anim.getTranslateTransform() * }} *``` */ getTranslateTransform(): Array<{[key: string]: AnimatedValue}> { return [ {translateX: this.x}, {translateY: this.y} ]; } } class AnimatedInterpolation extends AnimatedWithChildren { _parent: Animated; _interpolation: (input: number) => number | string; constructor(parent: Animated, interpolation: (input: number) => number | string) { super(); this._parent = parent; this._interpolation = interpolation; } __getValue(): number | string { var parentValue: number = this._parent.__getValue(); invariant( typeof parentValue === 'number', 'Cannot interpolate an input which is not a number.' ); return this._interpolation(parentValue); } interpolate(config: InterpolationConfigType): AnimatedInterpolation { return new AnimatedInterpolation(this, Interpolation.create(config)); } __attach(): void { this._parent.__addChild(this); } __detach(): void { this._parent.__removeChild(this); } } class AnimatedTransform extends AnimatedWithChildren { _transforms: Array; constructor(transforms: Array) { super(); this._transforms = transforms; } __getValue(): Array { return this._transforms.map(transform => { var result = {}; for (var key in transform) { var value = transform[key]; if (value instanceof Animated) { result[key] = value.__getValue(); } else { result[key] = value; } } return result; }); } __getAnimatedValue(): Array { return this._transforms.map(transform => { var result = {}; for (var key in transform) { var value = transform[key]; if (value instanceof Animated) { result[key] = value.__getAnimatedValue(); } else { // All transform components needed to recompose matrix result[key] = value; } } return result; }); } __attach(): void { this._transforms.forEach(transform => { for (var key in transform) { var value = transform[key]; if (value instanceof Animated) { value.__addChild(this); } } }); } __detach(): void { this._transforms.forEach(transform => { for (var key in transform) { var value = transform[key]; if (value instanceof Animated) { value.__removeChild(this); } } }); } } class AnimatedStyle extends AnimatedWithChildren { _style: Object; constructor(style: any) { super(); style = flattenStyle(style) || {}; if (style.transform) { style = { ...style, transform: new AnimatedTransform(style.transform), }; } this._style = style; } __getValue(): Object { var style = {}; for (var key in this._style) { var value = this._style[key]; if (value instanceof Animated) { style[key] = value.__getValue(); } else { style[key] = value; } } return style; } __getAnimatedValue(): Object { var style = {}; for (var key in this._style) { var value = this._style[key]; if (value instanceof Animated) { style[key] = value.__getAnimatedValue(); } } return style; } __attach(): void { for (var key in this._style) { var value = this._style[key]; if (value instanceof Animated) { value.__addChild(this); } } } __detach(): void { for (var key in this._style) { var value = this._style[key]; if (value instanceof Animated) { value.__removeChild(this); } } } } class AnimatedProps extends Animated { _props: Object; _callback: () => void; constructor( props: Object, callback: () => void, ) { super(); if (props.style) { props = { ...props, style: new AnimatedStyle(props.style), }; } this._props = props; this._callback = callback; this.__attach(); } __getValue(): Object { var props = {}; for (var key in this._props) { var value = this._props[key]; if (value instanceof Animated) { props[key] = value.__getValue(); } else { props[key] = value; } } return props; } __getAnimatedValue(): Object { var props = {}; for (var key in this._props) { var value = this._props[key]; if (value instanceof Animated) { props[key] = value.__getAnimatedValue(); } } return props; } __attach(): void { for (var key in this._props) { var value = this._props[key]; if (value instanceof Animated) { value.__addChild(this); } } } __detach(): void { for (var key in this._props) { var value = this._props[key]; if (value instanceof Animated) { value.__removeChild(this); } } } update(): void { this._callback(); } } function createAnimatedComponent(Component: any): any { var refName = 'node'; class AnimatedComponent extends React.Component { _propsAnimated: AnimatedProps; componentWillUnmount() { this._propsAnimated && this._propsAnimated.