Sometimes an app needs access to platform API, and React Native doesn't have a corresponding module yet. Maybe you want to reuse some existing Objective-C or C++ code without having to reimplement it in JavaScript, or write some high performance, multi-threaded code such as for image processing, a database, or any number of advanced extensions.
We designed React Native such that it is possible for you to write real native code and have access to the full power of the platform. This is a more advanced feature and we don't expect it to be part of the usual development process, however it is essential that it exists. If React Native doesn't support a native feature that you need, you should be able to build it yourself.
This is a more advanced guide that shows how to build a native module. It assumes the reader knows Objective-C (Swift is not supported yet) and core libraries (Foundation, UIKit).
This guide will use the [iOS Calendar API](https://developer.apple.com/library/mac/documentation/DataManagement/Conceptual/EventKitProgGuide/Introduction/Introduction.html) example. Let's say we would like to be able to access the iOS calendar from JavaScript.
In addition to implementing the `RCTBridgeModule` protocol, your class must also include the `RCT_EXPORT_MODULE()` macro. This takes an optional argument that specifies the name that the module will be accessible as in your JavaScript code (more on this later). If you do not specify a name, the JavaScript module name will match the Objective-C class name.
React Native will not expose any methods of `CalendarManager` to JavaScript unless explicitly told to. This is done using the `RCT_EXPORT_METHOD()` macro:
> The name of the method exported to JavaScript is the native method's name up to the first colon. React Native also defines a macro called `RCT_REMAP_METHOD()` to specify the JavaScript method's name. This is useful when multiple native methods are the same up to the first colon and would have conflicting JavaScript names.
The return type of bridge methods is always `void`. React Native bridge is asynchronous, so the only way to pass a result to JavaScript is by using callbacks or emitting events (see below).
But it also works with any type that is supported by the `RCTConvert` class (see [`RCTConvert`](https://github.com/facebook/react-native/blob/master/React/Base/RCTConvert.h) for details). The `RCTConvert` helper functions all accept a JSON value as input and map it to a native Objective-C type or class.
In our `CalendarManager` example, we need to pass the event date to the native method. We can't send JavaScript Date objects over the bridge, so we need to convert the date to a string or number. We could write our native function like this:
As `CalendarManager.addEvent` method gets more and more complex, the number of arguments will grow. Some of them might be optional. In this case it's worth considering changing the API a little bit to accept a dictionary of event attributes, like this:
> Objective-C doesn't provide any guarantees about the types of values in these structures. Your native module might expect an array of strings, but if JavaScript calls your method with an array containing numbers and strings, you'll get an `NSArray` containing a mix of `NSNumber` and `NSString`. For arrays, `RCTConvert` provides some typed collections you can use in your method declaration, such as `NSStringArray`, or `UIColorArray`. For maps, it is the developer's responsibility to check the value types individually by manually calling `RCTConvert` helper methods.
`RCTResponseSenderBlock` accepts only one argument - an array of parameters to pass to the JavaScript callback. In this case we use node's convention to make the first parameter an error object (usually `null` when there is no error) and the rest are the results of the function.
A native module is supposed to invoke its callback only once. It can, however, store the callback and invoke it later. This pattern is often used to wrap iOS APIs that require delegates. See [`RCTAlertManager`](https://github.com/facebook/react-native/blob/master/React/Modules/RCTAlertManager.m) for an example.
If you want to pass error-like objects to JavaScript, use `RCTMakeError` from [`RCTUtils.h`](https://github.com/facebook/react-native/blob/master/React/Base/RCTUtils.h). Right now this just passes an Error-shaped dictionary to JavaScript, but we would like to automatically generate real JavaScript `Error` objects in the future.
The native module should not have any assumptions about what thread it is being called on. React Native invokes native modules methods on a separate serial GCD queue, but this is an implementation detail and might change. The `- (dispatch_queue_t)methodQueue` method allows the native module to specify which queue its methods should be run on. For example, if it needs to use a main-thread-only iOS API, it should specify this via:
Similarly, if an operation may take a long time to complete, the native module should not block and can specify it's own queue to run operations on. For example, the `RCTAsyncLocalStorage` module creates it's own queue so the React queue isn't blocked waiting on potentially slow disk access:
A native module can export constants that are immediately available to JavaScript at runtime. This is useful for communicating static data that would otherwise require a round-trip through the bridge.
Note that the constants are exported only at initialization time, so if you change `constantsToExport` values at runtime it won't affect the JavaScript environment.
For more examples of sending events to JavaScript, see [`RCTLocationObserver`](https://github.com/facebook/react-native/blob/master/Libraries/Geolocation/RCTLocationObserver.m).