1b37d60ea0
- remove setting up host from use-figwheel command - introduce use-android-device command for changing android host. use-android-device command has to be executed only when user changes android device type for development - change figwheel support functions in user.clj to support multiple builds - add instructions to README of how to run iOS and Android simulators simultaneously |
||
---|---|---|
resources | ||
.gitignore | ||
LICENSE | ||
README.md | ||
index.js | ||
package.json | ||
re-natal.coffee |
README.md
Re-Natal
Bootstrap ClojureScript-based React Native apps with Reagent and re-frame
Artur Girenko, MIT License @drapanjanas
This project is a fork of dmotz/natal by Dan Motzenbecker with the goal of generating skeleton of native app for iOS and Android based on Reagent and re-frame.
The support of Figwheel is based on brilliant solution developed by Will Decker decker405/figwheel-react-native which works in both platforms.
Re-Natal is a simple command-line utility that automates most of the process of setting up a React Native app running on ClojureScript with Reagent an re-frame.
Generated project works in iOS and Android devices.
For more ClojureScript React Native resources visit cljsrn.org.
Contributions are welcome.
State
- Uses React Native v0.18.0
- Same codebase for iOS and Android
- Figwheel used for REPL and live coding.
- Works in iOS (real device and simulator).
- Works in real Android device
- Works in Android simulator Genymotion (with re-natal use-figwheel -H 10.0.3.2)
- Works in stock Android emulator (with re-natal use-figwheel -H 10.0.2.2)
- Figwheel REPL can be started within nREPL
- Simultaneous development of iOS and Android apps is supported
- You can reload app any time, no problem.
- Custom react-native components are supported (with re-natal use-component )
- Source maps are available when you "Debug in Chrome"
- Optimizations :simple is used to compile "production" index.ios.js and index.android.js
- Unified way of using static images of rn 0.14+ works
- Works on Linux (Android only)
Usage
Before getting started, make sure you have the required dependencies installed.
Then, install the CLI using npm:
$ npm install -g re-natal
To bootstrap a new app, run re-natal init
with your app's name as an argument:
$ re-natal init FutureApp
If your app's name is more than a single word, be sure to type it in CamelCase. A corresponding hyphenated Clojure namespace will be created.
Re-Natal will create a simple skeleton based on the current version of Reagent and Day8/re-frame. If all goes well you should see printed out basic instructions how to run in iOS simulator.
$ cd future-app
To run in iOS:
$ re-natal xcode
and then run your app from Xcode normally.
To run in Android, connect your device and:
$ adb reverse tcp:8081 tcp:8081
$ react-native run-android
Initially the ClojureScript is compiled in "prod" profile, meaning index.*.js
files
are compiled with optimizations :simple
.
Development in such mode is not fun because of slow compilation and long reload time.
Luckily, this can be improved by compiling with optimizations :none
and using
Figwheel.
Using Figwheel in iOS simulator
Start your app from Xcode as described above.
Then, to start development mode execute commands:
$ re-natal use-figwheel
$ lein figwheel ios
This will generate index.ios.js and index.android.js which works with compiler modeoptimizations :none
.
Using Figwheel in real Android device
To run figwheel with real Android device please read Running on Device. To make it work on USB connected device I had also to do the following:
$ adb reverse tcp:8081 tcp:8081
$ adb reverse tcp:3449 tcp:3449
Then:
$ re-natal use-figwheel
$ lein figwheel android
And deploy your app:
$ react-native run-android
Using Figwheel in Genymotion simulator
With genymotion Android simulator you have to use IP "10.0.3.2" in urls to refer to your local machine. To specify this use:
$ re-natal use-android-device genymotion
$ re-natal use-figwheel
$ lein figwheel android
Start your simulator and deploy your app:
$ react-native run-android
Using Figwheel in stock Android emulator (AVD)
With stock Android emulator you have to use IP "10.0.2.2" in urls to refer to your local machine. To specify this use:
$ re-natal use-android-device avd
$ re-natal use-figwheel
$ lein figwheel android
Start your simulator and deploy your app:
$ react-native run-android
Swiching between Android devices
If you have to switch from using genymotion to real android device you have to execute use-android-device
command and use-figwheel
:
$ re-natal use-android-device <real|genymotion|avd>
$ re-natal use-figwheel
$ lein figwheel android
Developing iOS and Android apps simultaneously
$ re-natal use-figwheel
$ lein figwheel ios android
Then start iOS app from xcode, and Android by executing react-native run-android
Starting Figwheel REPL from nREPL
To start Figwheel within nREPL session:
$ lein repl
Then in the nREPL prompt type:
user=> (start-figwheel "ios")
Or, for Android build type:
user=> (start-figwheel "android")
Or, for both type:
user=> (start-figwheel "ios" "android")
REPL
You have to reload your app, and should see the REPL coming up with the prompt.