__detach(); } setNativeProps(props) { this.refs[refName].setNativeProps(props); } componentWillMount() { this.attachProps(this.props); } attachProps(nextProps) { var oldPropsAnimated = this._propsAnimated; // The system is best designed when setNativeProps is implemented. It is // able to avoid re-rendering and directly set the attributes that // changed. However, setNativeProps can only be implemented on leaf // native components. If you want to animate a composite component, you // need to re-render it. In this case, we have a fallback that uses // forceUpdate. var callback = () => { if (this.refs[refName].setNativeProps) { var value = this._propsAnimated.__getAnimatedValue(); this.refs[refName].setNativeProps(value); } else { this.forceUpdate(); } }; this._propsAnimated = new AnimatedProps( nextProps, callback, ); // When you call detach, it removes the element from the parent list // of children. If it goes to 0, then the parent also detaches itself // and so on. // An optimization is to attach the new elements and THEN detach the old // ones instead of detaching and THEN attaching. // This way the intermediate state isn't to go to 0 and trigger // this expensive recursive detaching to then re-attach everything on // the very next operation. oldPropsAnimated && oldPropsAnimated.__detach(); } componentWillReceiveProps(nextProps) { this.attachProps(nextProps); } render() { return ( ); } } return AnimatedComponent; } class AnimatedTracking extends Animated { _value: AnimatedValue; _parent: Animated; _callback: ?EndCallback; _animationConfig: Object; _animationClass: any; constructor( value: AnimatedValue, parent: Animated, animationClass: any, animationConfig: Object, callback?: ?EndCallback, ) { super(); this._value = value; this._parent = parent; this._animationClass = animationClass; this._animationConfig = animationConfig; this._callback = callback; this.__attach(); } __getValue(): Object { return this._parent.__getValue(); } __attach(): void { this._parent.__addChild(this); } __detach(): void { this._parent.__removeChild(this); } update(): void { this._value.animate(new this._animationClass({ ...this._animationConfig, toValue: (this._animationConfig.toValue: any).__getValue(), }), this._callback); } } type CompositeAnimation = { start: (callback?: ?EndCallback) => void; stop: () => void; }; var maybeVectorAnim = function( value: AnimatedValue | AnimatedValueXY, config: Object, anim: (value: AnimatedValue, config: Object) => CompositeAnimation ): ?CompositeAnimation { if (value instanceof AnimatedValueXY) { var configX = {...config}; var configY = {...config}; for (var key in config) { var {x, y} = config[key]; if (x !== undefined && y !== undefined) { configX[key] = x; configY[key] = y; } } var aX = anim((value: AnimatedValueXY).x, configX); var aY = anim((value: AnimatedValueXY).y, configY); // We use `stopTogether: false` here because otherwise tracking will break // because the second animation will get stopped before it can update. return parallel([aX, aY], {stopTogether: false}); } return null; }; var spring = function( value: AnimatedValue | AnimatedValueXY, config: SpringAnimationConfig, ): CompositeAnimation { return maybeVectorAnim(value, config, spring) || { start: function(callback?: ?EndCallback): void { var singleValue: any = value; var singleConfig: any = config; singleValue.stopTracking(); if (config.toValue instanceof Animated) { singleValue.track(new AnimatedTracking( singleValue, config.toValue, SpringAnimation, singleConfig, callback )); } else { singleValue.animate(new SpringAnimation(singleConfig), callback); } }, stop: function(): void { value.stopAnimation(); }, }; }; var timing = function( value: AnimatedValue | AnimatedValueXY, config: TimingAnimationConfig, ): CompositeAnimation { return maybeVectorAnim(value, config, timing) || { start: function(callback?: ?EndCallback): void { var singleValue: any = value; var singleConfig: any = config; singleValue.stopTracking(); if (config.toValue instanceof Animated) { singleValue.track(new AnimatedTracking( singleValue, config.toValue, TimingAnimation, singleConfig, callback )); } else { singleValue.animate(new TimingAnimation(singleConfig), callback); } }, stop: function(): void { value.stopAnimation(); }, }; }; var decay = function( value: AnimatedValue | AnimatedValueXY, config: DecayAnimationConfig, ): CompositeAnimation { return maybeVectorAnim(value, config, decay) || { start: