2015-07-07 20:34:09 +00:00
|
|
|
/**
|
|
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This source code is licensed under the BSD-style license found in the
|
|
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
*
|
|
|
|
* @providesModule Easing
|
|
|
|
* @flow
|
|
|
|
*/
|
|
|
|
'use strict';
|
|
|
|
|
|
|
|
var bezier = require('bezier');
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This class implements common easing functions. The math is pretty obscure,
|
|
|
|
* but this cool website has nice visual illustrations of what they represent:
|
|
|
|
* http://xaedes.de/dev/transitions/
|
|
|
|
*/
|
|
|
|
class Easing {
|
|
|
|
static step0(n) {
|
|
|
|
return n > 0 ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static step1(n) {
|
|
|
|
return n >= 1 ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static linear(t) {
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ease(t: number): number {
|
|
|
|
return ease(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static quad(t) {
|
|
|
|
return t * t;
|
|
|
|
}
|
|
|
|
|
|
|
|
static cubic(t) {
|
|
|
|
return t * t * t;
|
|
|
|
}
|
|
|
|
|
|
|
|
static poly(n) {
|
|
|
|
return (t) => Math.pow(t, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static sin(t) {
|
|
|
|
return 1 - Math.cos(t * Math.PI / 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static circle(t) {
|
|
|
|
return 1 - Math.sqrt(1 - t * t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static exp(t) {
|
|
|
|
return Math.pow(2, 10 * (t - 1));
|
|
|
|
}
|
|
|
|
|
2015-08-31 20:50:24 +00:00
|
|
|
/**
|
|
|
|
* A simple elastic interaction, similar to a spring. Default bounciness
|
|
|
|
* is 1, which overshoots a little bit once. 0 bounciness doesn't overshoot
|
|
|
|
* at all, and bounciness of N > 1 will overshoot about N times.
|
|
|
|
*
|
|
|
|
* Wolfram Plots:
|
|
|
|
*
|
|
|
|
* http://tiny.cc/elastic_b_1 (default bounciness = 1)
|
|
|
|
* http://tiny.cc/elastic_b_3 (bounciness = 3)
|
|
|
|
*/
|
2015-09-02 03:33:25 +00:00
|
|
|
static elastic(bounciness: number = 1): (t: number) => number {
|
2015-08-31 20:50:24 +00:00
|
|
|
var p = bounciness * Math.PI;
|
|
|
|
return (t) => 1 - Math.pow(Math.cos(t * Math.PI / 2), 3) * Math.cos(t * p);
|
2015-07-07 20:34:09 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static back(s: number): (t: number) => number {
|
|
|
|
if (s === undefined) {
|
|
|
|
s = 1.70158;
|
|
|
|
}
|
|
|
|
return (t) => t * t * ((s + 1) * t - s);
|
|
|
|
};
|
|
|
|
|
|
|
|
static bounce(t: number): number {
|
|
|
|
if (t < 1 / 2.75) {
|
|
|
|
return 7.5625 * t * t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t < 2 / 2.75) {
|
|
|
|
t -= 1.5 / 2.75;
|
|
|
|
return 7.5625 * t * t + 0.75;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (t < 2.5 / 2.75) {
|
|
|
|
t -= 2.25 / 2.75;
|
|
|
|
return 7.5625 * t * t + 0.9375;
|
|
|
|
}
|
|
|
|
|
|
|
|
t -= 2.625 / 2.75;
|
|
|
|
return 7.5625 * t * t + 0.984375;
|
|
|
|
};
|
|
|
|
|
|
|
|
static bezier(
|
|
|
|
x1: number,
|
|
|
|
y1: number,
|
|
|
|
x2: number,
|
|
|
|
y2: number,
|
|
|
|
epsilon?: ?number,
|
|
|
|
): (t: number) => number {
|
|
|
|
if (epsilon === undefined) {
|
|
|
|
// epsilon determines the precision of the solved values
|
|
|
|
// a good approximation is:
|
|
|
|
var duration = 500; // duration of animation in milliseconds.
|
|
|
|
epsilon = (1000 / 60 / duration) / 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bezier(x1, y1, x2, y2, epsilon);
|
|
|
|
}
|
|
|
|
|
|
|
|
static in(
|
|
|
|
easing: (t: number) => number,
|
|
|
|
): (t: number) => number {
|
|
|
|
return easing;
|
|
|
|
}
|
|
|
|
|
|
|
|
static out(
|
|
|
|
easing: (t: number) => number,
|
|
|
|
): (t: number) => number {
|
|
|
|
return (t) => 1 - easing(1 - t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inOut(
|
|
|
|
easing: (t: number) => number,
|
|
|
|
): (t: number) => number {
|
|
|
|
return (t) => {
|
|
|
|
if (t < 0.5) {
|
|
|
|
return easing(t * 2) / 2;
|
|
|
|
}
|
|
|
|
return 1 - easing((1 - t) * 2) / 2;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var ease = Easing.bezier(0.42, 0, 1, 1);
|
|
|
|
|
|
|
|
module.exports = Easing;
|