At the REPL prompt, try loading your app's namespace:
(in-ns 'future-app.ios.core)
Changes you make via the REPL or by changing your .cljs
files should appear live
in the simulator.
Try this command as an example:
(dispatch [:set-greeting "Hello Native World!"])
Running on Linux
In addition to the instructions above on Linux you might need to
start React Native packager manually with command react-native start
.
This was reported in #3
See also Linux and Windows support in React Native docs.
"Prod" build
Do this with command:
$ lein prod-build
It will clean and rebuild index.ios.js and index.android.js with optimizations :simple
Having index.ios.js and index.android.js build this way, you should be able to follow the RN docs to proceed with the release.
Using external React Native Components
Lets say you have installed an external library from npm like this:
$ npm i some-library --save
And you want to use a component called 'some-library/Component':
(def Component (js/require "some-library/Component"))
This would work when you do lein prod-build
and run your app, but will fail when you run with figwheel.
React Native packager statically scans for all calls to require
function and prepares the required
code to be available at runtime. But, dynamically loaded (by figwheel) code bypass this scan
and therefore require of custom component fails.
To overcome this execute command:
$ re-natal use-component some-library/Component
Then, regenerate index.*.js files:
$ re-natal use-figwheel
And last thing, probably, you will have to restart the packager and refresh your app.
NOTE: if you mistyped something, or no longer use the component and would like to remove it, please, manually open .re-natal file and fix it there (its just a list of names in json format, so should be straight forward)
Static Images
Since version 0.14 React Native supports a unified way of referencing static images
In Re-Natal skeleton images are stored in "images" directory. Place your images there and reference them from cljs code:
(def my-img (js/require "./images/my-img.png"))
Adding an image during development
When you have dropped a new image to "images" dir, you need to restart RN packager and re-run command:
$ re-natal use-figwheel
This is needed to regenerate index.*.js files which includes require
calls to all local images.
After this you can use a new image in your cljs code.
Upgrading existing Re-Natal project
Do this if you want to use newer version of re-natal.
Commit or backup your current project, so that you can restore it in case of any problem ;)
Upgrade re-natal npm package
$ npm upgrade -g re-natal
In root directory of your project run
$ re-natal upgrade
This will overwrite only some files which usually contain fixes in newer versions of re-natal, and are unlikely to be changed by the user. No checks are done, these files are just overwritten:
- files in /env directory
- figwheel-bridge.js
Then to continue development using figwheel
$ re-natal use-figwheel
To upgrade React Native to newer version please follow the official Upgrading guide of React Native. Re-Natal makes almost no changes to the files generated by react-native so the official guide should be valid.
Changes Re-Natal does to original RN application
It would be perfect not to do any changes there, but...
- To make source maps available in "Debug in Chrome" mode re-natal patches the react native packager to serve *.map files from file system and generate only index.*.map file. To achieve this this line of file "node_modules/react-native/packager/react-packager/src/Server/index.js" is modified to match only index.*.map
Tips
-
Having
rlwrap
installed is optional but highly recommended since it makes the REPL a much nicer experience with arrow keys. -
Running multiple React Native apps at once can cause problems with the React Packager so try to avoid doing so.
-
You can launch your app on the simulator without opening Xcode by running
re-natal launch
in your app's root directory. -
By default new Natal projects will launch on the iPhone 6 simulator. To change which device
re-natal launch
uses, you can runre-natal listdevices
to see a list of available simulators, then select one by runningre-natal setdevice
with the index of the device on the list. -
To change advanced settings run
re-natal xcode
to quickly open the Xcode project. -
The Xcode-free workflow is for convenience. If you're encountering app crashes, you should open the Xcode project and run it from there to view errors.
Dependencies
As Re-Natal is the orchestration of many individual tools, there are quite a few dependencies. If you've previously done React Native or Clojure development, you should hopefully have most installed already. Platform dependencies are listed under their respective tools.