function(callback?: ?EndCallback): void { var singleValue: any = value; var singleConfig: any = config; singleValue.stopTracking(); singleValue.animate(new DecayAnimation(singleConfig), callback); }, stop: function(): void { value.stopAnimation(); }, }; }; var sequence = function( animations: Array, ): CompositeAnimation { var current = 0; return { start: function(callback?: ?EndCallback) { var onComplete = function(result) { if (!result.finished) { callback && callback(result); return; } current++; if (current === animations.length) { callback && callback(result); return; } animations[current].start(onComplete); }; if (animations.length === 0) { callback && callback({finished: true}); } else { animations[current].start(onComplete); } }, stop: function() { if (current < animations.length) { animations[current].stop(); } } }; }; type ParallelConfig = { stopTogether?: bool; // If one is stopped, stop all. default: true } var parallel = function( animations: Array, config?: ?ParallelConfig, ): CompositeAnimation { var doneCount = 0; // Make sure we only call stop() at most once for each animation var hasEnded = {}; var stopTogether = !(config && config.stopTogether === false); var result = { start: function(callback?: ?EndCallback) { if (doneCount === animations.length) { callback && callback({finished: true}); return; } animations.forEach((animation, idx) => { var cb = function(endResult) { hasEnded[idx] = true; doneCount++; if (doneCount === animations.length) { doneCount = 0; callback && callback(endResult); return; } if (!endResult.finished && stopTogether) { result.stop(); } }; if (!animation) { cb({finished: true}); } else { animation.start(cb); } }); }, stop: function(): void { animations.forEach((animation, idx) => { !hasEnded[idx] && animation.stop(); hasEnded[idx] = true; }); } }; return result; }; var delay = function(time: number): CompositeAnimation { // Would be nice to make a specialized implementation return timing(new AnimatedValue(0), {toValue: 0, delay: time, duration: 0}); }; var stagger = function( time: number, animations: Array, ): CompositeAnimation { return parallel(animations.map((animation, i) => { return sequence([ delay(time * i), animation, ]); })); }; type Mapping = {[key: string]: Mapping} | AnimatedValue; type EventConfig = {listener?: ?Function}; var event = function( argMapping: Array, config?: ?EventConfig, ): () => void { return function(...args): void { var traverse = function(recMapping, recEvt, key) { if (typeof recEvt === 'number') { invariant( recMapping instanceof AnimatedValue, 'Bad mapping of type ' + typeof recMapping + ' for key ' + key + ', event value must map to AnimatedValue' ); recMapping.setValue(recEvt); return; } invariant( typeof recMapping === 'object', 'Bad mapping of type ' + typeof recMapping + ' for key ' + key ); invariant( typeof recEvt === 'object', 'Bad event of type ' + typeof recEvt + ' for key ' + key ); for (var key in recMapping) { traverse(recMapping[key], recEvt[key], key); } }; argMapping.forEach((mapping, idx) => { traverse(mapping, args[idx], 'arg' + idx); }); if (config && config.listener) { config.listener.apply(null, args); } }; }; /** * Animations are an important part of modern UX, and the `Animated` * library is designed to make them fluid, powerful, and easy to build and * maintain. * * The simplest workflow is to create an `Animated.Value`, hook it up to one or * more style attributes of an animated component, and then drive updates either * via animations, such as `Animated.timing`, or by hooking into gestures like * panning or scolling via `Animated.event`. `Animated.Value` can also bind to * props other than style, and can be interpolated as well. Here is a basic * example of a container view that will fade in when it's mounted: * *```javascript * class FadeInView extends React.Component { * constructor(props) { * super(props); * this.state = { * fadeAnim: new Animated.Value(0), // init opacity 0 * }; * } * componentDidMount() { * Animated.timing( // Uses easing functions * this.state.fadeAnim, // The value to drive * {toValue: 1}, // Configuration * ).start(); // Don't forget start! * } * render() { * return ( * // Binds * {this.props.children} * * ); * } * } *``` * * Note that only animatable components can be animated. `View`, `Text`, and * `Image` are already provided, and you can