Sometimes an app needs access to a platform API that React Native doesn't have a corresponding module for yet. Maybe you want to reuse some existing Java code without having to reimplement it in JavaScript, or write some high performance, multi-threaded code such as for image processing, a database, or any number of advanced extensions.
We designed React Native such that it is possible for you to write real native code and have access to the full power of the platform. This is a more advanced feature and we don't expect it to be part of the usual development process, however it is essential that it exists. If React Native doesn't support a native feature that you need, you should be able to build it yourself.
## The Toast Module
This guide will use the [Toast](http://developer.android.com/reference/android/widget/Toast.html) example. Let's say we would like to be able to create a toast message from JavaScript.
We start by creating a native module. A native module is a Java class that usually extends the `ReactContextBaseJavaModule` class and implements the functionality required by the JavaScript. Our goal here is to be able to write `ToastAndroid.show('Awesome', ToastAndroid.SHORT);` from JavaScript to display a short toast on the screen.
public class ToastModule extends ReactContextBaseJavaModule {
private static final String DURATION_SHORT_KEY = "SHORT";
private static final String DURATION_LONG_KEY = "LONG";
public ToastModule(ReactApplicationContext reactContext) {
super(reactContext);
}
}
```
`ReactContextBaseJavaModule` requires that a method called `getName` is implemented. The purpose of this method is to return the string name of the `NativeModule` which represents this class in JavaScript. So here we will call this `ToastAndroid` so that we can access it through `React.NativeModules.ToastAndroid` in JavaScript.
```java
@Override
public String getName() {
return "ToastAndroid";
}
```
An optional method called `getConstants` returns the constant values exposed to JavaScript. Its implementation is not required but is very useful to key pre-defined values that need to be communicated from JavaScript to Java in sync.
```java
@Override
public Map<String,Object> getConstants() {
final Map<String,Object> constants = new HashMap<>();
To expose a method to JavaScript a Java method must be annotated using `@ReactMethod`. The return type of bridge methods is always `void`. React Native bridge is asynchronous, so the only way to pass a result to JavaScript is by using callbacks or emitting events (see below).
The following argument types are supported for methods annotated with `@ReactMethod` and they directly map to their JavaScript equivalents
```
Boolean -> Bool
Integer -> Number
Double -> Number
Float -> Number
String -> String
Callback -> function
ReadableMap -> Object
ReadableArray -> Array
```
### Register the Module
The last step within Java is to register the Module; this happens in the `createNativeModules` of your apps package. If a module is not registered it will not be available from JavaScript.
```java
class AnExampleReactPackage implements ReactPackage {
...
@Override
public List<NativeModule> createNativeModules(
ReactApplicationContext reactContext) {
List<NativeModule> modules = new ArrayList<>();
modules.add(new ToastModule(reactContext));
return modules;
}
```
The package needs to be provided to the ReactInstanceManager when it is built. See `UIExplorerActivity.java` for an example. The default package when you initialize a new project is `MainReactPackage.java`.
To make it simpler for to access your new functionality from JavaScript, it is common to wrap the native module in a JavaScript module. This is not necessary but saves the consumers of your library the need to pull it off of `NativeModules` each time. This JavaScript file also becomes a good location for you to add any JavaScript side functionality.
A native module is supposed to invoke its callback only once. It can, however, store the callback and invoke it later.
It is very important to highlight that the callback is not invoked immediately after the native function completes - remember that bridge communication is asynchronous, and this too is tied to the run loop.
### Threading
Native modules should not have any assumptions about what thread they are being called on, as the current assignment is subject to change in the future. If a blocking call is required, the heavy work should be dispatched to an internally managed worker thread, and any callbacks distributed from there.
### Sending Events to JavaScript
Native modules can signal events to JavaScript without being invoked directly. The easiest way to do this is to use the `RCTDeviceEventEmitter` which can be obtained from the `ReactContext` as in the code snippet below.