create custom ones with * `createAnimatedComponent`. These special components do the magic of binding * the animated values to the properties, and do targetted native updates to * avoid the cost of the react render and reconciliation process on every frame. * They also handle cleanup on unmount so they are safe by default. * * Animations are heavily configurable. Custom and pre-defined easing * functions, delays, durations, decay factors, spring constants, and more can * all be tweaked depending on the type of animation. * * A single `Animated.Value` can drive any number of properties, and each * property can be run through an interpolation first. An interpolation maps * input ranges to output ranges, typically using a linear interpolation but * also supports easing functions. By default, it will extrapolate the curve * beyond the ranges given, but you can also have it clamp the output value. * * For example, you may want to think about your `Animated.Value` as going from * 0 to 1, but animate the position from 150px to 0px and the opacity from 0 to * 1. This can easily be done by modifying `style` in the example above like so: * *```javascript * style={{ * opacity: this.state.fadeAnim, // Binds directly * transform: [{ * translateY: this.state.fadeAnim.interpolate({ * inputRange: [0, 1], * outputRange: [150, 0] // 0 : 150, 0.5 : 75, 1 : 0 * }), * }], * }}> *``` * * Animations can also be combined in complex ways using composition functions * such as `sequence` and `parallel`, and can also be chained together simply * by setting the `toValue` of one animation to be another `Animated.Value`. * * `Animated.ValueXY` is handy for 2D animations, like panning, and there are * other helpful additions like `setOffset` and `getLayout` to aid with typical * interaction patterns, like drag-and-drop. * * You can see more example usage in `AnimationExample.js`, the Gratuitous * Animation App, and [Animations documentation guide](http://facebook.github.io/react-native/docs/animations.html). * * Note that `Animated` is designed to be fully serializable so that animations * can be run in a high performace way, independent of the normal JavaScript * event loop. This does influence the API, so keep that in mind when it seems a * little trickier to do something compared to a fully synchronous system. * Checkout `Animated.Value.addListener` as a way to work around some of these * limitations, but use it sparingly since it might have performance * implications in the future. */ module.exports = { /** * Standard value class for driving animations. Typically initialized with * `new Animated.Value(0);` */ Value: AnimatedValue, /** * 2D value class for driving 2D animations, such as pan gestures. */ ValueXY: AnimatedValueXY, /** * Animates a value from an initial velocity to zero based on a decay * coefficient. */ decay, /** * Animates a value along a timed easing curve. The `Easing` module has tons * of pre-defined curves, or you can use your own function. */ timing, /** * Spring animation based on Rebound and Origami. Tracks velocity state to * create fluid motions as the `toValue` updates, and can be chained together. */ spring, /** * Starts an animation after the given delay. */ delay, /** * Starts an array of animations in order, waiting for each to complete * before starting the next. If the current running animation is stopped, no * following animations will be started. */ sequence, /** * Starts an array of animations all at the same time. By default, if one * of the animations is stopped, they will all be stopped. You can override * this with the `stopTogether` flag. */ parallel, /** * Array of animations may run in parallel (overlap), but are started in * sequence with successive delays. Nice for doing trailing effects. */ stagger, /** * Takes an array of mappings and extracts values from each arg accordingly, * then calls `setValue` on the mapped outputs. e.g. * *```javascript * onScroll={this.AnimatedEvent( * [{nativeEvent: {contentOffset: {x: this._scrollX}}}] * {listener}, // Optional async listener * ) * ... * onPanResponderMove: this.AnimatedEvent([ * null, // raw event arg ignored * {dx: this._panX}, // gestureState arg * ]), *``` */ event, /** * Make any React component Animatable. Used to create `Animated.View`, etc. */ createAnimatedComponent, __PropsOnlyForTests: AnimatedProps, };